aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorNao Pross <naopross@thearcway.org>2020-04-12 16:22:21 +0200
committerNao Pross <naopross@thearcway.org>2020-04-12 16:22:21 +0200
commit81d455fb3af2bf34cd63f87465f9f53f518794a4 (patch)
tree243fa87822c6370eb4aa39f0d9f8c07b7fd72de5
parentUpdate table and plane-curve fig (diff)
downloadAn2E-81d455fb3af2bf34cd63f87465f9f53f518794a4.tar.gz
An2E-81d455fb3af2bf34cd63f87465f9f53f518794a4.zip
Retab to spaces, add sections and curvature figure
Diffstat (limited to '')
-rw-r--r--an2e_zf.pdfbin67064 -> 80340 bytes
-rw-r--r--an2e_zf.tex230
-rw-r--r--fig/plane-curvature.eps1213
-rw-r--r--fig/plane-curvature.ipe356
4 files changed, 1712 insertions, 87 deletions
diff --git a/an2e_zf.pdf b/an2e_zf.pdf
index cd1b7ac..97801b0 100644
--- a/an2e_zf.pdf
+++ b/an2e_zf.pdf
Binary files differ
diff --git a/an2e_zf.tex b/an2e_zf.tex
index da6de58..9cb871c 100644
--- a/an2e_zf.tex
+++ b/an2e_zf.tex
@@ -1,4 +1,4 @@
-\documentclass[a4paper]{article}
+\documentclass[a4paper, twocolumn]{article}
\usepackage{amssymb}
\usepackage{amsmath}
@@ -11,7 +11,7 @@
\usepackage{booktabs}
\usepackage{rotating}
-\usepackage[margin=2cm, bottom=2cm, top=2cm, marginpar=0pt]{geometry}
+\usepackage[margin=2cm, marginpar=0pt]{geometry}
\usepackage{graphicx}
\usepackage{xcolor}
@@ -22,7 +22,6 @@
%\usepackage{pgfplots}
%\pgfplotsset{compat=1.15}
-\usepackage{multicol}
\usepackage[colorlinks = true,
linkcolor = red!50!black,
@@ -40,166 +39,178 @@
\date{Fr\"uhlingsstemester 2020}
-\newcommand{\dd}[1]{\ensuremath{~\mathrm{d}#1}}
-\newcommand{\deriv}[2]{\ensuremath{\frac{\dd{#1}}{\dd{#2}}}}
-\newcommand{\pderiv}[2]{\ensuremath{\frac{\partial#1}{\partial#2}}}
+\newcommand{\dd}[2][]{\ensuremath{~\mathrm{d}^{#1} #2}}
+\newcommand{\deriv}[3][]{\ensuremath{\frac{\dd[#1]{#2}}{\dd[]{#3^{#1}}}}}
+\newcommand{\pderiv}[3][]{\ensuremath{\frac{\partial^{#1} #2}{\partial^{#1} #3}}}
\renewcommand{\vec}[1]{\ensuremath{\bm{#1}}}
\newcommand{\brpage}[1]{\textcolor{red!70!black}{\small\texttt{S#1}}}
\begin{document}
-\begin{multicols}{2}
\section{Integration \brpage{493,507}}
\subsection{Tricks \brpage{495}}
Linearit\"at \brpage{495}
\[
- \int k(u + v) = k\left(\int u + \int v\right)
+ \int k(u + v) = k\left(\int u + \int v\right)
\]
Partialbruchzerlegung \brpage{15,498}
\[
- \int \frac{f(x)}{P_n(x)} \dd{x} = \sum_{k=1}^n \int \frac{A_k}{x-r_k}\dd{x}
+ \int \frac{f(x)}{P_n(x)} \dd{x} = \sum_{k=1}^n \int \frac{A_k}{x-r_k}\dd{x}
\]
Elementartransformation \brpage{496}
\[
- \int f(\lambda x + \ell) \dd{x} = \frac{1}{\lambda} F(\lambda x + \ell) + C
+ \int f(\lambda x + \ell) \dd{x} = \frac{1}{\lambda} F(\lambda x + \ell) + C
\]
Partielle Integration \brpage{497}
\[
- \int u \dd{v} = uv - \int v \dd{u}
+ \int u \dd{v} = uv - \int v \dd{u}
\]
Potenzenregel \brpage{496}
\[
- \int u^n \cdot u' = \frac{u^{n+1}}{n+1} + C \qquad n \neq -1
+ \int u^n \cdot u' = \frac{u^{n+1}}{n+1} + C \qquad n \neq -1
\]
Logaritmusregel \brpage{496}
\[
- \int \frac{u'}{u} = \ln|u| + C
+ \int \frac{u'}{u} = \ln|u| + C
\]
Allgemeine Substutution \brpage{497}\\
\(x = g(u)\), und \(\dd{x} = g'(u)\dd{u}\)
\[
- \int f(x) \dd{x} = \int (f\circ g) ~ g' \dd{u} = \int \frac{f \circ g}{(g^{-1})'\circ g} \dd{u}
+ \int f(x) \dd{x} = \int (f\circ g) ~ g' \dd{u} = \int \frac{f \circ g}{(g^{-1})'\circ g} \dd{u}
\]
Universalsubstitution \brpage{504}
\begin{align*}
- t &= \tan(x/2) & \sin(x) &= \frac{2t}{1+t^2} \\
- \dd{x} &= \frac{2\dd{t}}{1+t^2} & \cos(t) &= \frac{1-t^2}{1+t^2}
+ t &= \tan(x/2) & \sin(x) &= \frac{2t}{1+t^2} \\
+ \dd{x} &= \frac{2\dd{t}}{1+t^2} & \cos(t) &= \frac{1-t^2}{1+t^2}
\end{align*}
Womit
\[
- \int f(\sin(x), \cos(x), \tan(x)) \dd{x} = \int g(t) \dd{t}
+ \int f(\sin(x), \cos(x), \tan(x)) \dd{x} = \int g(t) \dd{t}
\]
\subsection{Uneigentliches Integral \brpage{520}}
\begin{align*}
- \int\limits_a^\infty f \dd{x} &= \lim_{B \to \infty} \int\limits_a^B f \dd{x} \\
- \int\limits_{-\infty}^b f \dd{x} &= \lim_{A \to -\infty} \int\limits_A^b f \dd{x} \\
- \int\limits_{-\infty}^\infty f \dd{x} &= \lim_{\substack{A \to +\infty \\ B \to -\infty}} \int\limits_A^B f \dd{x}
+ \int\limits_a^\infty f \dd{x} &= \lim_{B \to \infty} \int\limits_a^B f \dd{x} \\
+ \int\limits_{-\infty}^b f \dd{x} &= \lim_{A \to -\infty} \int\limits_A^b f \dd{x} \\
+ \int\limits_{-\infty}^\infty f \dd{x} &= \lim_{\substack{A \to +\infty \\ B \to -\infty}} \int\limits_A^B f \dd{x}
\end{align*}
Wenn \(f\) im Punkt \(u \in (a,b)\) nicht definiert ist.
\begin{equation} \label{eqn:int-with-pole}
- \int\limits_a^b f \dd{x} =
- \lim_{\epsilon\to +0} \int\limits_a^{u-\epsilon} f \dd{x}
- + \lim_{\delta\to +0} \int\limits_{u+\delta}^b f \dd{x}
+ \int\limits_a^b f \dd{x} =
+ \lim_{\epsilon\to +0} \int\limits_a^{u-\epsilon} f \dd{x}
+ + \lim_{\delta\to +0} \int\limits_{u+\delta}^b f \dd{x}
\end{equation}
\subsection{Cauchy Hauptwert \brpage{523}}
Der C.H. (oder PV f\"ur \emph{Principal Value} auf Englisch) eines uneigentlichen Integrals ist der Wert, wenn in einem Integral wie \eqref{eqn:int-with-pole} beide Grenzwerte mit der gleiche Geschwindigkeit gegen 0 sterben.
\[
- \text{C.H.} \int\limits_a^b f \dd{x} =
- \lim_{\epsilon\to +0} \left( \int\limits_a^{u-\epsilon} f \dd{x}
- + \int\limits_{u+\epsilon}^b f \dd{x} \right)
+ \text{C.H.} \int\limits_a^b f \dd{x} =
+ \lim_{\epsilon\to +0} \left( \int\limits_a^{u-\epsilon} f \dd{x}
+ + \int\limits_{u+\epsilon}^b f \dd{x} \right)
\]
Zum Beispiel \(x^{-1}\) ist nicht \"uber \(\mathbb{R}\) integrierbar, wegen des Poles bei 0. Aber intuitiv wie die Symmetrie vorschlagt
\[
- \text{C.H.} \int\limits^\infty_{-\infty} \frac{1}{x} \dd{x} = 0
+ \text{C.H.} \int\limits^\infty_{-\infty} \frac{1}{x} \dd{x} = 0
\]
\subsection{Majorant-, Minorantenprinzip und Konvergenzkriterien \brpage{521,473,479,481}}
Gilt f\"ur die Funktionen \(0 < f(x) \leq g(x)\) mit \(x \in [a,\infty)\)
\[
- \text{konvergiert } \int\limits_a^\infty g \dd{x}
- \implies \text{ konvergiert } \int\limits_a^\infty f \dd{x}
+ \text{konvergiert } \int\limits_a^\infty g \dd{x}
+ \implies \text{ konvergiert } \int\limits_a^\infty f \dd{x}
\]
Die selbe gilt umgekehrt f\"ur Divergenz. Wenn \(0 < h(x) \leq f(x)\)
\[
- \text{divergiert } \int\limits_a^\infty h \dd{x}
- \implies \text{ divergiert } \int\limits_a^\infty f \dd{x}
+ \text{divergiert } \int\limits_a^\infty h \dd{x}
+ \implies \text{ divergiert } \int\limits_a^\infty f \dd{x}
\]
\(g\) und \(h\) hei{\ss}en Majorant und Minorant bzw.
\section{Implizite Ableitung \brpage{448}}
Alle normale differenziazionsregeln gelten.
