diff options
-rw-r--r-- | .gitignore | 368 | ||||
-rw-r--r-- | LICENSE.txt | 428 | ||||
-rw-r--r-- | an1e_zf.pdf | bin | 0 -> 110400 bytes | |||
-rw-r--r-- | an1e_zf.tex | 485 |
4 files changed, 1281 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..daa0042 --- /dev/null +++ b/.gitignore @@ -0,0 +1,368 @@ + +# Created by https://www.gitignore.io/api/vim,tex,linux,macos,windows +# Edit at https://www.gitignore.io/?templates=vim,tex,linux,macos,windows + +### Linux ### +*~ + +# temporary files which can be created if a process still has a handle open of a deleted file +.fuse_hidden* + +# KDE directory preferences +.directory + +# Linux trash folder which might appear on any partition or disk +.Trash-* + +# .nfs files are created when an open file is removed but is still being accessed +.nfs* + +### macOS ### +# General +.DS_Store +.AppleDouble +.LSOverride + +# Icon must end with two \r +Icon
+ +# Thumbnails +._* + +# Files that might appear in the root of a volume +.DocumentRevisions-V100 +.fseventsd +.Spotlight-V100 +.TemporaryItems +.Trashes +.VolumeIcon.icns +.com.apple.timemachine.donotpresent + +# Directories potentially created on remote AFP share +.AppleDB +.AppleDesktop +Network Trash Folder +Temporary Items +.apdisk + +### TeX ### +## Core latex/pdflatex auxiliary files: +*.aux +*.lof +*.log +*.lot +*.fls +*.out +*.toc +*.fmt +*.fot +*.cb +*.cb2 +.*.lb + +## Intermediate documents: +*.dvi +*.xdv +*-converted-to.* +# these rules might exclude image files for figures etc. +# *.ps +# *.eps +# *.pdf + +## Generated if empty string is given at "Please type another file name for output:" +.pdf + +## Bibliography auxiliary files (bibtex/biblatex/biber): +*.bbl +*.bcf +*.blg +*-blx.aux +*-blx.bib +*.run.xml + +## Build tool auxiliary files: +*.fdb_latexmk +*.synctex +*.synctex(busy) +*.synctex.gz +*.synctex.gz(busy) +*.pdfsync + +## Build tool directories for auxiliary files +# latexrun +latex.out/ + +## Auxiliary and intermediate files from other packages: +# algorithms +*.alg +*.loa + +# achemso +acs-*.bib + +# amsthm +*.thm + +# beamer +*.nav +*.pre +*.snm +*.vrb + +# changes +*.soc + +# comment +*.cut + +# cprotect +*.cpt + +# elsarticle (documentclass of Elsevier journals) +*.spl + +# endnotes +*.ent + +# fixme +*.lox + +# feynmf/feynmp +*.mf +*.mp +*.t[1-9] +*.t[1-9][0-9] +*.tfm + +#(r)(e)ledmac/(r)(e)ledpar +*.end +*.?end +*.[1-9] +*.[1-9][0-9] +*.[1-9][0-9][0-9] +*.[1-9]R +*.[1-9][0-9]R +*.[1-9][0-9][0-9]R +*.eledsec[1-9] +*.eledsec[1-9]R +*.eledsec[1-9][0-9] +*.eledsec[1-9][0-9]R +*.eledsec[1-9][0-9][0-9] +*.eledsec[1-9][0-9][0-9]R + +# glossaries +*.acn +*.acr +*.glg +*.glo +*.gls +*.glsdefs + +# uncomment this for glossaries-extra (will ignore makeindex's style files!) +# *.ist + +# gnuplottex +*-gnuplottex-* + +# gregoriotex +*.gaux +*.gtex + +# htlatex +*.4ct +*.4tc +*.idv +*.lg +*.trc +*.xref + +# hyperref +*.brf + +# knitr +*-concordance.tex +# TODO Comment the next line if you want to keep your tikz graphics files +*.tikz +*-tikzDictionary + +# listings +*.lol + +# luatexja-ruby +*.ltjruby + +# makeidx +*.idx +*.ilg +*.ind + +# minitoc +*.maf +*.mlf +*.mlt +*.mtc[0-9]* +*.slf[0-9]* +*.slt[0-9]* +*.stc[0-9]* + +# minted +_minted* +*.pyg + +# morewrites +*.mw + +# nomencl +*.nlg +*.nlo +*.nls + +# pax +*.pax + +# pdfpcnotes +*.pdfpc + +# sagetex +*.sagetex.sage +*.sagetex.py +*.sagetex.scmd + +# scrwfile +*.wrt + +# sympy +*.sout +*.sympy +sympy-plots-for-*.tex/ + +# pdfcomment +*.upa +*.upb + +# pythontex +*.pytxcode +pythontex-files-*/ + +# tcolorbox +*.listing + +# thmtools +*.loe + +# TikZ & PGF +*.dpth +*.md5 +*.auxlock + +# todonotes +*.tdo + +# vhistory +*.hst +*.ver + +# easy-todo +*.lod + +# xcolor +*.xcp + +# xmpincl +*.xmpi + +# xindy +*.xdy + +# xypic precompiled matrices +*.xyc + +# endfloat +*.ttt +*.fff + +# Latexian +TSWLatexianTemp* + +## Editors: +# WinEdt +*.bak +*.sav + +# Texpad +.texpadtmp + +# LyX +*.lyx~ + +# Kile +*.backup + +# KBibTeX +*~[0-9]* + +# auto folder when using emacs and auctex +./auto/* +*.el + +# expex forward references with \gathertags +*-tags.tex + +# standalone packages +*.sta + +### TeX Patch ### +# glossaries +*.glstex + +### Vim ### +# Swap +[._]*.s[a-v][a-z] +[._]*.sw[a-p] +[._]s[a-rt-v][a-z] +[._]ss[a-gi-z] +[._]sw[a-p] + +# Session +Session.vim +Sessionx.vim + +# Temporary +.netrwhist + +# Auto-generated tag files +tags + +# Persistent undo +[._]*.un~ + +# Coc configuration directory +.vim + +### Windows ### +# Windows thumbnail cache files +Thumbs.db +Thumbs.db:encryptable +ehthumbs.db +ehthumbs_vista.db + +# Dump file +*.stackdump + +# Folder config file +[Dd]esktop.ini + +# Recycle Bin used on file shares +$RECYCLE.BIN/ + +# Windows Installer files +*.cab +*.msi +*.msix +*.msm +*.msp + +# Windows shortcuts +*.lnk + +# End of https://www.gitignore.io/api/vim,tex,linux,macos,windows diff --git a/LICENSE.txt b/LICENSE.txt new file mode 100644 index 0000000..a73481c --- /dev/null +++ b/LICENSE.txt @@ -0,0 +1,428 @@ +Attribution-ShareAlike 4.0 International + +======================================================================= + +Creative Commons Corporation ("Creative Commons") is not a law firm and +does not provide legal services or legal advice. Distribution