\[
- \dd{y} = y'\dd{x}
+ \dd{y} = y'\dd{x}
\]
%Allgemeiner f\"ur die implizite Funktion \(F(x,y) = 0\)
%\[
-% \pderiv{F}{x} + \pderiv{F}{y} y' = 0
+% \pderiv{F}{x} + \pderiv{F}{y} y' = 0
%\]
-\end{multicols}
-\section{Ebene \brpage{250} und Raumkurven \brpage{263}}
-\begin{sidewaystable}
-\centering
-\renewcommand{\arraystretch}{3}
-\begin{tabular}{l *{3}{>{\(\displaystyle}l<{\)}} }
-\toprule
-\textbf{Ebene Kurven} & \textbf{Explizit } y = f(x) & \textbf{Polar } \vec{r}(\varphi) & \textbf{Parameter } \vec{c}(t) = \left(x(t), y(y)\right) \\
-\midrule
-Bogenl\"ange \brpage{251}
- & \int\limits_a^b \sqrt{1 + (f')^2} \dd{x}
- & \int\limits_\alpha^\beta \sqrt{(r')^2 + r^2} \dd{\varphi}
- & \int\limits_{t_0}^{t_1} \sqrt{\dot{x}^2 + \dot{y}^2} \dd{t} = \int\limits_{t_0}^{t_1} |\vec{c}| \dd{t}
-\\
-Fl\"ache
- & \int\limits_a^b |f(x)| \dd{x}
- & \frac{1}{2}\int\limits_\alpha^\beta r(\varphi)^2 \dd{\varphi}
- & \frac{1}{2}\int\limits_{t_0}^{t_1} x\dot{y} - \dot{x}y \dd{t} = \frac{1}{2}\int\limits_{t_0}^{t_1}\det(\vec{c},\dot{\vec{c}}) \dd{t}
-\\
-\midrule
-Rotationsvolumen um \(x\)
- & \pi \left|\int\limits_a^b y^2 \dd{x} \right|
- & \pi \left|\int\limits_{t_0}^{t_1} y \dot{x} \dd{t} \right|
- & \pi \left|\int\limits_\alpha^\beta r^2 \sin^2 \varphi (r'\cos\varphi - r\sin\varphi) \dd{\varphi} \right|
-\\
-Rotationsoberfl\"ache um \(x\)
- & 2\pi \int\limits_a^b |y| \sqrt{1 + (y')^2} \dd{x}
- & 2\pi \int\limits_\alpha^\beta |r\sin(\varphi)| \sqrt{(r')^2 + r^2} \dd{\varphi}
- & 2\pi \int\limits_{t_0}^{t_1} |y| \sqrt{\dot{x}^2 + \dot{y}^2} \dd{t}
-\\
-% Rotationsvolumen um \(y\) \\
-% Rotationsoberfl\"ache um \(y\) \\
-\midrule
-Kr\"ummung \(\kappa\)
- & \frac{f''}{\sqrt{1+(f')^2}^3}
- &
- & \frac{\ddot{y}\dot{x} - \ddot{x}\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}^3}
- = \frac{\det(\vec{\dot{c}},\vec{\ddot{c}})}{|\vec{\dot{c}}|^3}
-\\
-\bottomrule
-\end{tabular}
-\end{sidewaystable}
+\section{Differentialgeometrie}
+\subsection{Ebene \brpage{250} Kurven}
-\begin{multicols}{2}
-\subsection{Darstellungen}
-\begin{figure}[H]
+\subsubsection{Darstellungen und Umwanldung}
+\begin{figure}[h]
\centering
\includegraphics[width=.9\linewidth]{fig/plane-curve.eps}
-\caption{Die ebene Kurve \(\Lambda(t)\) kann Explizit \(y(x)\) (in diesem Fall nicht), Implizit \(\vec{u}(x,y)\), Polar \(\vec{r}(\varphi)\) oder in Parameterform \((x(t), y(t))\) dargestellt werden.}
+\caption{Die ebene Kurve \(\vec{\Lambda}(t)\) kann Explizit \(y(x)\) (in diesem Fall nicht), Implizit \(\vec{u}(x,y) = 0\), Polar \(\vec{r}(\varphi)\) oder in Parameterform \((x(t), y(t))\) dargestellt werden.}
+\label{fig:plane-curve}
\end{figure}
-\subsection{Tangente und Normalvektor}
+Sei \(\Lambda: x = \phi(t),\, y = \psi(t), t\in I\) eine glatte Jordankurve.
+Beispiel im Abb. \ref{fig:plane-curve}.
+
+\paragraph{Polar zu Kartesian}
+\[
+ r = \sqrt{x^2 + y^2}
+ \qquad
+ \tan\varphi = y/x
+\]
+\[
+ x = r \cos\varphi
+ \qquad
+ y = r \sin\varphi
+\]
+
+\paragraph{Parametrisch zu explizit}
+Sei \(\dot{\phi} \neq 0\) oder \(\dot{\psi} \neq 0\). Im Falle \(\dot{\phi} \neq 0\), wechselt \(\dot\phi\) in der Umgebung von \(t\) das Vorzeichen nicht, \(\phi\) ist dort streng monoton.
+Daher gilt
+\[
+ t = \phi^{-1}(x) \quad y = \psi(t) = \psi \circ \phi^{-1}(x) = f(x)
+\]
+Wenn \(\dot{\psi} \neq 0\) ist dann \(x = \phi \circ \psi^{-1}(y)\)
+
+\subsubsection{Tangente und Normalvektor \brpage{251,252}}
+F\"ur eine ebene Kurve \(\vec{\Lambda}(t)\) \(\tau, t \in I\), der Vektor \(\vec{\dot\Lambda}(\tau)\) ist immer an \(\vec{\Lambda}(\tau)\) tangent. \(\vec{\ddot{\Lambda}}(\tau)\) ist zur Kurve normal.
+\begin{align*}
+ \vec{\dot{\Lambda}}
+ &= \deriv{y}{x}
+ = \frac{\dot{y}}{\dot{x}}
+ = \frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}
+ \\[.9em]
+ \vec{\ddot{\Lambda}}
+ &= \deriv[2]{y}{x}
+ = \frac{\ddot{y}\dot{x} - \ddot{x}\dot{y}}{\dot{x}^3}
+\end{align*}
+Man kann auch die Tangentengleichung und die Normalengleichung zur Zeitpunkt \(\tau\) finden
+\begin{align*}
+ T: y - \psi(\tau) &= \frac{\dot{\psi}}{\dot{\phi}}(x - \phi(\tau)) \\
+ N: y - \psi(\tau) &= -\frac{\dot{\phi}}{\dot{\psi}}(x - \phi(\tau))
+\end{align*}
-\subsection{Kr\"ummung}
+\subsubsection{Kr\"ummung und Kr\"ummungsradius \brpage{254}}
+Siehe Tab. \ref{tab:plane-curves-big} f\"ur die Rechnungsformeln.
\[
- \kappa = \deriv{\phi}{s} = \frac{\ddot{y}}{(1+\dot{y}^2)^{3/2}}
+ \kappa
+ = \lim_{\Delta s\to 0} \frac{\Delta \theta}{\Delta s}
+ = \deriv{\theta}{s}
+ \qquad
+ R = 1/\kappa
\]
-\begin{thebibliography}{1}
+\begin{figure}[h]
+\centering
+\includegraphics[width=.8\linewidth]{fig/plane-curvature}
+\caption{Kr\"ummung und Kr\"ummungskreisradien}
+\label{fig:plane-curvature}
+\end{figure}
+
+\subsection{Raumkurven \brpage{263}}
+
+\begin{thebibliography}{3}
\bibitem{hsr}
\texttt{An2E} Vorlesungen an der Hochschule f\"ur Technik Rapperswil und der dazugeh\"orige Skript,
\textit{Dr. Bernhard Zgraggen}, Fr\"uhlingssemester 2020
@@ -209,7 +220,7 @@ Kr\"ummung \(\kappa\)
\textit{Bronstein, Semendjajew, Musiol, M\"uhlig},
\texttt{ISBN 978-3-8085-5789-1}
\bibitem{mathe2}
- Mathematik 2 Lehrbuch für ingenieurwissenschaftliche Studieng\"ange,
+ Mathematik 2: Lehrbuch für ingenieurwissenschaftliche Studieng\"ange,
2012, 7. Auflage, XII, Springer Berlin,
\textit{Albert Fetzer, Heiner Fränkel},
\texttt{ISBN-10 364224114X},
@@ -228,8 +239,53 @@ An2E-ZF is licensed under a Creative Commons Attribution-ShareAlike 4.0 Unported
\\\\
You should have received a copy of the license along with this work. If not, see
\\\\
-\url{http://creativecommons.org/licenses/by-sa/4.0/}
+{\small\url{http://creativecommons.org/licenses/by-sa/4.0/}}
}
-\end{multicols}
-\end{document} \ No newline at end of file
+
+\onecolumn
+
+\begin{sidewaystable}[p]
+\centering
+\caption{Rechnungen bez. ebene Kurven}
+\label{tab:plane-curves-big}
+\renewcommand{\arraystretch}{3}
+\begin{tabular}{l *{3}{>{\(\displaystyle}l<{\)}} }
+\toprule
+\textbf{Ebene Kurven} & \textbf{Explizit } y = f(x) & \textbf{Polar } \vec{r}(\varphi) & \textbf{Parameter } \vec{c}(t) = \left(x(t), y(y)\right) \\
+\midrule
+Bogenl\"ange \brpage{251}
+ & \int\limits_a^b \sqrt{1 + (f')^2} \dd{x}
+ & \int\limits_\alpha^\beta \sqrt{(r')^2 + r^2} \dd{\varphi}
+ & \int\limits_{t_0}^{t_1} \sqrt{\dot{x}^2 + \dot{y}^2} \dd{t} = \int\limits_{t_0}^{t_1} |\vec{c}| \dd{t}
+\\
+Fl\"ache
+ & \int\limits_a^b |f(x)| \dd{x}
+ & \frac{1}{2}\int\limits_\alpha^\beta r(\varphi)^2 \dd{\varphi}
+ & \frac{1}{2}\int\limits_{t_0}^{t_1} x\dot{y} - \dot{x}y \dd{t} = \frac{1}{2}\int\limits_{t_0}^{t_1}\det(\vec{c},\dot{\vec{c}}) \dd{t}
+\\
+\midrule
+Rotationsvolumen um \(x\)
+ & \pi \left|\int\limits_a^b y^2 \dd{x} \right|
+ & \pi \left|\int\limits_{t_0}^{t_1} y \dot{x} \dd{t} \right|
+ & \pi \left|\int\limits_\alpha^\beta r^2 \sin^2 \varphi (r'\cos\varphi - r\sin\varphi) \dd{\varphi} \right|
+\\
+Rotationsoberfl\"ache um \(x\)
+ & 2\pi \int\limits_a^b |y| \sqrt{1 + (y')^2} \dd{x}
+ & 2\pi \int\limits_\alpha^\beta |r\sin(\varphi)| \sqrt{(r')^2 + r^2} \dd{\varphi}
+ & 2\pi \int\limits_{t_0}^{t_1} |y| \sqrt{\dot{x}^2 + \dot{y}^2} \dd{t}
+\\
+% Rotationsvolumen um \(y\) \\
+% Rotationsoberfl\"ache um \(y\) \\
+\midrule
+Kr\"ummung \(\kappa\)
+ & \frac{f''}{\sqrt{1+(f')^2}^3}
+ &
+ & \frac{\ddot{y}\dot{x} - \ddot{x}\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}^3}
+ = \frac{\det(\vec{\dot{c}},\vec{\ddot{c}})}{|\vec{\dot{c}}|^3}
+\\
+\bottomrule
+\end{tabular}
+\end{sidewaystable}
+
+\end{document}
diff --git a/fig/plane-curvature.eps b/fig/plane-curvature.eps
new file mode 100644
index 0000000..64e39da
--- /dev/null
+++ b/fig/plane-curvature.eps
@@ -0,0 +1,1213 @@
+%!PS-Adobe-3.0 EPSF-3.0
+%%Creator: cairo 1.15.10 (http://cairographics.org)
+%%CreationDate: Sun Apr 12 16:21:18 2020
+%%Pages: 1
+%%DocumentData: Clean7Bit
+%%LanguageLevel: 2
+%%BoundingBox: 0 1 244 226
+%%EndComments
+%%BeginProlog
+50 dict begin
+/q { gsave } bind def
+/Q { grestore } bind def
+/cm { 6 array astore concat } bind def
+/w { setlinewidth } bind def
+/J { setlinecap } bind def
+/j { setlinejoin } bind def
+/M { setmiterlimit } bind def
+/d { setdash } bind def
+/m { moveto } bind def
+/l { lineto } bind def
+/c { curveto } bind def
+/h { closepath } bind def
+/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
+ 0 exch rlineto 0 rlineto closepath } bind def
+/S { stroke } bind def
+/f { fill } bind def
+/f* { eofill } bind def
+/n { newpath } bind def
+/W { clip } bind def
+/W* { eoclip } bind def
+/BT { } bind def
+/ET { } bind def
+/BDC { mark 3 1 roll /BDC pdfmark } bind def
+/EMC { mark /EMC pdfmark } bind def
+/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
+/Tj { show currentpoint cairo_store_point } bind def
+/TJ {
+ {
+ dup
+ type /stringtype eq
+ { show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
+ } forall
+ currentpoint cairo_store_point
+} bind def
+/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
+ cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
+/Tf { pop /cairo_font exch def /cairo_font_matrix where
+ { pop cairo_selectfont } if } bind def
+/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
+ /cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
+ /cairo_font where { pop cairo_selectfont } if } bind def
+/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
+ cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
+/g { setgray } bind def
+/rg { setrgbcolor } bind def
+/d1 { setcachedevice } bind def
+/cairo_data_source {
+ CairoDataIndex CairoData length lt
+ { CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
+ { () } ifelse
+} def
+/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
+/cairo_image { image cairo_flush_ascii85_file } def
+/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
+%%EndProlog
+%%BeginSetup
+%%BeginResource: font CMMI12
+%!PS-AdobeFont-1.0: CMMI12 003.002
+%%Title: CMMI12
+%Version: 003.002
+%%CreationDate: Mon Jul 13 16:17:00 2009
+%%Creator: David M. Jones
+%Copyright: Copyright (c) 1997, 2009 American Mathematical Society
+%Copyright: (<http://www.ams.org>), with Reserved Font Name CMMI12.