of +Creative Commons public licenses does not create a lawyer-client or +other relationship. Creative Commons makes its licenses and related +information available on an "as-is" basis. Creative Commons gives no +warranties regarding its licenses, any material licensed under their +terms and conditions, or any related information. Creative Commons +disclaims all liability for damages resulting from their use to the +fullest extent possible. + +Using Creative Commons Public Licenses + +Creative Commons public licenses provide a standard set of terms and +conditions that creators and other rights holders may use to share +original works of authorship and other material subject to copyright +and certain other rights specified in the public license below. The +following considerations are for informational purposes only, are not +exhaustive, and do not form part of our licenses. + + Considerations for licensors: Our public licenses are + intended for use by those authorized to give the public + permission to use material in ways otherwise restricted by + copyright and certain other rights. Our licenses are + irrevocable. Licensors should read and understand the terms + and conditions of the license they choose before applying it. + Licensors should also secure all rights necessary before + applying our licenses so that the public can reuse the + material as expected. Licensors should clearly mark any + material not subject to the license. This includes other CC- + licensed material, or material used under an exception or + limitation to copyright. More considerations for licensors: + wiki.creativecommons.org/Considerations_for_licensors + + Considerations for the public: By using one of our public + licenses, a licensor grants the public permission to use the + licensed material under specified terms and conditions. If + the licensor's permission is not necessary for any reason--for + example, because of any applicable exception or limitation to + copyright--then that use is not regulated by the license. Our + licenses grant only permissions under copyright and certain + other rights that a licensor has authority to grant. Use of + the licensed material may still be restricted for other + reasons, including because others have copyright or other + rights in the material. A licensor may make special requests, + such as asking that all changes be marked or described. + Although not required by our licenses, you are encouraged to + respect those requests where reasonable. More considerations + for the public: + wiki.creativecommons.org/Considerations_for_licensees + +======================================================================= + +Creative Commons Attribution-ShareAlike 4.0 International Public +License + +By exercising the Licensed Rights (defined below), You accept and agree +to be bound by the terms and conditions of this Creative Commons +Attribution-ShareAlike 4.0 International Public License ("Public +License"). To the extent this Public License may be interpreted as a +contract, You are granted the Licensed Rights in consideration of Your +acceptance of these terms and conditions, and the Licensor grants You +such rights in consideration of benefits the Licensor receives from +making the Licensed Material available under these terms and +conditions. + + +Section 1 -- Definitions. + + a. Adapted Material means material subject to Copyright and Similar + Rights that is derived from or based upon the Licensed Material + and in which the Licensed Material is translated, altered, + arranged, transformed, or otherwise modified in a manner requiring + permission under the Copyright and Similar Rights held by the + Licensor. For purposes of this Public License, where the Licensed + Material is a musical work, performance, or sound recording, + Adapted Material is always produced where the Licensed Material is + synched in timed relation with a moving image. + + b. Adapter's License means the license You apply to Your Copyright + and Similar Rights in Your contributions to Adapted Material in + accordance with the terms and conditions of this Public License. + + c. BY-SA Compatible License means a license listed at + creativecommons.org/compatiblelicenses, approved by Creative + Commons as essentially the equivalent of this Public License. + + d. Copyright and Similar Rights means copyright and/or similar rights + closely related to copyright including, without limitation, + performance, broadcast, sound recording, and Sui Generis Database + Rights, without regard to how the rights are labeled or + categorized. For purposes of this Public License, the rights + specified in Section 2(b)(1)-(2) are not Copyright and Similar + Rights. + + e. Effective Technological Measures means those measures that, in the + absence of proper authority, may not be circumvented under laws + fulfilling obligations under Article 11 of the WIPO Copyright + Treaty adopted on December 20, 1996, and/or similar international + agreements. + + f. Exceptions and Limitations means fair use, fair dealing, and/or + any other exception or limitation to Copyright and Similar Rights + that applies to Your use of the Licensed Material. + + g. License