+% This Font Software is licensed under the SIL Open Font License, Version 1.1.
+% This license is in the accompanying file OFL.txt, and is also
+% available with a FAQ at: http://scripts.sil.org/OFL.
+%%EndComments
+
+11 dict begin
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0 ]readonly def
+/FontName /f-0-0 def
+/FontBBox {-31 -250 1026 750 }readonly def
+/PaintType 0 def
+/FontInfo 10 dict dup begin
+/version (003.002) readonly def
+/Notice (Copyright \050c\051 1997, 2009 American Mathematical Society \050<http://www.ams.org>\051, with Reserved Font Name CMMI12.) readonly def
+/FullName (CMMI12) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.04 def
+/isFixedPitch false def
+/UnderlinePosition -100 def
+/UnderlineThickness 50 def
+/ascent 750 def
+end readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 120 /x put
+dup 121 /y put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece61cf3a79690d73bfb4b0027b6f3b53cc32be64063d04d328b49c17a62c396cfc8
+17b9fcb732c3b0aeb6264b2a70f62fbfc397eea8d069af80a71b775145f9842057f969d124e630
+1a760710a5c51e8981851fbcf7f1cd1f2ab78db91af2a6f264e41cc2cdecf450a3a33c89fa447b
+8bad4068cb8d7d37adaa4caab8f72cc26b024348ef8708a0ab6ee56d73f035ac9b506c91fcafc2
+40791cc10b1b0ca42c87a24a69e83f61a20432744f7d79437b93825d955cee80718831f56e0254
+0ae4b3a70b9dda35ca4fbcabfbc50a4cafca7423203f1b2a15e6749603d63b0cbb201e4b9fb558
+f646912754942767968fa898008988333600e410be1426b8ddfe0381a0146558732991b59cf9b5
+09e40f34e7e8d364bb603b7dd9700f676b448ee17493e9b60a5deba1b074e355a6b5b981bc22d1
+b3e913e89c2f921b17b998c8777c766f504f7f79abd76571a2ff82e80534b9ad8c6659828649ef
+3adacb33ba7f372b681014042876c3654cce44965da20b5ea176d47fba7b0dd44cfb4eb1a1426a
+7a6b713e5db62a5c9a717c5e02b1ba2194c105f7ce16478e0dcd07aa1c28feaf90ab5265db6b3c
+0cf5f9bb39bb3f4c59120767ae40641452e2f86af2d110c3771ddd570697abc1148adf8c48b968
+cac8a587dcbb63b109a56aad615e839b646d12dbc5d4fa7f78b33812974a8c462859538fc08a2a
+517904809055cb5f1068ad101708ea1a4144f274d0241ed8ec585fff5504a1b57c7d728390a608
+21d1d51ef8f0470decc7d97c0204a4809dc697a85643b352914dc7a75b12bed89e4c0faf6c800f
+2a32fab0be8e61c0679f25d41fdb28d107065a73e3beebb69b2b6aac80ee7ce255fede4b5444de
+e8a3ff85f814becb6fc7510a1e9917bcf39022d7a1bf0e2df564e45a310b730027a8581ebc0371
+244f81863c691deb381feb75f29b7f9ffb014e2f92e8823a972be7418c2cfce60bc87280a1a534
+2362b389b56f51e396c76494d0cb31f6177445b1d01d0544d76bd37e89fefc79df633cc24272f7
+d67278ba0b08cba0406701af54d14da8fac6b86eb05b74d0d2c9ca96daa38cb49c3f68f4998ab8
+629ce1fe2ad91d0224800a64c6a5608a242050850c859b893a81102282a0f1a9032a27f85dc40c
+dd6819c988b3a915b22be78d3c595d11d726feea7222070ead4be4841d9e7ec440379ee3462d94
+7e64082b30fecf39088073f7aa2a69631fce17bf3548029f4d57e455f4977a2d00a50f38fa1f75
+18fd84adea6c2ec0a9bc3d58ec121cb67ded8ad52ab162fe25e200083d5ea5a6cfdab5558b5c2d
+4fdfd2bad0886c7921a812b86d083ae924c64aef8b9952459832feeca0491ceb3504dfc9762ea1
+2b8bbb2614614373b0ac10b2f43931d2e84d6246bfede031d07e27f2aa258aa90149bdc82337b3
+d27431a3b96c5f82bbda3cbeb744e8249f22ec63772f5b283f83724f570e0100bf0afd9e5ce250
+478a86030b4e37acd7f30ae063cd93df731b47ab6ee5c96317635726d9858f1c20ed4032aa94db
+796df1facbd884af0dca21f1444c20f3a8b7fd2472f0d78091c87038f7a509a51c88a123220ebc
+b89249a4e96e6ea7623bff5f4b41c700d5662aa262d04148cf55484dd32727ce4f2244e21a2b42
+e2fd671e7ad26d77ff9aeb3031fb98d6431f668fdce4bc7cf71e487de361bb55f63a7e6a7f7c18
+b8447b2dd1695683c6dbdfc02880c439696f899a350794b5d1d2b725b53b6f65ac55e139107815
+9299b23bf61b2d4da384f3747802fd7c9dd678b29b3686661abf4d999866f3f17afceefda58236
+15197bbc76c4c7542fe78528fd45ad956c9d1d15a92056e5f4a37354ab702c22781062d746f28d
+033e5065f9c46e644ce59a7a366dbf689c533a9d8f7db6f21de01784dfa43c7d8c0bbbcb9712b8
+8415e531277454cce32e92ba36f70dcce72033b32f6d8c8bc13cd5b3e3ddb9df7c6ad41dbaf7fe
+db5ec4a3efe119699277d96a80ac2547e512c2658313aec0f94cf4ba3dd0c6fbefb7899d4874fc
+6a714f405f943ac03ac206d4550ab65d48799abe1fae5eec610c3f9f607eff612abc23a3c94b84
+2b85396e7c5d21fc4c1a2a86b585513c2a892325464ee9693941690f3267299e0548c4b354a984
+b326664184e6d0ea66404468db0d898e6054555bc00296cc7182f11e29783a4c69b66dca12a97c
+a37f218dc02b52971807c8ecd629870142bd15fd4852ae10ac977781701a39473c548006324889
+5c21d12c19ffa887812bfec54b40bd8c4f29eb36431e2c6482490937dfdb4e2deef3df842241a0
+76198ea01653d3720641feadec4df1f7ea63d2e19081f54728a5f4fed9bcf94f447bf9de0ca752
+1f2ec96f2d1280f700a5fcc1386c1c29af267df423c6ca73c13e0b5abe16a276407e8da057debe
+e2bd6f7f9cb247704ca13bb659936dfd4a9461f61d53fd4844e1548b1345360c75d75a7e8c0b12
+d73ec77007e74ce95026c969d3ccae02cb6de4a06da08837f0bb7367a5f0ba075807e0584e5665
+13b9ef72f64439d29045320eda26c4a2c7efb40a2ed596ccbfebf38c7c0d31c233f21b94eeb095
+564cfdd235795751109bf9a19f9d8e2d6c054c00d1a0f5217b32dfed2938df70e6d7f773648eb1
+61fe0609a4fa8410f558bf3e8630fc5059dfca81241efbd5d82aa40c052d7052b29c84037fd889
+8e9248ef9065808b00fb6f8529da8531bc85fed9780a9670cfa6ffe1804198c76a0a8e757c6687
+db3a6178d73ec34b28c275d220e5ae4f18a22d29be7412535b2eea51959661c8b662d929f7b751
+eabc5c5c07c77c9a03164e20a41f406c825bfc5d11ec549cad81bf7234c4fdfcbc4862c669b0b5
+4359cda3beffa57675714a90fab971d05238ef23dd46a041a1ce144d1267a707bbfdb27cce87ff
+78c11bbb9feedf08caa51a85646dd2f81fb6800683b115e77778f580d572338e5c3f4672f824cf
+178e01979ff9d2351a37d1b4a9e137e724c11cb893db16c413a6d44ebca7bef6e77e4dd476d62b
+9f8351ef92a280998d09f405d4a1eb12272c285b9581cecd3e8c55dd138ed4afd57ea44ca722c6
+2ba10686f262b7dade5c89202cdedd48affecaad5bbbbee8ab87f08cd895348a8505bde159d1a5
+7843985e34bcd49363e376782c96474a89949a3ea5e15cd3cfd950886958bdca9463fd353a2e0f
+d2161daf70c52113253a4bd6417587a785bb2fcbef7893e07871c65970d7444a988de568435d18
+e4768c9a1b30685ac7d8d80c0d73e1489aab61ee4e0121e796b6a87bcfb00dd825a73d1776a8a9
+f213859491a058d99c9c70740b624c9d84712a011e9359fcb2f776c1d26c28ff5674e178d82f74
+f63a52ac3c512edde9888e8da18d05f0d944dd460aa85491da9fb6bbf9432dcea652caba63694e
+badc75aa64e5720b5d1526e0a8b69aea0c0bc7b214c24a2750e342810ace935446a60851d2b7fa
+68cf6ca94b06538c06abc143b3b2a0713a0a82033939786563065d52d37b7a43b10387ba3f794f
+ba53d62ee62be0542360fc6069aba6bd0fd0d6391c392a52ee8c03616e32a5310ed156a9f0fedc
+8cc461eb9c155be6b2a3da01898d30cff70c4fceb5398a5ea60986b0527ab5a8a0b60d4c80ae5a
+ad3be6dd951fe6bb04997156afb9967706057deb8bd4e4365f16e211cc9c1dcb2e181b36afe6ea
+69ecbef1670fb9a077d6a2b998eb9f745f4fb60b2819254dc1013b0f31cc95eeac7ed9cf52aff0
+5ce0b4c5ad3234bf4de92474d895b1100eb46a236c4605a9dd433821ff759542c4b2349916cc38
+8d61bdc0fc8849ac4047ce46d33ddbe1e5014f99443a4273ae6fada82e1a28cf002905d9554626
+e910a630e5dcc96bb98cdde6ada26313991e9b38ffb4c3d5778d9e9e9e0bee4cb556b5ec99bcea
+3c438c38ff7e6787c971efac3ce41a46da5a077e14c3e9b90dc42ba4a4ab61286a84450357b29a
+b51ff8c52c0fb00504e76eef8da4db3c9643c56f0cb6456b6ce62221824b578c13a054a0b2e340
+2dbf3c2488a61346b16d348f3de6a76630e7cd118102451c5b784508fbc238a8edabeb5e7c419e
+2a204bec81ebb678efabbc858b25242949e1af67ef96a3441dda3e720b9a63cab550f56ddc9543
+5dd6957b01464c4053625d266b3dc8a5de62da0e88b07d23ffe2bcd6139e2af33834fcb971e2d9
+0c12ce0859b584bd1b3fbb755a5b9e79b7c90478458d13b54bd3d2517a43c096e35337168924e4
+a0d131e6a7175c3cc5c601e173296a99e0cf1d9e4cd7ac8cc63e40666f0fde713a02273d77a610
+82fbd1a2cfcfac84091b580544d023b85b93c9526bc18b85615d0e4da274bed4536661646d279e
+3aeeaf9b7a144394d6ce81174c5f8dd7500c3ac83df85075413be3a679e075149985d5c67fd4de