Elements means the license attributes listed in the name + of a Creative Commons Public License. The License Elements of this + Public License are Attribution and ShareAlike. + + h. Licensed Material means the artistic or literary work, database, + or other material to which the Licensor applied this Public + License. + + i. Licensed Rights means the rights granted to You subject to the + terms and conditions of this Public License, which are limited to + all Copyright and Similar Rights that apply to Your use of the + Licensed Material and that the Licensor has authority to license. + + j. Licensor means the individual(s) or entity(ies) granting rights + under this Public License. + + k. Share means to provide material to the public by any means or + process that requires permission under the Licensed Rights, such + as reproduction, public display, public performance, distribution, + dissemination, communication, or importation, and to make material + available to the public including in ways that members of the + public may access the material from a place and at a time + individually chosen by them. + + l. Sui Generis Database Rights means rights other than copyright + resulting from Directive 96/9/EC of the European Parliament and of + the Council of 11 March 1996 on the legal protection of databases, + as amended and/or succeeded, as well as other essentially + equivalent rights anywhere in the world. + + m. You means the individual or entity exercising the Licensed Rights + under this Public License. Your has a corresponding meaning. + + +Section 2 -- Scope. + + a. License grant. + + 1. Subject to the terms and conditions of this Public License, + the Licensor hereby grants You a worldwide, royalty-free, + non-sublicensable, non-exclusive, irrevocable license to + exercise the Licensed Rights in the Licensed Material to: + + a. reproduce and Share the Licensed Material, in whole or + in part; and + + b. produce, reproduce, and Share Adapted Material. + + 2. Exceptions and Limitations. For the avoidance of doubt, where + Exceptions and Limitations apply to Your use, this Public + License does not apply, and You do not need to comply with + its terms and conditions. + + 3. Term. The term of this Public License is specified in Section + 6(a). + + 4. Media and formats; technical modifications allowed. The + Licensor authorizes You to exercise the Licensed Rights in + all media and formats whether now known or hereafter created, + and to make technical modifications necessary to do so. The + Licensor waives and/or agrees not to assert any right or + authority to forbid You from making technical modifications + necessary to exercise the Licensed Rights, including + technical modifications necessary to circumvent Effective + Technological Measures. For purposes of this Public License, + simply making modifications authorized by this Section 2(a) + (4) never produces Adapted Material. + + 5. Downstream recipients. + + a. Offer from the Licensor -- Licensed Material. Every + recipient of the Licensed Material automatically + receives an offer from the Licensor to exercise the + Licensed Rights under the terms and conditions of this + Public License. + + b. Additional offer from the Licensor -- Adapted Material. + Every recipient of Adapted Material from You + automatically receives an offer from the Licensor to + exercise the Licensed Rights in the Adapted Material + under the conditions of the Adapter's License You apply. + + c. No downstream restrictions. You may not offer or impose + any additional or different terms or conditions on, or + apply any Effective Technological Measures to, the + Licensed Material if doing so restricts exercise of the + Licensed Rights by any recipient of the Licensed + Material. + + 6. No endorsement. Nothing in this Public License constitutes or + may be construed as permission to assert or imply that You + are, or that Your use of the Licensed Material is, connected + with, or sponsored, endorsed, or granted official status by, + the Licensor or others designated to receive attribution as + provided in Section 3(a)(1)(A)(i). + + b. Other rights. + + 1. Moral rights, such as the right of integrity, are not + licensed under this Public License, nor are publicity, + privacy, and/or other similar personality rights; however, to + the extent possible, the Licensor waives and/or agrees not to + assert any such rights held by the Licensor to the limited + extent necessary to allow You to exercise the Licensed + Rights, but not otherwise. + + 2. Patent and trademark rights are not licensed under this + Public License. + + 3. To the extent possible, the Licensor waives any right to + collect royalties from You for the exercise of the Licensed + Rights, whether directly or through a collecting society + under any voluntary or waivable statutory or compulsory + licensing scheme. In all other cases the Licensor expressly + reserves any right to collect such royalties. + + +Section 3 -- License Conditions. + +Your exercise of the Licensed Rights is expressly made subject to the +following conditions. + + a. Attribution. + + 1. If You Share the Licensed Material (including in modified + form), You must: + + a. retain the following if it is supplied by the Licensor + with the Licensed Material: + + i. identification of the creator(s) of the Licensed + Material and any others designated to receive + attribution, in any reasonable manner requested by + the Licensor (including by pseudonym if + designated); + + ii. a copyright notice; + + iii. a notice that refers to this Public License; + + iv. a notice that refers to the disclaimer of + warranties; + + v. a URI or hyperlink to the Licensed Material to the + extent reasonably practicable; + + b. indicate if You modified the Licensed Material and + retain an indication of any previous modifications; and + + c. indicate the Licensed Material is licensed under this + Public License, and include the text of, or the URI or + hyperlink to, this Public License. + + 2. You may satisfy the conditions in Section 3(a)(1) in any + reasonable manner based on the medium, means, and context in + which You Share the Licensed Material. For example, it may be + reasonable to satisfy the conditions by providing a URI or + hyperlink to a resource that includes the required + information. + + 3. If requested by the Licensor, You must remove any of the + information required by Section 3(a)(1)(A) to the extent + reasonably practicable. + + b. ShareAlike. + + In addition to the conditions in Section 3(a), if You Share + Adapted Material You produce, the following conditions also apply. + + 1. The Adapter's License You apply must be a Creative Commons + license with the same License Elements, this version or + later, or a BY-SA Compatible License. + + 2. You must include the text of, or the URI or hyperlink to, the + Adapter's License You apply. You may satisfy this condition + in any reasonable manner based on the medium, means, and + context in which You Share Adapted Material. + + 3. You may not offer or impose any additional or different terms + or conditions on, or apply any Effective Technological + Measures to, Adapted Material that restrict exercise of the + rights granted under the Adapter's License You apply. + + +Section 4 -- Sui Generis Database Rights. + +Where the Licensed Rights include Sui Generis Database Rights that +apply to Your use of the Licensed Material: + + a. for the avoidance of doubt, Section 2(a)(1) grants You the right + to extract, reuse, reproduce, and Share all or a substantial + portion of the contents of the database; + + b. if You include all or a substantial portion of the database + contents in a database in which You have Sui Generis Database + Rights, then the database in which You have Sui Generis Database + Rights (but not its individual contents) is Adapted Material, + + including for purposes of Section 3(b); and + c. You must comply with the conditions in Section 3(a) if You Share + all or a substantial portion of the contents of the database. + +For the avoidance of doubt, this Section 4 supplements and does not +replace Your obligations under this Public License where the Licensed +Rights include other Copyright and Similar Rights. + + +Section 5 -- Disclaimer of Warranties and Limitation of Liability. + + a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE + EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS + AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF + ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS, + IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION, + WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR + PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS, + ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT + KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT + ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU. + + b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE + TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION, + NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT, + INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES, + COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR + USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN + ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR + DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR + IN PART, THIS LIMITATION MAY NOT APPLY TO YOU. + + c. The disclaimer of warranties and limitation of liability provided + above shall be interpreted in a manner that, to the extent + possible, most closely approximates an absolute disclaimer and + waiver of all liability. + + +Section 6 -- Term and Termination. + + a. This Public License applies for the term of the Copyright and + Similar Rights licensed here. However, if You fail to comply with + this Public License, then Your rights under this Public License + terminate automatically. + + b. Where Your right to use the Licensed Material has terminated under + Section 6(a), it reinstates: + + 1. automatically as of the date the violation is cured, provided + it is cured within 30 days of Your discovery of the + violation; or + + 2. upon express reinstatement by the Licensor. + + For the avoidance of doubt, this Section 6(b) does not affect any + right the Licensor may have to seek remedies for Your violations + of this Public License. + + c. For the avoidance of