+71652b1458629892f167391bd15550fa0b283f781b332e85650bc7aeb33fbb44dcb5e27425699e
+57e4e62cec3f0df551356ab50860d73f67cbbe4ecb3b6333100305187ff292bbcfd344ac6cfa71
+c685042f25bdd689c69b960f09f67ff899e37e45b4e6f91d704a74a301061e3892aac8395f1548
+437606a323b15a908c297f8f8b2f50ea19f289989bab469d0556c85d027aca09a8b6346f6268e6
+ecad86bdb2958c42554a40562e7e7da799e8cce777d2e4739fb415d48a99bfbd6dde0405d236c1
+e08ed650da051bfc96d3a7cae1741c67cf8d483be8d070697f62621e322dc66eaef9b82e7e21ac
+31768213b33efbfa4561b09fd72a69f05c1f80cb7b395568055895491b1355019557a56a138ff1
+0adc7e761baf205f9e691354bb33fb1d34de0366ec41524c405f80b1c804dac9916f65f0e64734
+aa83d67c42c55ffe962bc765db1758e22d0cd47c6b48460bba8cf8429af027635a3e7601c9de3c
+93e5793248b29cbec377d08ccb66c62311eb4423a232fe03fa0c2b1dec3d815fbf02e374c0d3e0
+64535dff4d9427e1b103496ad5e13832909d3e6c63265cd2b68ab2a94901a3a7367679cf6c888f
+1fd558cbc74c06ed79723b1b50155c87de4df79e5f47779a8f161825790dfc2526377a652e36b4
+5666307483488442e48223e2c3d41424c7608166c29d0e8d4ab6c956445a9d025f99dbcf9d6a74
+61a7366b8b689cfc80dbbe84142bb2de635c7d23e2bb54c165ffefdf4c2af1e45286580d589095
+8168325f4136b7af0bf24b7d5f26dafbe8906ecc59735c0f1963ec46015e034553748c2edbb056
+679270975f1dd3db6ed780a9c36bfe22ea7785abbffef2c9f9db0c4533a7fb239c2db3876ffe3d
+0853fd15e4db66cfd2a7127f05ffbf49dbe0ed1c22395722c93241a77a902b3814c4827f9de5c8
+0cdb9dbe16788c2c557c5d3760b95aab89a6beb453639121a3615a31f8d1062e7b8a6ee300a325
+bb12fd5702ddd1bf684ec7b7c1241ff1aa85406f5f71d472f9d265a060a7532c0aedaf871e6bf4
+ba55f57d6963bfb9a8813ca63c76c6da52a40ef3b381efd39b8cc6c83836fa175adaa5886b303c
+d7727f420d9792e79c676732ce7da08711b4241e3a9d85ec5a3871250cce2a92bf386870182349
+61c2cf041cfb2f5a021ea7625d653ea2db52f70213f159880e13e21347e4e8eca409341be8d34e
+d72ee6d0bd2b6375ce4241c43fb48a4d09681028aef325f9f3d86a40b5adb0874153a8581a4195
+f1b37d3e108af270650d97637cb2ba1ec4099e99c7d1d677067e0bf9a012de956e44f4532ce46c
+dcb4e1b7cfc5b888d5e4857bc6c13b2777192ccef00728228fae2c0f74310586fa647d70b19c97
+cbfc380eef64a35ffc3b2ff36264bc12487df0fce647d5f73481362242a7acd1961425007c1282
+0a69efdcff450bb6ddaa47c91fd1fe235dd38baba5b483357f42f53cba715197183b5c341ebf5c
+fce7caf37258bafd818d1bca6e1eceda106594b0ea77254768141a6c6b9122ca43ec05d56e95ea
+f27d62da06d02ba5aabb63079711276bb949ed46103b7c307f0e8624baa956a0f7c1923ce63399
+d2127e55b4d4701b6eda197a5e1d961a233a3972340515c51ad4ab4a5eb9e54f5beaf1c8488642
+576a5b210b2049edf5627a5bde7db4f4289277978c34c4b01aff01886e8a1d5f9deb7e65aa0a40
+affec140c9ab8dc52953ba306ce7e0cda085206ef772e0008b828b937ce6d3b23953e8991e95bf
+616951654fb11c173da91d6a01c56afc521033bbc22ff41b909e73ebac3e179e2598dfc0190c53
+1be6545571eaad5d9b06e92a32370f32789aa74521de4a220a071de0603804eb0f04c041e3124d
+dff23237743e036703511f0aef342dc6dc7d37e759356de5bb668e0ddb129c48ddb46939280522
+9d5e6efb3373fb4bd4ad00d0739fa2a57f44dbbfd9a0a18f3321131e5183989c563188795d69fd
+1875a4ab8fd2b074801aed4de0852f6b8e1c36fd9924b7af71f24001c62aea1c0b53fb915ca4a2
+be82e56cc44c75d8036d23033491e84bf073751a1901f92c73b0e0f8bd90ad19a8ec2d876efa72
+c6c3115f1e68eb35dcf9c1ec47bfcc4f0109e763d3fd182bdd6e96de80e03b7d4b4a48cb4a674e
+033ea94541ccf0d550e53cde5887235f3b26b49dbd089de70860a13c76e6c22033b7907f02ef8a
+a427a89403b8d5cedb943c6299406fd8e5b048d4686ae13ea29b9c828cc5c886cf62452725a95d
+829741ac7ce98ffb6b35698f14290822efbb07743401b014816098365b2b872184343f48d5b374
+61ac738fa5a8a628f9df3d74f3a9d4cf588e12fcbf749b99005591d32c3399b70e91f039194e4f
+9fe996b243adc35ea3e5bc22daecaa1b06cb859a185793d8f6aced1c0b657ffdc88e73fb583f96
+61b9944365289ad1c71a1beb7bcb6155ac7ff703b86d056b608eb384b1b7127d252c1e7486a86e
+5cf76f45abbe373a41f5c59ddcfcc90d8d82c7dc1e262b7731162cd03f40f60e29178a2f7a5825
+5512f23939dd3ccf2b483f1cf076d0dd225f5efecea9a7db9fea78cf9533ad3fe7a1073c933333
+678cf133e6ea750a27fe8b0ac821c2f524c42b55d2bbce8dae8cefbe2795bc5a9592ca602c13ec
+5e647384de5c5e6cb7cde1f4d25a34cbec9df65b7b5684008a3f825c95e1fe222364f2424cb097
+add091dddd793ddcfea2ff97399cb3d20de7e9778de33e6f05b335b1ae243e9985b1f7c5eee3e6
+bc93eb51093fe6e74b6e3ce45d8885a1e3d14df0dbe8caa0169acb7571ce59ec2f69b2af2356a3
+bf88088ad2c7cc5ad773c148503c2f2a05c5b926a84b6f21c10ca128ec7890a0393b0ebcf82c2c
+de5afcb03b2c04b8b1d0f2ed7704a27edc5f42809e0fe52cc0a7f8452e19d0c5fa09dfafdddfcd
+bb8a6a679686f8beccf2e21e41e8b1ba6ac2ec95ff0b34181003cf2fb2e22430b1e4e9988d4d02
+fc8c8fdf66cc0080f2578ac1ee31ca698f9ba73fd2f337cb3ae203d6d3a9f74146d9305d44ea8d
+7f043270ef76b87f2c97e3b35ee06ef0d185ad8427a62da33d26cd5eac5748ce6897ba7d62fc5f
+8ff85d5038e0066fd2c2fb92340254445c3bbb41ba9dce959be5e80a5b00d53d574807b0ab2440
+5a0aa1a7f87dde936d2a1b98e6dc49218c2edf11217c96a05bab19995a0089885273bf22ed12cc
+95da4afeb838c54afc853c0a83d7fabbf8d261756a8063d89869a803556184c1adcd28a22e6d82
+f627c6fcd8a19bab5c24f1e89f1e5755e2c3c0f5ff79d1dce4f63ff232d534203c778afd540f11
+48f4b6dde072c7797a18e5a1d51149070e6715fdd2ccb5555dcfcd5656db626f23018ac697b3a4
+276b0a7469a63149e37b6ec033ddef914fcb562e6e77e9d7771807e5433b84649aa3b3318814ca
+54d0583baad353a1b43218e0b87df40b308151875c28c7326a30509486f9ca8af2445d1c72487f
+7db9b9236b65b8b17e13ccbc9cc1fd6f25a950e32304b41ce2cf5ca1b86671e256b61f74fe624b
+1aed5aa20154acf83d1d8f8bb69ea1be414c3d1e84e6af01d8b9faeee725c994fa82a9cb0bc3fb
+f1afc58cb39775d460226f2038e5d324673c0803e496554f1a2f4e805099dd203a60338b4bacc5
+6e9d1e0eb2bfdca864c0f6735f37df0cdb33e479a04e84db33bd13718bb8a8bd8dd1ed2b76b08f
+20bf078ba4f1c73cfeac358be037091723377a30f5fec8f67ae0772ac99a935f6aba3bf5231299
+85bca4191191c9580e9c6e69a66cc028a2e88987853bedc647d25ab0a7d13ae3f4fa88c4521071
+3f3a1df60d3b651856ec89c40832b10dfc919c30af8038c03c574183f7f343d56c25c95ab8f856
+1f60a1600d610e32bdc63934fd5c2e83221a9a4cff41557c9d80900ded444b70b482cdcbed5245
+1e02a49a8aecee4e19808eb9d381fd999cd52f979872a2d6324cf8256156ddd7b2075be3ea3a67
+0db77174e1b22ee5fade5a9f05f82341988605e391a20c28904fb2f12a9ae3c122f14c3a6ea0e7
+4e151b2da01bdc7a57f272c318803780daabb3e44c340cac2fc6db7a862a7cbb849248b166468f
+e22719aa8b80b33dfa66680b5b48e85c6b90903a254ff47d3e70d45e78807fe20184637b523a85
+979bb9207c174e0e80240c9c8528fca82c9458113a5bdead46b065ebe36ff3ca15e88ac2b98410
+e4721133f3d88316975a49601f902af842916b8147c1be2c830270ce25ac3aaaeb65bb040388b3
+ad8b843a6c53bdf69226998b482939e4ed6a17c344cc328a5a190f4a12e101132fb560006d84a7
+2c147576fa2a3fb9441a40428b98b595b783bbb8c1743ad88d8834f64ddc5c914b1d1ef80db771
+4732523ad3138a2b795149e727ad8cc5fb36de671643c607c1a1e526e02d4fbd2375758479792b
+8bce0980c2f5c76abcb6fbd5d1b090959f4326ec90d4eae5bdeee891cae771c36366715db9efa8
+f7f47a98849008029ab6545ebaf83a4432a65c147490bb2461197ba879e6dcb6ba505443035dc7
+6b6a9ee75a108b76d168d903d4ccfdf4c495974dea1f1798e9397fc0634afa4776b8f71af00bf7
+dea530ee119d2f8bd3e7869cc703971cf5985dd1c35094c9893886c63a
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+
+%%EndResource
+%%BeginResource: font CMMI10
+%!PS-AdobeFont-1.0: CMMI10 003.002
+%%Title: CMMI10
+%Version: 003.002
+%%CreationDate: Mon Jul 13 16:17:00 2009
+%%Creator: David M. Jones
+%Copyright: Copyright (c) 1997, 2009 American Mathematical Society
+%Copyright: (<http://www.ams.org>), with Reserved Font Name CMMI10.
+% This Font Software is licensed under the SIL Open Font License, Version 1.1.
+% This license is in the accompanying file OFL.txt, and is also
+% available with a FAQ at: http://scripts.sil.org/OFL.
+%%EndComments
+
+11 dict begin
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0 ]readonly def
+/FontName /f-1-0 def
+/FontBBox {-32 -250 1048 750 }readonly def
+/PaintType 0 def
+/FontInfo 10 dict dup begin
+/version (003.002) readonly def
+/Notice (Copyright \050c\051 1997, 2009 American Mathematical Society \050<http://www.ams.org>\051, with Reserved Font Name CMMI10.) readonly def
+/FullName (CMMI10) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.04 def
+/isFixedPitch false def
+/UnderlinePosition -100 def
+/UnderlineThickness 50 def
+/ascent 750 def
+end readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 82 /R put
+dup 115 /s put
+dup 120 /x put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece61cf3a79690d73bfb4b0027b6f3b53cc32be64063d04d328b49c17a62c396cfc8
+17b9fcb732c3b0aeb6264b2a70f62fbfc397eea8d069af80a71b775145f9842057f969d124e630
+1a760710a5c51e8981851fbcf7f1cd1f2ab78db91af2a6f264e41cc2cdecf450a3a33c89fa447b
+8bad4068cb8d7d37adaa4caab8f72cc26b024348ef8708a0ab6ee56d73f035ac9b506c91fcafc2
+40791cc10b1b0ca42c87a24a69e83f61a20432744f7d79437b93825d955cee80718831f56e0254
+0ae4b3a70b9dda35ca4fbcabfbc50a4cafca7423203cf03b8e9eafb091f06b2741ada33c61933f
+ab98ef2fd54411c6564b030947ac99cf02f4194b6e0af84cefdc23c1b2886506402a156f0946dd
+e0f96a087eea2ac27fe5bdf35b5340fc78f4deda8c9d11d98c0f5e55a92c96eda070164da36646
+45cf37d0d548891f41c633b2cf39f3681ca5b295c862e21d4e3d461f0604fc3557ead3f103b7cd
+e8788062ee55dd643ebf68f02de9509a711b769bbaa2f977c0c79c626050e6cc409496ca36999e
+1ff008ca97815500e97752078d0286a73dfc1d55e84337b5eccb366bbff2cba70847a15deffc9a
+b9465907d667d2583fc8cc9a1b753fb839c71d02786b206edb49d1f1e1222f15e35c63c1308f9b
+5a012747cde52cb2b9eb0c6805b3b05040b32dbc7e380ce5ed54283fdc2eb2b9eb0c6805a609d5
+bc292019eb65c765ddae5d9f5a6193a059c6d7674fd34664fff5fc0442f1fab44943e0f74ea3c6
+00960734464cdc627ab1f56d3b620c7d61e434c0469999ad8a683b008d4318a044a01a6ee5c4de
+a893d727949247b65a100468185591755ad88509374ea309c172fa8fae1f28ce2d6b478e29984e
+142bd328cb3db08eb3c0798faa3c961089be48cd68ef446a7e7486cdf303862f2c49a504f01157
+77979c3cdf97f2fda864e361612983097ae515ccdd43cc4e7c2832837b2730cedbc00213c1640c
+bd6db49d0d729017e5a45b2eb6c10992f4274c8fa188470c82b5623f4607dff4afd5892cb6cd5d
+85a03022b4d80fc1c3e271c4a3d53241988b6c9c1dcef7a0f9f19281c2a01c858d43fcd28c360e
+5aab9ba5d4dea4db85e3a26cc0e8d7defad8c9976dd7d45d9879880dec2766c6d613450cdb6c87
+a690dca9298b59923709795bce1cb2a7f1e3c7888ad49ad9f12090fc5371ea8016b7c0da013dcb
+ae8ee5985b69391d249998fdba8da313ec5788b0abdeefaa9239c4edcbb4b311939899a0646a40
+31ef6d0f32a9642bb52ea218982daa9fb54679a769dd0ce17187f09b1dec550179a9f8ba81883a
+fe662ef681b2811e81e3e459cbc8e5a6ed948602df36cb16ac7dc8197ef5d0123780e1f4e614fd
+8d60f5f6c69ad7377806b6f64aeaa409fbb41dd3ccead8d56e06ee86cac471c474e1e1b727a0b0
+18c82b41297c09366a3f891de3b9807b62b6b3823d7636f6df7ba6884d206dd39e8c56bc07e542
+8d35af43481b160d66572f2eeea2971e9a4744fd79897ba8f917018578e438f98aedcb8a073cf6
+79cd7e52f77385a5b336fa80be78fff9705ef282270f7b516eb7d163181c4cffed31a5553007ec
+327cef977efeded1342c72944f456f78d41d031fa614a8eb118a653e1a77fbff5c0e58f38d44a7
+9124a9328900d44e67cf410869f1c45f1012079ab637f81356d9cf0e9b3dfa9e84fe0f296b85ca
+ef4ed92097e52b9e71c17c6f8f7637f23fb60abe23521a3907d3442ef45562aee24aecab21b42b
+9b24e22a0e58b33aad59fd9ceb08743b270c653b372650e67ab556369259ec5356c846ffe63e57
+a421bd03c0e25a4c2a2abe0cc24d234b41fd269deeb6af086c4f12794dcd5e2485a4831d60ce1c
+6305e0ce6b18fba63a71c3c1a88b4aa621cf9c1a2c5c235d433725d14acd1d0a7fe0c8dbd88a46
+ca104f08806a8b0fc6a315fe9e4ab19ffd534cd281ddfe35664c24b7a6e4b9c1d6faab46c4b81a
+dadfd591a3cae35e7684a2ee95ab6881a9ca351704023561d3d9b4214137112bd8b64d9085474e
+e78cb85ae23d179c21f8efe8baf050d88ecf0f422bf0c15f102b5ec92484ae51d50e5705fb8b28
+e62db9f8c32d691cf9cb209a50494acd6e55990d15c6a130ca5a094503712a5db0655f4383cbe5
+785702c3b95e6acff0d6d1bb86c5562b71d366c068e0df346ea2fdce1d673a78d04a3dc88377ff
+ae336a2ab2cde346d17e7962de2438f4b5e608cc9707f2d560dbb9c4786970d8df05b47c81eed8
+f26573b38e1dca64f4b772f49554f24bf63e95b6b2b952f2807f3b35ce45c689a9fc7bc36e6413
+619bcf52bb1cd0c752640dd4dc6104390a7546dbeceb7a2ef1a04bbdd5ed4b730fbc610bc590ee
+309c3c49b5e3c9be27369fbfb0526ebcab6bde96c9ffb87eb7bc4361381e0f4472f87b4c17fe35
+cb93ea3fd8ec25f49c92476875986527b7dc4093ac056e5821c44d7fd4e2cc32423ea320d5f6c9
+38e04ccc1c259fc57282a2a876ae3062aeebd3efcf06b72d8bc51eeaa8cabaff8961327318f53e
+8e0136d64c169cb4190942dcc3d7af79ee0575101ea563a9fe85dbc6f3611a926f77f33af26690
+9cf5647f64a55b285cf54b5b334d0d0011dba80af1eb7c37b0410072d90429b7db7db6ada180d3
+202c6ad7057c7b5fd5f59578a17ce04b12d8b8de2c55fef874bfea8d9825b5ee233a8ad91cd8c9
+56234b1dd4407eea57d4bf78b89f124d0637e3a9a7223b6c73fd93a687528e38c608f62298a60f
+08c11b62a9fa39068feeb9b5646e84d422aa835556761d1459386adeba9fed5b74e2d78f695c49
+f9d829dd85b9641fab34cbaa49e3f306ebb3687b1bb5c764495943074e2dab0c4513bd1d14ea2f
+5fc1069df238f0b38cfdcc7ab9e945374cb6f45c740dc95f8e6c82fc3247e14bf27443e4c0ecc1
+09873c1e51f325d8d52338d5cbc8982fff68fb5fb92f11783bd6cf9b2307a2802eb9e68321a10d
+4431ec6a9e4b6d5ae394f2ec0e8b53385143802f018edb580ebfa5d0406bbaf8dc681185582862
+2626125e293c47204bf307b1bcd649ebf20be0ae42b0364b37300da60de0649e2150e70614d024
+a3d2f75bd9a886f78c71b59b6754a0bf7aa2f76f920ab9c0f1cd1bd531dd25e6c2a3e3bc8da49b
+1c1ef82b4737cb81b0510d551f844adfc80a55301c8310f9d103c489c90a44f84f47b6f1b8d474
+366071ca1522215ace0d842767ab2c961d1c9b32bb886714945aafccfe513743f5f5c44dc1cfec
+eca538472511896c85b2c9126173c12d4b2b36c4b62cae0e746c0211eefb8a8fccb473bc50fb48
+a3c3e6946016908e5f4f4914fdfeedf1186f12a39f13131629ab408fb2e0dd186c257ca3dac07b
+e9a7528c725db8a93d52ae0c10e4d290aef73c7fb2ca6bf922423eb71a8c59526e3d73e057d627
+9630dde8906b795562f4396c0869a20694370f2696b00fe2f96369b26d56b34a0fe7ad376519d1
+b8a50598b2d5a60004a3b7c89218aa9ffc1e5e74ecc4885c517c0627b58b60b136f651c1d48f38
+8fb9351fc5c46dd3c4bbcb7dcfd01e6ddd4063bff55a34d64c55599a82417717eb593ed428b677
+50972bba8252c31507bdd7435abe4b4edbe81b312cc5f91a1f9237ee9c278d11b51833f65260e3
+bd0410699d0a0b8c613152578fac985028eec5f10e8b9bfd680cb0bb53b8e93ad0fa3a749cc223
+bd356319fb1b6c6ec397d22248f0891ec1b60e84e89886212fe1b41d5c2b6345d4ba2340306efc
+811586e06ab7ee765e93c50b873fd48870769d1d218a10952a9856b4b51445fb82a7928dce5fe1
+805b19b99d5378cc9271c4722e47a09a9278ff244bb280cca6a828cd0901ae75f5ba1f87e73253
+984d7ae66515141e34d90e770992a0736e3d042b304271e207db1f282b2dff4388e48eaad733aa
+746fda33c9d9c7c9fdc090b4b2876fe4645c0bb822ce40d581c7625f9ec0de5dc6a0669412e971
+2507139fc3652c35523afaff01d3bd63a1e2c8a53b9ee0543fc505902e8fe0c23f72d824e951c4
+0a6483cd8a12a5b29f7c799309d17386917861acc27c200aaa34cb2a104dba07eb4ddf5e4099e3
+57d625394728dc83e1d722f3cc1ae7598f169e9c9a2c1e7250715dae8660ae119d8e29323faea6
+13c0d31c0c1d4005f2bfcc2d7913f8a0e18d1da390e2f1d3e28d6eddd09c93d019d608911baf7b
+ce79557b1397975e38e906b695b6ae1c22af047dbc1d7d08744f182b2263e14a75b843ddd8f990
+078410973d7cff56e897245a224a1ddbfaed2d848ded109648d42da10219fa6358bce77565464a
+e52af167fabc06c11e6726fc233d0144d35ab68c7269ed2778017ab4ac15639d2588952fa22550
+e273df724abf514d1f0364a1e2a7d9cdb4e356494de3af6125d3cc6d2ddba01ab92d36216a0505
+b4c0fbe46ad4674d8bb51e7520fb4403bbae43bd6a69e475eff0ed4f71d865f6d3bf6e3ed57508
+07de076c0b1f59083d488ad5fefe10d1cb93a0f4f110e45a80bbb00bf408c96bc6347922332f32
+20cf474b66fe1904fab3e58c9ed0b4cc7215665ea72ea2f7212e7927877fe71070d4ebfbe97a37