doubt, the Licensor may also offer the + Licensed Material under separate terms or conditions or stop + distributing the Licensed Material at any time; however, doing so + will not terminate this Public License. + + d. Sections 1, 5, 6, 7, and 8 survive termination of this Public + License. + + +Section 7 -- Other Terms and Conditions. + + a. The Licensor shall not be bound by any additional or different + terms or conditions communicated by You unless expressly agreed. + + b. Any arrangements, understandings, or agreements regarding the + Licensed Material not stated herein are separate from and + independent of the terms and conditions of this Public License. + + +Section 8 -- Interpretation. + + a. For the avoidance of doubt, this Public License does not, and + shall not be interpreted to, reduce, limit, restrict, or impose + conditions on any use of the Licensed Material that could lawfully + be made without permission under this Public License. + + b. To the extent possible, if any provision of this Public License is + deemed unenforceable, it shall be automatically reformed to the + minimum extent necessary to make it enforceable. If the provision + cannot be reformed, it shall be severed from this Public License + without affecting the enforceability of the remaining terms and + conditions. + + c. No term or condition of this Public License will be waived and no + failure to comply consented to unless expressly agreed to by the + Licensor. + + d. Nothing in this Public License constitutes or may be interpreted + as a limitation upon, or waiver of, any privileges and immunities + that apply to the Licensor or You, including from the legal + processes of any jurisdiction or authority. + + +======================================================================= + +Creative Commons is not a party to its public +licenses. Notwithstanding, Creative Commons may elect to apply one of +its public licenses to material it publishes and in those instances +will be considered the “Licensor.” The text of the Creative Commons +public licenses is dedicated to the public domain under the CC0 Public +Domain Dedication. Except for the limited purpose of indicating that +material is shared under a Creative Commons public license or as +otherwise permitted by the Creative Commons policies published at +creativecommons.org/policies, Creative Commons does not authorize the +use of the trademark "Creative Commons" or any other trademark or logo +of Creative Commons without its prior written consent including, +without limitation, in connection with any unauthorized modifications +to any of its public licenses or any other arrangements, +understandings, or agreements concerning use of licensed material. For +the avoidance of doubt, this paragraph does not form part of the +public licenses. + +Creative Commons may be contacted at creativecommons.org. + diff --git a/an1e_zf.pdf b/an1e_zf.pdf Binary files differnew file mode 100644 index 0000000..e9f93f8 --- /dev/null +++ b/an1e_zf.pdf diff --git a/an1e_zf.tex b/an1e_zf.tex new file mode 100644 index 0000000..1587ce6 --- /dev/null +++ b/an1e_zf.tex @@ -0,0 +1,485 @@ +\documentclass[a4paper, twocolumn]{article} + +\usepackage{amsmath} +\usepackage{amssymb} +\usepackage{mathtools} + +\usepackage{float} +\usepackage{array} +\usepackage{booktabs} +\usepackage{multirow} +\usepackage{framed} + +\usepackage[german]{babel} + +\usepackage[margin=2cm]{geometry} +\usepackage{xcolor} +\usepackage{graphicx} + +\usepackage[colorlinks = true, + linkcolor = blue, + urlcolor = blue, + citecolor = blue, + anchorcolor = blue]{hyperref} + +\usepackage{tikz} +\usetikzlibrary{calc} + + +\title{An1E Zusammenfassung} +\author{Naoki Pross} +\date{Januar 2020} + + +\newcommand{\nset}[1]{\ensuremath{\mathbb{#1}}} +\newcommand{\heq}{\ensuremath{\stackrel{\hat{\texttt{H}}}{=}}} +\newcommand{\noticeq}{\ensuremath{\stackrel{!}{=}}} +\newcommand{\dd}[1]{\ensuremath{\mathrm{d}#1}} +\newcommand{\df}[2]{\ensuremath{\frac{\dd{#1}}{\dd{#2}}}} + +\newcommand{\brpage}[1]{\textcolor{red!70!black}{\small\texttt{S#1}}} + + +\begin{document} + +\section{Ungleichungen \brpage{31}} +\begin{tabular*}{\linewidth}{l >{\(}r<{\) } @{{\(\;\leq\;\)}} >{ \(}l<{\)}} + Bernoulli & 1 + na & (1+a)^n \\ + Binomische & |ab| & \frac{1}{2}(a^2 + b^2) \\ + Dreiecks & |a + b| & |a| + |b| \\ +\end{tabular*} +Mittel (\(\forall j: a_j \geq 0, n \in \nset{N}\)) +\begin{align*} +\begin{array}{*3{>{\displaystyle}l}} + \texttt{HM } &\leq \texttt{ GM } &\leq \texttt{ AM} \\ + \left[ \frac{1}{n}\sum_{j=1}^n\frac{1}{a_j}\right]^{-1} + &\leq + \sqrt[n]{\prod_{j=1}^n a_j} + &\leq + \frac{1}{n}\sum_{j=1}^{n} a_j +\end{array} +\end{align*} +Integral +\begin{align*} + \left| \int_a^b f(x) \;\dd{x} \right| \leq \int_a^b |f(x)| \;\dd{x} +\end{align*} + +\section{Zahlenfolgen und Reihen} +\subsection{Konvergenz \brpage{679}} +\textbf{Hinweise:} Induktion, Einschlie{\ss}ungsprinzip, Bolzano-Weierstrass. +\begin{align*} + \exists g \in \nset{R} : g = \lim_{n\to\infty} \langle f_n \rangle + \iff \langle f_n \rangle \text{ konvergiert} +\end{align*} + +\subsection{Divergenz \brpage{472}} +Divergent hei{\ss}t nicht konvergent: +\begin{align*} + \lim_{n\to\infty} \langle f_n \rangle = \pm\infty + &\implies \langle f_n \rangle \text{ divergiert \emph{bestimmt}} \\ + \nexists \lim_{n\to\infty} \langle f_n \rangle + &\implies \langle f_n \rangle \text{ divergiert} +\end{align*} + +\subsection{Binomischer Satz \brpage{12}} +\begin{align*} + (a+b)^n &= \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k + & + \binom{n}{k} &= \frac{n!