+5a8784640dec93f6d6eedb7224873e8fbef31c40622d385f6ee43cc6c5720d3df72065155d58eb
+d21f2c93f323e9e0cdc35ac43330f9ccbcebd9415173e5304db65d3dcc4a8158b8a838ce7e0bcc
+4f4bffeb9333eb9a28cdab15cf3256ae784884eb1fec9b65328a0a26d0c8edfd3213384b367fab
+9829a4a1823e223a3fab405e51593700fadd42352144f1b648bf7bdd217172ca43066e2632ddf3
+77a535b0d855ae8120a97e0c907967c36e88b9da5596676c9bc1fe9449bdae8ed6ed101ca70798
+afb9b9ee1b357fbd0846af20d3f4e64ad7793501a0f52ca0710d5588c8a7900f9f58164d8e5174
+a413764ed0b2630585c09c66a62e3ac562e06f2572fba273f8f2f62b50f2fb21040d12f607db04
+0076159fa283a42c653614cac50f6d929c6d69b7ba331f2bae21b1e25c2937b5404f6ff789b73d
+b70cd06e32f5658dc2ccd53d40acea5b19e4019263058c333d81e6f99741a86d21bda9c6a6680b
+35fdc036ae2379b16e7549afa7ede71c3e23df721ea9f4580d8c516832677fde26b79ce1a92246
+7086e293b003c9f725663ff089da8855c5fd232612fc0434c25b759debaa039a658a8f291261a1
+1e58460247bd0a03d3cbaa7b005d605030d42daeb1914ec78ffa012e5a416ba91a877872a48936
+2909cb20cc859f032e305be4e1e2510803c3f475ceda2c3dc8ef409faf1e260240d9eeaeae853d
+f289471f6206a91d7e7a24b3568ecfff34269dc13fb9cc71850093db85bea6c890ed3ba5f8220b
+7516353a9b9a7ae11bb69b37827e6036602b536a8142d4524afe7b951125c1243d3c8845a38afb
+7bba584219487cd88b302487e502d5911d79eab6cc2070ab47d5bd927b0a835cdcf0362c8bc0db
+3b45ad85aa6434de49b32bbb5bd180ab18c98b8e9538089552b3600a532fd24769c35281f3d605
+85e75988a305f1278f6f2a5ee0405d0f30b6770af0364f4d982c07d607ffa4d55cb773d92f9b0e
+163934e801ccd9a23b47930a57cae509c9e021d67c3e08ba173f8274b6b1fc1a53305dc998c657
+6ef045e84fc0bb391e971d75d69cf507daf86967bfca7f098be6f9f19ae1b72c433826094601fc
+acae2fdfe2773bdffc19616ad0e1da13b6575b5e949bee16f4198ce82df7bdb5a0e5411acca8d7
+4cfa1f7fb2f0b696de35d3810e090f2bb036bf80aa77d8e71140005a3014d736d4338ead5b3ce7
+760b0008c418c80508c44b9e5e8b58b6b770cfbd7aff85631cca1eacb7836580f3d889d9055ff8
+08f29cef9ebff7ff904f89d6655dd9a7097e2a27c19a0c47e710fe7143a2ee1e642da6af560630
+5c2abca4db9ae966057c124757b094b5b1226702b1a7fa4f082f8f1bbf841abbc29f760ed72e04
+746ec76895d4d5d78d2e09b73e0b6cad2cbf7b2583c1b6aed6b208dd582795177df4976908582a
+253ce329af84db80d2ddb23c02c659f99c0bd70849b40c4bee2c41c3118e5444cbe7de1e57da26
+8c9c6e0da8f2fc33d7193f0f4ecb83dfbb9bec8d0098c10134fc5c2700a90a9f0707ad75762fb0
+63f620b691c478ff88f78b486e7fa772c06e3f86b94555d981ed92fdf2ab8df1b9c1f9aca18009
+8d876e0b5a1f44d53a4341ad0c3c0837b8a595932efbeceba6bdeffbee967e474e173f99907168
+9c1a7e23255d793557a022726053b5bdbc9c333926d714ff8d6261e492df9c905dd66dd1b7e17e
+714a44c1e073deadf6a250b765872bf96e047b297580c27ad1714d8a2ce93346d0a972cba8bae0
+26bc1646f8fed5c9a3366e73a2a65fe7fbed4a8447ba4cef3f25e20eec13f5448dab2b1768be14
+a2f1fe90117079de58883a86e7759a3f8723901e70ed76dfdab6db2a2597f3cded02e1418e33ef
+2fc5eb86072ba97db0b4a87bf21354eb8fa680bd07fbafcf8cb2fa44a9bad1ec8d5692b12a0390
+e550e272449546a95aea075538359df87234050bf5b6fa86634e628dce90f5947772b834d3dcb5
+bbfef9f5faccac5ea302813fa76a0c7e8d4a6904110e7d164fdda1f2f9e867052945e5697f3e7b
+3f3e44a159fdbb940d942c43520b6760dad2d26e5568604eaf88278a7842315d062bc8b723d19b
+35d5913264c3313d68f88a1f063d0c1b5d51296c7c2878c5a016c6adb672f6148ea484b4356477
+94900efc313ca6fb90d3165695c194440f715875b1817b511a9255d75a7ec5343baf3115503e2b
+7b7550688caa306b175b35f1a17d821f4168e5f8caa50058e5700eca8751c8446a91c1ef58e6d8
+de3dc3d7f89facf39e5063c470f80c7d740fc48d67a51eb34adb4bf49f04166e3c8cc5edba3268
+4d760cf5de8e3b15fb7c922bb6866719f75f5e4b35fe0bcfc50117e820a707a9d45377bcbb9b50
+57c58d4d9ed248becb7d749ceaa982166f4e8fb3617654d46da66f2766ffd0404adc348bbe5cb7
+8623985f7bfe0b05c802f028d9f4a944f3077e85eb1e953656f07be40f600f17273a582064e98c
+77b6ed4f49b086e2e83e8e7dbe8cd9da174b49171822ca13ecd8ed6cadad41e56bae142c7ea81c
+e7041b17ce25ecc4e7b836a6d2831da602b8e74347810ee746cff2019ac296c137e34d2078d6cd
+89d12714fa8056c200294b7d43a678eec4b09c0dfbebc9899763b21f281a278d4a67701db89d78
+6acabde84a78a9647f68ca1f1d96237ba5496e840c270c2dc9320668eb83864c340dc520d9de1f
+6c6035efd0273406a14dba72d0d484cf006f559c114020aca0bc9e1822efdfec07866913956d0b
+f90c5b0f96b6c17799153e59603fb415cbac3aad5512eda753de8ea7b4ffe9135a8c70416899f5
+b6d1765b03acac1f8f970bf2d937ae6bcb694dbd3df0db2b53fcfdb8eedfbc7bb80246f7173b31
+93c0fd9bb5c1f2c3b3a9aa1b4ea166322660dd848c4922fa4fee272ba1ae64beeeb19cc875b268
+712aff8d4f245c2f081ede4e619321f341b217198e7a7b6b39b5a13807cb970ad03277fdbdbf29
+235c600e20ccd4d4153a4601248829f857509717222c2c9535e05debdede4dade6ddcb343c2e71
+5573b2182af3875528120b42dfda773ced4e091f4e99fc1c8f33832569adb8233c781b31ff3786
+8723d053307300f1e113e908473fbe39ed75a931c290e7efaf4c89d4cd22f63852ec30831d61d1
+de3815a6d18fbcd15f28eea75ae50bd0b237e8cb0870cac5ddc13da58dbd060d3193fc92e6c4ce
+f3bcfd81ce6b3679bfc5855796cdfa8a26d63a659a2ff7a1a7e318a7f76ff80e846a2d647d38e8
+27ffaf54bd5a9221eeb416a475eabf4ef0409b1ca55a851c245bf7207aa06f542de6dff18dedae
+45ebd5df41c9716f9f265e0f76ff738e8b1365d83a50d5e6ec8124003f416efe2f6d0f7804ac7c
+59f19265b3d1d20ec202d2a8f04cfaaebcf61da57b1dc67a714a16a2692ba82c5058af93c2ae5d
+9d1f87b638c5b191eb96bd1ccaa8346e61cbe333984dc3dd511d8a6c7cecb703091db94f945ed9
+ac7c505fe6d405dc407ff8e0153ef4c50b87123dcca3b8cca1c60e98e8b89451f218b6d7a260bc
+e487fe1e6a3a9cb4870e278f02394f4611ce1e7131d100fc20eae0cbb5b6891365b953141789a8
+a3f95f6a274a30c47743190eaa00221ba0a685b1fdb9f712ae7f2c6e3bf82e3f2049e12a3cbc0e
+86b254a5e50dd24a4bd439bd8cccdc6d8caedd2bc9a7d6cc83ea3940e6d7ec6ad063eca5d2e73d
+4b7700d61775960463b93bc9a432f16c8744e6f5841ac9fb4f54cec645f6ca5c1f87421bba84ba
+b3ddf05cb5705fc0d67bc5a98598046b903afbf65694bbe06b963531186e0839deb29f3e1ba613
+4a3c3ddd890842788771fa2c15bfa15de5a5212082fe6558977b87b81cbd28ecd7fb464fc26f60
+a06d1b2a009429920f9865fd1b617515d521f38a35b292e1ae973cf58aac305e5aa30eca849c7c
+87d256fd3ce367b005fb0ebc58ad74f179ded5a9ede8718ec8fff9eebaafc54d975cd3b3df1ee7
+f9707df9f44124779da25dc06aa5e5cdf06f0bf087119732b2069d0e47347f90d07959294d124d
+221d28737326b210a54bae324cafdfec89c6a7bdd168b37fc6e9c3aacbc53ad0ba307ce679981c
+7e16da72f26fb65a45e6ccd6cd65dcfd772498f5297bfad8c696e02ebdffc01a7d9c44888fcfe8
+e758cea388bfe9624ca44a4d8306493c5939b90adb9d8cf8ed4ddc3a497305527a1e45f5a78f3f
+709fa110bfd98ba837f716c6aa664cd081c605bcd1ac9dd88da85e8804168ba8b55064592c7377
+93c8c8eaffc733ba7c9dcf920bd1d03956a0baf69172e17d7cd9da030a7e2efab61b2c4e9b14a2
+79780c120c087c8e30301d642ec2f944494cbf435c33a2c2998fd23ef90c022e7568030ae55a4a
+3e972645aa440927fc65c726168b7e42268f8270a9b7cb783bd8839adf66c3a32b94688ecec687
+71191b375d78655c0b7200e953a6e0fc68c79fb61081289a4527fa6f34529c9356ef41020921e4
+24a93811d904170f68ee7fa234d66c84512027eda106bc928521cb907deca62ba6e9ba3a3f36ad
+becc7ee79aa42031ba0f703db9908b383dc613243cd9814d998994dd399d83960b3265b63be71b
+2c2d10e8d98ee03a9f7b42d29c5d2e6b1652b37a5e5a56cb85de6c226a8f2ad41b24b2098b9747
+e2a962d3910e7e21053f78ed38a8
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+
+%%EndResource
+%%BeginResource: font CMMI10
+%!PS-AdobeFont-1.0: CMMI10 003.002
+%%Title: CMMI10
+%Version: 003.002
+%%CreationDate: Mon Jul 13 16:17:00 2009
+%%Creator: David M. Jones
+%Copyright: Copyright (c) 1997, 2009 American Mathematical Society
+%Copyright: (<http://www.ams.org>), with Reserved Font Name CMMI10.
+% This Font Software is licensed under the SIL Open Font License, Version 1.1.
+% This license is in the accompanying file OFL.txt, and is also
+% available with a FAQ at: http://scripts.sil.org/OFL.