}{k!(n-k)!} +\end{align*} + +\subsection{Folgen \brpage{470}} +\begin{center} + \begin{tabular}{l >{\(}l<{\)} >{\(}l<{\)}} + Arithmetisch & a_{n+1} = a_n + d & d = a_{n+1} - a_n \\ + Geometrisch & a_{n+1} = q a_n & q = a_{n+1} / a_n \\ + \end{tabular} +\end{center} +\begin{center} + Monotonie der Folge + \begin{tabular}{*3{>{\(}l<{\)}}} + \midrule + d > 0 & q > 1 &\implies \langle a_n\rangle\Uparrow \\ + d \geq 0 & q \geq 1 &\implies \langle a_n\rangle\uparrow \\ + d < 0 & q \in (0;1) &\implies \langle a_n\rangle\Downarrow \\ + d \leq 0 & q \in (0;1] &\implies \langle a_n\rangle\downarrow \\ + \end{tabular} +\end{center} + +\subsection{Reihen \brpage{20,477,1075}} +\begin{align*} + \sum_{k=1}^n k &= \frac{n(n+1)}{2} & + \sum_{k=1}^n k^2 &= \frac{n(n+1)(2n+1)}{6} \\ + \sum_{k=1}^n k^3 &= \frac{n^2(n+1)^2}{4} & + \sum_{k=0}^{n-1} ar^k &= a\left(\frac{1-r^n}{1-r}\right) (r \neq 1) +\end{align*} + +\section{Funktionen \brpage{49}} +\[ +f : \mathbb{D}_f \to \mathbb{W}_f \quad x \mapsto f(x) +\] + +\subsection{Lineare Transformationen} +Seien \(\mu,\lambda,\ell,o \geq 0\). +Mit \(< 0\) werte Streckungen sind Spiegelungen und Verschiebungen sind in Gegenrichtung. +\[ +\mathfrak{T}\{f\} = \mu f(\lambda x + \ell) + o +\] +Wobei +\(\mu = y\)-Streckung, +\(\lambda = x\)-Streckung, +\(\ell = \) Verschiebung nach links, +\(o = \) Verschiebung nach oben. + +\subsection{Monotonie \brpage{51,453}} +\begin{center} + \begin{tabular}{>{\(}c<{\)} l >{\(}l<{\)}} + \text{Zeichen} & \text{Bedeutung} & \text{Bedingung } (\forall\varepsilon > 0) \\ + \midrule + f \Uparrow & \text{streng wachsend} & f(x) < f(x + \varepsilon) \\ + f \uparrow & \text{wachsend} & f(x) \leq f(x + \varepsilon) \\ + f \Downarrow & \text{streng fallend} & f(x) > f(x + \varepsilon) \\ + f \downarrow & \text{fallend} & f(x) \geq f(x + \varepsilon) \\ + \end{tabular} \\ +\end{center} +\begin{center} + \begin{tabular}{*3{>{\(}c<{\)}}} + \text{Monotonie} & f'' \neq 0 & f^{(n)} \neq 0 \text{ und } n \text{ gerade} \\ + \midrule + f \Uparrow & f' > 0 & f^{(n-1)} > 0 \\ + f \uparrow & f' \geq 0 & f^{(n-1)} \geq 0 \\ + f \Downarrow & f' < 0 & f^{(n-1)} < 0 \\ + f \downarrow & f' \leq 0 & f^{(n-1)} \leq 0 \\ + \end{tabular} +\end{center} +\footnotesize{NB: Gilt auch f\"ur Zahlenfolgen (\(f(x) \leadsto f_n, f(x+\varepsilon) \leadsto f_{n+1}\)) + +\subsection{Symmetrien \brpage{52}} +\begin{center} + \resizebox{\linewidth}{!}{% + \begin{tabular}{l >{\(}r<{\)} @{\(\;=\;\)} >{\(}l<{\)} l} + \(f\)& \multicolumn{2}{l}{\text{Bedingung}} & Bedeutung \\ + \midrule + gerade & f(-x) & f(x) & \(y\)-Symmetrisch \\ + ungerade & f(-x) & -f(x) & Nullpunkt-Symmetrisch \\ + periodisch & f(x) & f(x\pm p) & \(p \in \nset{R}\) + \end{tabular} + } +\end{center} + +\subsection{Beschranktheit \brpage{52,676}} +Eine funktion hei{\ss}t nach unten oder oben beschr\"ankt, wenn ihre Werte nicht gr\"o{\ss}er oder kleiner als eine eine bestimmte Zahl \(K\) bzw. \(k\) sind. +\(f\) ist beschr\"ankt wenn \(\exists \sup f \wedge \exists \inf f \iff \forall x: k < f(x) < K\). +\begin{align*} + K = \sup f &\iff \exists K \in \nset{R} : \forall x : f(x) < K \\ + k = \inf f &\iff \exists k \in \nset{R} : \forall x : f(x) > k +\end{align*} + +\subsection{Stetigkeit \brpage{60}} +Eine funktion hei{\ss}t \emph{stetig} wenn: +\begin{align*} + \forall x \in \mathbb{D}_f : \lim_{u^{-} \to x} f(u) = \lim_{u^{+} \to x} f(u) = f(x) +\end{align*} + +\subsection{Nullstellen \brpage{40,47,48}} +\subsection{Extremstellen \brpage{455}} +\subsection{Wendepunkte \brpage{256}} +\subsection{Konvexit\"at \brpage{253}} +Auch als Kr\"ummungsverhalten bekannt. Sei \(P = (x,f(x))\) und kein Wendepunkt, +d.h. \(f''(x) \neq 0\). +\begin{align*} + f''(x) > 0 & \implies \text{ nach oben konkav, streng konvex} \\ + f''(x) < 0 & \implies \text{ nach unten konkav, streng konkav} +\end{align*} + +\subsection{Wendepunkte \brpage{256}} + +\subsection{Asymptoten \brpage{260}} +Sei \(a(x) = kx + b\) die allgemeine Asymptot von \(f(x)\), d.h. +\(\lim_{x\to\infty} f(x) - a(x) = 0\). Dann +\begin{align*} + k &= \lim_{x\to\infty}\frac{f(x)}{x} \heq \lim_{x\to\infty} f'(x) + & b &= \lim_{x\to\infty}\left( f(x) - kx \right) +\end{align*} + +\subsection{Umkehrfunktion \brpage{53}} +Umkehrbarkeit Bedingungen: +\begin{align*} + f^{-1} : \mathbb{W}_f \to \mathbb{D}_f \quad f(x) \mapsto x \\ + \exists f^{-1} \iff (f\Downarrow)\vee(f\Uparrow) +\end{align*} + +\subsection{Polynomen \brpage{65}} +\begin{align*} +P_n(x) = \sum_{i=0}^n a_i x^i = \prod_{i=1}^n (x-r_i) +\end{align*} +Nullstellen \brpage{40} (Wurzeln) \(r_i\) k\"onnen mithilfe von Faktorisierung, +der Quadratische Formel \(r = \frac{1}{2a}(-b \pm \sqrt{b^2 - 4ac}) \) +oder dem Hornerschema \brpage{966} gel\"ost werden. +\begin{align*} + P_n(x) = (x - u) P_{n-1}(x) + P_n(u) +\end{align*} +Seien \(a_i\) die Koeffizienten von \(P_n(x)\), \(b_i\) von \(P_{n-1}(x)\) und \(u \in \mathbb{D}_P\). +Wenn \(P_n(u) = 0\), dann ist \(u = r\) d.h. eine Nullstelle. +\begin{center} + \begin{tabular}{>{\(}c<{\)} | >{\(}c<{\)} >{\(}c<{\)} >{\(}c<{\)} >{\(}c<{\)} | >{\(}c<{\)} c} + & a_n & a_{n-1} & \cdots & a_1 & a_0 & \multirow{2}{*}{+} \\ + \times u & & u b_{n-1} & \cdots & u b_1 & u b_0 \\ + \midrule + & b_{n-1} & b_{n-2} & \cdots & b_0 & P_n(u) \\ + \end{tabular} +\end{center} + +\subsection{Gebrochene Funktionen \brpage{14}} +\begin{align*} +R(x) = \frac{P_m(x)}{Q_n(x)} = \frac{p_m x^m + \cdots + p_0}{q_n x^n + \cdots + q_0} +\end{align*} + +\subsubsection{Partialbruchzerlegung \brpage{15}} + +\subsection{Trigonometrische \brpage{77,80,147,165}} +\begin{center} + \begin{tikzpicture}[scale=4] + \draw[gray,dashed] (0,0) -- + node[pos=.7, sloped, above] {\(0\)} + node[pos=1, anchor=west, sloped] {\(\left(1,0,0\right)\)} + (1.1,0); + + \draw[gray,dashed] (0,0) -- + node[pos=.7, sloped, above] {\(\pi/2\)} + node[pos=1, anchor=west, sloped] {\(\left(0,1,\infty\right)\)} + (0,1.1); + + \draw[gray,dashed] (0,0) -- + node[pos=.7, sloped, above] {\(\pi/12\)} + node[pos=1, anchor=west, sloped] {\(\left(\frac{1+ \sqrt3}{2\sqrt 2},\frac{\sqrt3 -1}{2\sqrt 2}\right)\)} + ({1.1 *cos(15)}, {1.1 * sin(15)}); + + \draw[gray,dashed] (0,0) -- + node[pos=.7, sloped, above] {\(\pi/8\)} + node[pos=1, anchor=west, sloped] {\(\scriptscriptstyle\left(\frac{\sqrt{2 + \sqrt{2}}}{2},\frac{\sqrt{2-\sqrt{2}}}{2}\right)\)} + ({1.1 *cos(pi/8 r)}, {1.1 * sin(pi/8 r)}); + + \draw[dashed] (0,0) -- + node[pos=.7, sloped, above] {\(\pi/6\)} + node[pos=1, anchor=west, sloped] {\(\left(\frac{\sqrt 3}{2},\frac{1}{2},\frac{\sqrt3}{3}\right)\)} + ({1.1 *cos(30)}, {1.1 * sin(30)}); + + \draw[dashed] (0,0) -- + node[pos=.7, sloped, above] {\(\pi/4\)} + node[pos=1, anchor=west, sloped] {\(\left(\frac{\sqrt 2}{2},\frac{\sqrt 2}{2}, 1\right)\)} + ({1.1 *cos(45)}, {1.1 * sin(45)}); + + \draw[dashed] (0,0) -- + node[pos=.7, sloped, above] {\(\pi/3\)} + node[pos=1, anchor=west, sloped] {\(\left(\frac{1}{2},\frac{\sqrt 3}{2},\sqrt{3}\right)\)} + ({1.1 *cos(60)}, {1.1 * sin(60)}); + + \draw[black, thick] ({cos(-5)}, {sin(-5)}) arc (-5:100:1); + \end{tikzpicture} +\end{center} +Definitionen der grunds\"atzlichen Winkelfunktionen. +\begin{align*} + \sin(x) &= \frac{e^{ix} - e^{-ix}}{2i} = \sum_{n=0}^\infty (-1)^n \frac{x^{(2n+1)}}{(2n+1)!} \\ + \cos(x) &= \frac{e^{ix} + e^{ix}}{2} = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n)!}\\ + \sinh(x) &= \frac{e^{x} - e^{-x}}{2} = \sum_{n=0}^\infty \frac{x^{(2n+1)}}{(2n+1)!} \\ + \cosh(x) &= \frac{e^{x} + e^{x}}{2} = \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!}\\ +\end{align*} +Beziehungen und Identit\"aten. +\[ +\cos^2(x) + \sin^2(x) = 1 \quad \cosh^2(x) - \sinh^2(x) = 1 +\] + +\begin{center} + \begin{tabular}{>{\(}l<{\)} @{\(\;=\;\)} >{\(}r<{\)} >{\(}l<{\)} @{\(\;=\;\)} >{\(}r<{\)} } + \toprule + \cos(\alpha + 2\pi) & \cos(\alpha) & \sin(\alpha + 2\pi) & \sin(\alpha) \\ + \cos(-\alpha) & \cos(\alpha) & \sin(-\alpha) & -\sin(\alpha) \\ + \cos(\pi - \alpha) & -\cos(\alpha) & \sin(\pi - \alpha) & \sin(\alpha) \\ + \cos(\frac{\pi}{2} - \alpha) & \sin(\alpha) & \sin(\frac{\pi}{2} - \alpha) & \cos(\alpha) \\ + \midrule + \cos(\alpha + \beta) & \multicolumn{3}{l}{\(\cos\alpha\cos\beta - \sin\alpha\sin\beta\)} \\ + \sin(\alpha + \beta) & \multicolumn{3}{l}{\(\sin\alpha\cos\beta - \cos\alpha\sin\beta\)} \\ + \midrule + \cos(2\alpha) & \multicolumn{3}{l}{\(\cos^2{\alpha} - \sin^2{\alpha} \)} \\ + & \multicolumn{3}{l}{\(1 - 2\sin^2\alpha\)} \\ + & \multicolumn{3}{l}{\(2\cos^2\alpha - 1\)} \\ + \sin(2\alpha) & \multicolumn{3}{l}{\(2\sin\alpha\cos\alpha\)} \\ + \tan(2\alpha) & \multicolumn{3}{l}{\((2\tan\alpha)(1 + \tan^2\alpha)^{-1}\)} \\ + \bottomrule + \end{tabular} +\end{center} + +\section{Grenzwert \brpage{55}} +Bedingungen f\"ur die Existenz einer Grenzwert: +\begin{align*} + \exists \lim_{x\to a} f(x) = g \iff \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) +\end{align*} +Formell lautet der \(\delta - \varepsilon\) Kriterium: +\begin{align*} + \lim_{x\to a}f(x) \iff \forall \varepsilon > 0: \exists a: |f(a) - g| < \varepsilon +\end{align*} + + +\subsection{Unbestimmte Formen} +\begin{align*} +\frac{0}{0},\; \frac{\infty}{\infty},\; 0\cdot\infty,\; \infty - \infty,\; 0^0,\; \infty^0,\; 1^\infty +\end{align*} + +\subsection{Enschlie{\ss}ungsprinzip \brpage{56}} +Auch als ``Sandwitch'' bekannt. +\(\forall x : a(x) \leq f(x) \leq b(x)\) +\begin{align*} + \exists \left(\lim_{x\to\pm\infty} a(x) = \lim_{x\to\pm\infty} b(x) = g\right) + \implies + \lim_{x\to\pm\infty} f(x) = g +\end{align*} +\footnotesize{NB: gilt auch f\"ur folgen \(a_n, b_n, f_n\)} + +\subsection{Bolzano-Weierstrass \brpage{701}} +\begin{align*} + \begin{rcases} + \exists \sup f \wedge f\Uparrow \\ + \exists \inf f \wedge f\Downarrow + \end{rcases} + \implies f \text{ konvergiert} +\end{align*} + +\subsection{Bemerkenswerte Grenzwerte} +\begin{align*} + \setlength\extrarowheight{8pt} + \begin{array}{*2{>{\displaystyle}l}} + \lim_{x\to 0} \frac{\sin x}{x} = 1 & \lim_{x\to\infty} \left(1 + \frac{a}{x}\right)^x = e^a \\ + \lim_{x\to 0} \frac{a^x - 1}{x} = \ln a & \lim_{x\to\infty} \frac{(\ln x)^a}{x^b} = 0 \\ + \lim_{x\to 