+%%EndComments
+
+11 dict begin
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0 ]readonly def
+/FontName /f-1-1 def
+/FontBBox {-32 -250 1048 750 }readonly def
+/PaintType 0 def
+/FontInfo 10 dict dup begin
+/version (003.002) readonly def
+/Notice (Copyright \050c\051 1997, 2009 American Mathematical Society \050<http://www.ams.org>\051, with Reserved Font Name CMMI10.) readonly def
+/FullName (CMMI10) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle -14.04 def
+/isFixedPitch false def
+/UnderlinePosition -100 def
+/UnderlineThickness 50 def
+/ascent 750 def
+end readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 1 /theta put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece61cf3a79690d73bfb4b0027b6f3b53cc32be64063d04d328b49c17a62c396cfc8
+17b9fcb732c3b0aeb6264b2a70f62fbfc397eea8d069af80a71b775145f9842057f969d124e630
+1a760710a5c51e8981851fbcf7f1cd1f2ab78db91af2a6f264e41cc2cdecf450a3a33c89fa447b
+8bad4068cb8d7d37adaa4caab8f72cc26b024348ef8708a0ab6ee56d73f035ac9b506c91fcafc2
+40791cc10b1b0ca42c87a24a69e83f61a20432744f7d79437b93825d955cee80718831f56e0254
+0ae4b3a70b9dda35ca4fbcabfbc50a4cafca7423203cf03b8e9eafb091f06b2741ada33c61933f
+ab98ef2fd54411c6564b030947ac99cf02f4194b6e0af84cefdc23c1b2886506402a156f0946dd
+e0f96a087eea2ac27fe5bdf35b5340fc78f4deda8c9d11d98c0f5e55a92c96eda070164da36646
+45cf37d0d548891f41c633b2cf39f3681ca5b295c862e21d4e3d461f0604fc3557ead3f103b7cd
+e8788062ee55dd643ebf68f02de9509a711b769bbaa2f977c0c79c626050e6cc409496ca36999e
+1ff008ca97815500e97752078d0286a73dfc1d55e84337b5eccb366bbff2cba70847a15deffc9a
+b9465907d667d2583fc8cc9a1b753fb839c71d02786b206edb49d1f1e1222f15e35c63c1308f9b
+5a012747cde52cb2b9eb0c6805b3b05040b32dbc7e380ce5ed54283fdc2eb2b9eb0c6805a609d5
+bc292019eb65c765ddae5d9f5a6193a059c6d7674fd34664fff5fc0442f1fab44943e0f74ea3c6
+00960734464cdc627ab1f56d3b620c7d61e434c0469999ad8a683b008d4318a044a01a6ee5c4de
+a893d727949247b65a100468185591755ad88509374ea309c172fa8fae1f28ce2d6b478e29984e
+142bd328cb3db08eb3c0798faa3c961089be48cd68ef446a7e7486cdf303862f2c49a504f01157
+77979c3cdf97f2fda864e361612983097ae515ccdd43cc4e7c2832837b2730cedbc00213c1640c
+bd6db49d0d729017e5a45b2eb6c10992f4274c8fa188470c82b5623f4607dff4afd5892cb6cd5d
+85a03022b4d80fc1c3e271c4a3d53241988b6c9c1dcef7a0f9f19281c2a01c858d43fcd28c360e
+5aab9ba5d4dea4db85e3a26cc0e8d7defad8c9976dd7d45d9879880dec2766c6d613450cdb6c87
+a690dca9298b59923709795bce1cb2a7f1e3c7888ad49ad9f12090fc5371ea8016b7c0da013dcb
+ae8ee5985b69391d249998fdba8da313ec5788b0abdeefaa9239c4edcbb4b311939899a0646a40
+31ef6d0f32a9642bb52ea218982daa9fb54679a769dd0ce17187f09b1dec550179a9f8ba81883a
+fe662ef681b2811e81e3e459cbc8e5a6ed948602df36cb16ac7dc8197ef5d0123780e1f4e614fd
+8d60f5f6c69ad7377806b6f64aeaa409fbb41dd3ccead8d56e06ee86cac471c474e1e1b727a0b0
+18c82b41297c09366a3f891de3b9807b62b6b3823d7636f6df7ba6884d206dd39e8c56bc07e542
+8d35af43481b160d66572f2eeea2971e9a4744fd79897ba8f917018578e438f98aedcb8a073cf6
+79cd7e52f77385a5b336fa80be78fff9705ef282270f7b516eb7d163181c4cffed31a5553007ec
+327cef977efeded1342c72944f456f78d41d031fa614a8eb118a653e1a77fbff5c0e58f38d44a7
+9124a9328900d44e67cf410869f1c45f1012079ab637f81356d9cf0e9b3dfa9e84fe0f296b85ca
+ef4ed92097e52b9e71c17c6f8f7637f23fb60abe23521a3907d3442ef45562aee24aecab21b42b
+9b24e22a0e58b33aad59fd9ceb08743b270c653b372650e67ab556369259ec5356c846ffe63e57
+a421bd03c0e25a4c2a2abe0cc24d234b41fd269deeb6af086c4f12794dcd5e2485a4831d60ce1c
+6305e0ce6b18fba63a71c3c1a88b4aa621cf9c1a2c5c235d433725d14acd1d0a7fe0c8dbd88a46
+ca104f08806a8b0fc6a315fe9e4ab19ffd534cd281ddfe35664c24b7a6e4b9c1d6faab46c4b81a
+dadfd591a3cae35e7684a2ee95ab6881a9ca351704023561d3d9b4214137112bd8b64d9085474e
+e78cb85ae23d179c21f8efe8baf050d88ecf0f422bf0c15f102b5ec92484ae51d50e5705fb8b28
+e62db9f8c32d691cf9cb209a50494acd6e55990d15c6a130ca5a094503712a5db0655f4383cbe5
+785702c3b95e6acff0d6d1bb86c5562b71d366c068e0df346ea2fdce1d673a78d04a3dc88377ff
+ae336a2ab2cde346d17e7962de2438f4b5e608cc9707f2d560dbb9c4786970d8df05b47c81eed8
+f26573b38e1dca64f4b772f49554f24bf63e95b6b2b952f2807f3b35ce45c689a9fc7bc36e6413
+619bcf52bb1cd0c752640dd4dc6104390a7546dbeceb7a2ef1a04bbdd5ed4b730fbc610bc590ee
+309c3c49b5e3c9be27369fbfb0526ebcab6bde96c9ffb87eb7bc4361381e0f4472f87b4c17fe35
+cb93ea3fd8ec25f49c92476875986527b7dc4093ac056e5821c44d7fd4e2cc32423ea320d5f6c9
+38e04ccc1c259fc57282a2a876ae3062aeebd3efcf06b72d8bc51eeaa8cabaff8961327318f53e
+8e0136d64c169cb4190942dcc3d7af79ee0575101ea563a9fe85dbc6f3611a926f77f33af26690
+9cf5647f64a55b285cf54b5b334d0d0011dba80af1eb7c37b0410072d90429b7db7db6ada180d3
+202c6ad7057c7b5fd5f59578a17ce04b12d8b8de2c55fef874bfea8d9825b5ee233a8ad91cd8c9
+56234b1dd4407eea57d4bf78b89f124d0637e3a9a7223b6c73fd93a687528e38c608f62298a60f
+08c11b62a9fa39068feeb9b5646e84d422aa835556761d1459386adeba9fed5b74e2d78f695c49
+f9d829dd85b9641fab34cbaa49e3f306ebb3687b1bb5c764495943074e2dab0c4513bd1d14ea2f
+5fc1069df238f0b38cfdcc7ab9e945374cb6f45c740dc95f8e6c82fc3247e14bf27443e4c0ecc1
+09873c1e51f325d8d52338d5cbc8982fff68fb5fb92f11783bd6cf9b2307a2802eb9e68321a10d
+4431ec6a9e4b6d5ae394f2ec0e8b53385143802f018edb580ebfa5d0406bbaf8dc681185582862
+2626125e293c47204bf307b1bcd649ebf20be0ae42b0364b37300da60de0649e2150e70614d024
+a3d2f75bd9a886f78c71b59b6754a0bf7aa2f76f920ab9c0f1cd1bd531dd25e6c2a3e3bc8da49b
+1c1ef82b4737cb81b0510d551f844adfc80a55301c8310f9d103c489c90a44f84f47b6f1b8d474
+366071ca1522215ace0d842767ab2c961d1c9b32bb886714945aafccfe513743f5f5c44dc1cfec
+eca538472511896c85b2c9126173c12d4b2b36c4b62cae0e746c0211eefb8a8fccb473bc50fb48
+a3c3e6946016908e5f4f4914fdfeedf1186f12a39f13131629ab408fb2e0dd186c257ca3dac07b
+e9a7528c725db8a93d52ae0c10e4d290aef73c7fb2ca6bf922423eb71a8c59526e3d73e057d627
+9630dde8906b795562f4396c0869a20694370f2696b00fe2f96369b26d56b34a0fe7ad376519d1
+b8a50598b2d5a60004a3b7c89218aa9ffc1e5e74ecc4885c517c0627b58b60b136f651c1d48f38
+8fb9351fc5c46dd3c4bbcb7dcfd01e6ddd4063bff55a34d64c55599a82417717eb593ed428b677
+50972bba8252c31507bdd7435abe4b4edbe81b312cc5f91a1f9237ee9c278d11b51833f65260e3
+bd0410699d0a0b8c613152578fac985028eec5f10e8b9bfd680cb0bb53b8e93ad0fa3a749cc223
+bd356319fb1b6c6ec397d22248f0891ec1b60e84e89886212fe1b41d5c2b6345d4ba2340306efc
+811586e06ab7ee765e93c50b873fd48870769d1d218a10952a9856b4b51445fb82a7928dce5fe1
+805b19b99d5378cc9271c4722e47a09a9278ff244bb280cca6a828cd0901ae75f5ba1f87e73253
+984d7ae66515141e34d90e770992a0736e3d042b304271e207db1f282b2dff4388e48eaad733aa
+746fda33c9d9c7c9fdc090b4b2876fe4645c0bb822ce40d581c7625f9ec0de5dc6a0669412e971
+2507139fc3652c35523afaff01d3bd63a1e2c8a53b9ee0543fc505902e8fe0c23f72d824e951c4
+0a6483cd8a12a5b29f7c799309d17386917861acc27c200aaa34cb2a104dba07eb4ddf5e4099e3
+57d625394728dc83e1d722f3cc1ae7598f169e9c9a2c1e7250715dae8660ae119d8e29323faea6
+13c0d31c0c1d4005f2bfcc2d7913f8a0e18d1da390e2f1d3e28d6eddd09c93d019d608911baf7b
+ce79557b1397975e38e906b695b6ae1c22af047dbc1d7d08744f182b2263e14a75b843ddd8f990
+078410973d7cff56e897245a224a1ddbfaed2d848ded109648d42da10219fa6358bce77565464a
+e52af167fabc06c11e6726fc233d0144d35ab68c7269ed2778017ab4ac15639d2588952fa22550
+e273df724abf514d1f0364a1e2a7d9cdb4e356494de3af6125d3cc6d2ddba01ab92d36216a0505
+b4c0fbe46ad4674d8bb51e7520fb4403bbae43bd6a69e475eff0ed4f71d865f6d3bf6e3ed57508
+07de076c0b1f59083d488ad5fefe10d1cb93a0f4f110e45a80bbb00bf408c96bc6347922332f32
+20cf474b66fe1904fab3e58c9ed0b4cc7215665ea72ea2f7212e7927877fe71070d4ebfbe97a37
+5a8784640dec93f6d6eedb7224873e8fbef31c40622d385f6ee43cc6c5720d3df72065155d58eb
+d21f2c93f323e9e0cdc35ac43330f9ccbcebd9415173e5304db65d3dcc4a8158b8a838ce7e0bcc
+4f4bffeb9333eb9a28cdab15cf3256ae784884eb1fec9b65328a0a26d0c8edfd3213384b367fab
+9829a4a1823e223a3fab405e51593700fadd42352144f1b648bf7bdd217172ca43066e2632ddf3
+77a535b0d855ae8120a97e0c907967c36e88b9da5596676c9bc1fe9449bdae8ed6ed101ca70798
+afb9b9ee1b357fbd0846af20d3f4e64ad7793501a0f52ca0710d5588c8a7900f9f58164d8e5174
+a413764ed0b2630585c09c66a62e3ac562e06f2572fba273f8f2f62b50f2fb21040d12f607db04