0} \frac{e^x - 1}{2} = 1 & \lim_{x\to\infty} \sqrt[x]{p} = 1\\ + \lim_{x\to 0} x\ln x = 0 & \lim_{x\to\infty} \sum_{k=0}^x q^k = \frac{1}{1-q} \quad (|q| < 1)\\ + \end{array} +\end{align*} + +\subsection{Bernoulli-l'H\^opitalsche Regel \brpage{57}} +Wenn \(f(x)/g(x) \to \pm\infty/\pm\infty\) oder \(f/g \to 0/0\) dann gilt: +\begin{align*} + \lim_{x\to a} \frac{f(x)}{g(x)} \heq \lim_{x\to a} \frac{f'(x)}{g'(x)} +\end{align*} +\textbf{Hinweise:} +\begin{align*} + \varphi\psi &= \frac{\varphi}{\psi^{-1}} = \frac{\psi}{\varphi^{-1}} + & 0\cdot\infty &\leadsto \frac{0}{0}, \frac{\infty}{\infty} \\ + \varphi - \psi &= \frac{\psi^{-1} - \varphi^{-1}}{(\varphi\psi)^{-1}} + & \infty - \infty &\leadsto \frac{0}{0} \\ + \varphi^\psi &= e^{\psi\ln\varphi} & (\varphi > 0) +\end{align*} + +\section{Differentialrechnung \brpage{444,446}} +\begin{align*} + f'(x) = \df{f}{x} = D_x f = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h} +\end{align*} + +\subsection{Differenzierbarkeit \brpage{444,445}} +Beide \(f'_+ \text{ und } f'_-\) mussen existieren und gleich sein. +\begin{align*} + \lim_{h\to 0^+} \frac{f(x+h) - f(x)}{h} = f'_+ \noticeq \lim_{h\to 0^-} \frac{f(x+h) - f(x)}{h} = f'_- +\end{align*} + +\subsection{Ableitungsregeln \brpage{445,450}} +\begin{alignat*}{3} + (af) &= af' &\quad&& (u(v(x)))' &= u'(v)v' \\ + (uv)' &= u'v + uv' &\quad&& \left(\frac{u}{v}\right)' &= \frac{u'v-uv'}{v^2} \\ + \left(\sum u_i\right)' &= \sum u'_i &\quad&& (\ln u)' &= \frac{u'}{u} \\ + (f^{-1})' &= \frac{1}{f'(f^{-1}(x))} +\end{alignat*} + +\subsection{Tangente und Normale Funktion} +Zur Funktion \(f(x)\) im Punkt \((p_x, p_y) = (z, f(z))\) +\begin{align*} + t(x) &= f'(p_x)(x - p_x) + p_y & + n(x) &= \frac{p_x - x}{f'(p_x)} + p_y +\end{align*} + +\subsection{Schnittwinkel} +Der Schnittpunkt \(S = (z,f(z)) = (z,g(z))\) findet man mit \(f(z) = g(z)\). Der Schnittwinkel ist dann +\begin{align*} + \tan\vartheta = \frac{g'(z) - f'(z)}{1 + f'(z)g'(z)} +\end{align*} + +\subsection{Mittlewertsatz (der DR) \brpage{454}} +\begin{align*} + f'(\xi) = \frac{f(b) - f(a)}{b-a} \qquad (\xi \in (a;b)) +\end{align*} + +\subsection{Taylor Polynom und Reihe \brpage{484}} +Der Taylor-Polynom approximiert eine Funktion um einen Entwicklungspunkt \(a\). +\begin{align*} + T_n(x, a) &= \sum_{k=0}^n\frac{f^{(k)}(a)}{k!}(x-a)^k + R_n\\ + &= f(a) + \frac{f'(a)}{1!}(x-a)^1 + \frac{f''(a)}{2!}(x-a)^2 + \cdots +\end{align*} +Die Restgliede sind +\begin{align*} + R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{(n+1)} \qquad (\xi \in (x;a)) +\end{align*} +Wenn \(\lim_{n\to\infty}R_n = 0\) dann \(f(x) \noticeq T(x,a)\), d.h. die Taylor Rehie zu \(f\) identisch ist. Sonst berechnet man der \emph{worst case} Fehler \(\epsilon \geq |R_n|\) und der dazugeh\"orig \(\hat{\xi} = \underset{\xi}{\arg}\max|R_n|\): +\begin{align*} + \epsilon + = \max |R_n| + = \max \left[\frac{|f^{(n+1)}(\xi)|}{(n+1)!} |x-a|^{(n+1)}\right] +\end{align*} + +\subsection{Fehlerrechnung \brpage{862,866} und Fortpflanzung \brpage{869}} +Sei \(\mathbf{y}\) eine direkte Messerung von eine Funktion \(y\) von \(x\). Ist dann \(\Delta y\) der \emph{absolute} Fehler und \(\delta y\) der \emph{relative} Fehler. +\begin{align*} + \mathbf{y} = y \pm \Delta y = y(1 \pm \delta y) +\end{align*} +Der Messerungsfehler kann mithilfe von einer lineare Approximation fortgepflanzt werden. +\begin{align*} + \lim_{\Delta x\to 0} \frac{\Delta y}{\Delta x} \noticeq \df{y}{x} + \implies &\Delta y \approx y'\Delta x \\ + & \delta y = \frac{\Delta y}{y} \approx \frac{y'\Delta x}{y} + = k\delta x +\end{align*} + +\section{Integralrechnung \brpage{493}} +\subsection{Riemann Itegrierbarkeit \brpage{507}} +Sei \(f \text{ in } [a;b]\) stetig, \(x_0 = a, \dots, x_n = b\) und \(\xi_i \in [x_{i-1};x_{i}]\). +\begin{align*} + \int_b^a f(x) \;\dd{x} = \mathfrak{Ri}\{f\} + = \lim_{\substack{n\to\infty\\ \Delta x_i\to0 }} + \sum_{i=1}^n f(\xi_i) \underbrace{(x_i - x_{i-1})}_{\Delta x_i} +\end{align*} +Bedingungen f\"ur \(f\): stetig oder monoton oder beschr\"ankt und an h\"ochstens endlich vielen Stellen unstetig. + +\subsection{Aufwendungen} +\begin{align*} + \text{Fl\"acheninhalt} && A &= \int_a^b |f(x)| \;\dd{x} \\ + \text{Bogenl\"ange} && \ell &= \int_a^b \sqrt{1 + (f'(x))^2} \;\dd{x} +\end{align*} + +\subsection{Bestimmte Integral \brpage{509}} +\begin{align*} + \int_a^b f(t)\;\dd{t} &= F(b) - F(a) \\ + \int_a^b f(t)\;\dd{t} &= \int_a^0 f(t)\;\dd{t} + \int_0^b f(t)\;\dd{t} +\end{align*} + +\subsection{Mittlewertsatzt \brpage{510}} +Sei \(f(x)\) in \([a;b]\) stetig, dann \(\exists \xi \in (a;b) : f(\xi) = \mu\) (Mittelwert). +\begin{align*} + \frac{1}{b-a}\int_a^b f(t) \;\dd{t} = f(\xi) = \mu \qquad (\xi\in (a,b)) +\end{align*} + +\subsection{Differenzierbarkeit \brpage{509}} +\begin{align*} + \df{}{x} \int f(t) \;\dd{t} &= f(x) \\ + \df{}{x} \int_{a(x)}^{b(x)} f(t) \;\dd{t} &= f(b(x)) b'(x) - f(a(x))a'(x) +\end{align*} + +\section*{License} +{ \tt +An1E-ZF (c) by Naoki Pross +\\\\ +An1E-ZF is licensed under a Creative Commons Attribution-ShareAlike 4.0 Unported License. +\\\\ +You should have received a copy of the license along with this work. If not, see +\\\\ +\url{http://creativecommons.org/licenses/by-sa/4.0/} +} + +\end{document} |