+0076159fa283a42c653614cac50f6d929c6d69b7ba331f2bae21b1e25c2937b5404f6ff789b73d
+b70cd06e32f5658dc2ccd53d40acea5b19e4019263058c333d81e6f99741a86d21bda9c6a6680b
+35fdc036ae2379b16e7549afa7ede71c3e23df721ea9f4580d8c516832677fde26b79ce1a92246
+7086e293b003c9f725663ff089da8855c5fd232612fc0434c25b759debaa039a658a8f291261a1
+1e58460247bd0a03d3cbaa7b005d605030d42daeb1914ec78ffa012e5a416ba91a877872a48936
+2909cb20cc859f032e305be4e1e2510803c3f475ceda2c3dc8ef409faf1e260240d9eeaeae853d
+f289471f6206a91d7e7a24b3568ecfff34269dc13fb9cc71850093db85bea6c890ed3ba5f8220b
+7516353a9b9a7ae11bb69b37827e6036602b536a8142d4524afe7b951125c1243d3c8845a38afb
+7bba584219487cd88b302487e502d5911d79eab6cc2070ab47d5bd927b0a835cdcf0362c8bc0db
+3b45ad85aa6434de49b32bbb5bd180ab18c98b8e9538089552b3600a532fd24769c35281f3d605
+85e75988a305f1278f6f2a5ee0405d0f30b6770af0364f4d982c07d607ffa4d55cb773d92f9b0e
+163934e801ccd9a23b47930a57cae509c9e021d67c3e08ba173f8274b6b1fc1a53305dc998c657
+6ef045e84fc0bb391e971d75d69cf507daf86967bfca7f098be6f9f19ae1b72c433826094601fc
+acae2fdfe2773bdffc19616ad0e1da13b6575b5e949bee16f4198ce82df7bdb5a0e5411acca8d7
+4cfa1f7fb2f0b696de35d3810e090f2bb036bf80aa77d8e71140005a3014d736d4338ead5b3ce7
+760b0008c418c80508c44b9e5e8b58b6b770cfbd7aff85631cca1eacb7836580f3d889d9055ff8
+08f29cef9ebff7ff904f89d6655dd9a7097e2a27c19a0c47e710fe7143a2ee1e642da6af560630
+5c2abca4db9ae966057c124757b094b5b1226702b1a7fa4f082f8f1bbf841abbc29f760ed72e04
+746ec76895d4d5d78d2e09b73e0b6cad2cbf7b2583c1b6aed6b208dd582795177df4976908582a
+253ce329af84db80d2ddb23c02c659f99c0bd70849b40c4bee2c41c3118e5444cbe7de1e57da26
+8c9c6e0da8f2fc33d7193f0f4ecb83dfbb9bec8d0098c10134fc5c2700a90a9f0707ad75762fb0
+63f620b691c478ff88f78b486e7fa772c06e3f86b94555d981ed92fdf2ab8df1b9c1f9aca18009
+8d876e0b5a1f44d53a4341ad0c3c0837b8a595932efbeceba6bdeffbee967e474e173f99907168
+9c1a7e23255d793557a022726053b5bdbc9c333926d714ff8d6261e492df9c905dd66dd1b7e17e
+714a44c1e073deadf6a250b765872bf96e047b297580c27ad1714d8a2ce93346d0a972cba8bae0
+26bc1646f8fed5c9a3366e73a2a65fe7fbed4a8447ba4cef3f25e20eec13f5448dab2b1768be14
+a2f1fe90117079de58883a86e7759a3f8723901e70ed76dfdab6db2a2597f3cded02e1418e33ef
+2fc5eb86072ba97db0b4a87bf21354eb8fa680bd07fbafcf8cb2fa44a9bad1ec8d5692b12a0390
+e550e272449546a95aea075538359df87234050bf5b6fa86634e628dce90f5947772b834d3dcb5
+bbfef9f5faccac5ea302813fa76a0c7e8d4a6904110e7d164fdda1f2f9e867052945e5697f3e7b
+3f3e44a159fdbb940d942c43520b6760dad2d26e5568604eaf88278a7842315d062bc8b723d19b
+35d5913264c3313d68f88a1f063d0c1b5d51296c7c2878c5a016c6adb672f6148ea484b4356477
+94900efc313ca6fb90d3165695c194440f715875b1817b511a9255d75a7ec5343baf3115503e2b
+7b7550688caa306b175b35f1a17d821f4168e5f8caa50058e5700eca8751c8446a91c1ef58e6d8
+de3dc3d7f89facf39e5063c470f80c7d740fc48d67a51eb34adb4bf49f04166e3c8cc5edba3268
+4d760cf5de8e3b15fb7c922bb6866719f75f5e4b35fe0bcfc50117e820a707a9d45377bcbb9b50
+57c58d4d9ed248becb7d749ceaa982166f4e8fb3617654d46da66f2766ffd0404adc348bbe5cb7
+8623985f7bfe0b05c802f028d9f4a944f3077e85eb1e953656f07be40f600f17273a582064e98c
+77b6ed4f49b086e2e83e8e7dbe8cd9da174b49171822ca13ecd8ed6cadad41e56bae142c7ea81c
+e7041b17ce25ecc4e7b836a6d2831da602b8e74347810ee746cff2019ac296c137e34d2078d6cd
+89d12714fa8056c200294b7d43a678eec4b09c0dfbebc9899763b21f281a278d4a67701db89d78
+6acabde84a78a9647f68ca1f1d96237ba5496e840c270c2dc9320668eb83864c340dc520d9de1f
+6c6035efd0273406a14dba72d0d484cf006f559c114020aca0bc9e1822efdfec07866913956d0b
+f90c5b0f96b6c17799153e59603fb415cbac3aad5512eda753de8ea7b4ffe9135a8c70416899f5
+b6d1765b03acac1f8f970bf2d937ae6bcb694dbd3df0db2b53fcfdb8eedfbc7bb80246f7173b31
+93c0fd9bb5c1f2c3b3a9aa1b4ea166322660dd848c4922fa4fee272ba1ae64beeeb19cc875b268
+712aff8d4f245c2f081ede4e619321f341b217198e7a7b6b39b5a13807cb970ad03277fdbdbf29
+235c600e20ccd4d4153a4601248829f857509717222c2c9535e05debdede4dade6ddcb343c2e71
+5573b2182af3875528120b42dfda773ced4e091f4e99fc1c8f33832569adb8233c781b31ff3786
+8723d053307300f1e113e908473fbe39ed75a931c290e7efaf4c89d4cd22f63852ec30831d61d1
+de3815a6d18fbcd15f28eea75ae50bd0b237e8cb0870cac5ddc13da58dbd060d3193fc92e6c4ce
+f3bcfd81ce6b3679bfc5855796cdfa8a26d63a659a2ff7a1a7e318a7f76ff80e846a2d647d38e8
+27ffaf54bd5a9221eeb416a475eabf4ef0409b1ca55a851c245bf7207aa06f542de6dff18dedae
+45ebd5df41c9716f9f265e0f76ff738e8b1365d83a50d5e6ec8124003f416efe2f6d0f7804ac7c
+59f19265b3d1d20ec202d2a8f04cfaaebcf61da57b1dc67a714a16a2692ba82c5058af93c2ae5d
+9d1f87b638c5b191eb96bd1ccaa8346e61cbe333984dc3dd511d8a6c7cecb703091db94f945ed9
+aa9f5cef4ee6e65728d65bd56370d88626f7977aad94a80d9ce029be0127d82d914e3503cda7f0
+2f1f10f5d5ec9e8e4905f0feabf152891229089f736fe405f14e1c86c752ebc56a6272478a385d
+ac6d30cc2a4eb153c241689a0e1d76c250095b295100ecb440fda9b7cfea811b8bbe0dd0bde76c
+2f43fe6b442dd4cfa031068df7806cd37b1a6afa052d9f763694211306645f6f50172da5632c29
+b932e9b45033f1afa75b59721929260d5928ae260ed460cd9a7516ee06e1f3a0e4f4bd049bbe21
+d4aa52cb4dc3140177935dc35453a01df1239e50245c4dc2928b47404223037fcfa29dc6f39033
+7be7ef1007c3f826f6ad2d3a9b02dd05cbf9c4ed67d3930f83a5c0c31e8a5adeb19d7c80acad3d
+
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+
+%%EndResource
+%%BeginResource: font CMR10
+%!PS-AdobeFont-1.0: CMR10 003.002
+%%Title: CMR10
+%Version: 003.002
+%%CreationDate: Mon Jul 13 16:17:00 2009
+%%Creator: David M. Jones
+%Copyright: Copyright (c) 1997, 2009 American Mathematical Society
+%Copyright: (<http://www.ams.org>), with Reserved Font Name CMR10.
+% This Font Software is licensed under the SIL Open Font License, Version 1.1.
+% This license is in the accompanying file OFL.txt, and is also
+% available with a FAQ at: http://scripts.sil.org/OFL.
+%%EndComments
+
+11 dict begin
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0 ]readonly def
+/FontName /f-2-0 def
+/FontBBox {-40 -250 1009 750 }readonly def
+/PaintType 0 def
+/FontInfo 9 dict dup begin
+/version (003.002) readonly def
+/Notice (Copyright \050c\051 1997, 2009 American Mathematical Society \050<http://www.ams.org>\051, with Reserved Font Name CMR10.) readonly def
+/FullName (CMR10) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+/UnderlinePosition -100 def
+/UnderlineThickness 50 def
+end readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 43 /plus put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece61cf3a79690d73bfb4b0027b78229ecae63571dca5d489f77bdeee69161ac65b8
+1a171acfec6a38e69dd162ea7d456fbeadb28c016db3bfa3a91b731dd3d89e31936de5e0ebbee4
+d9bf15a1d35b3bfa43ade27c55337a53e8117722f41ae71510be6095ec8fcc4480cf4d4b3c8a65
+dec16f24a875f2c200388e757c8d066a3bd39db828e62e2d3d19908b221b8f5b58f7a6a2ebb901
+d705aee915d9f92114c59f6a9124885e77bd754ad8dacd1e7fa44ef6a4733c0ef482d5f4f7788b
+0d58fe7cceea728243b0a6d07c975363fe2f68dc120d39bc1437b4ac6e91b4f1adcd675ae140b6
+f59a96ca858bbd5c861ee4d4da5cd8c0810bbf81fb77d72f04692826e26e06411cd5bf235072b9
+a22bff0b022257caea6b35a80f6584f84fb25d2b12b487b122a82e32ffef3260f9ade779b4795d
+3c56adfeb29c4e258b2d9f9a28e54efd9bb6a98778a6cc09348657ae5c4f1cbd6a6657b6960225
+2e89f0dc72dc41fa2151c8680593116af44bb56979d80ae7eb28ed92dd5211a953ef3956453d15
+90fb10f8f053d924da5eedf7ba9ae7eef8e88adc91b40f9aa66111521e97affc76678b95a94c1b
+10498274d41eb5dce6c800cfc2b1daaded801c27fd5b57ddf20a4e7acceb6ec82bdcc67f5ec5b6
+9221de716f66d38f37d936a4379b1ef049d22ff23aeaea253f840f67cde55a9c0449f09f5c0144
+ebd1be42eb4dc7654dea77f4821c36b37e6367f23bfd70288ebc289858ae641a75597dc3453bed
+fea0eb27f30b6dfd61e07ec4ab199fea4c2f59d6f6b04bf3f8356318f0ed8e1e663838237ef143
+fee4ccc3540ea39b05197d2d9c149a2a71569b89e3526966b4860666d7394635cec4328c5e453a
+59e314fb4aee07dd60c6ce98b1c7e0fa4983414f17c728d92a27a7c1402b6bc51e3a9474e312be
+1e6d5b802895af8e46ae6dfe64ff5e41bc52a3648091f713c7f4021c9ee000cbfd06faae97bae0
+55c337de33c9cd0c6f45c4918db239e6e63d795f44b9d097118d083b6d6ebe2062308845affa58
+d04bfccbfa3d1f3b4d086f1e362357eda652158996fb06cf39ebc15946fd58e6040e2150803bb9
+d9156133cec43034651f6a759639393fe2cc6d608730180c4ff6fe77346eda3b4b747bdddcd33a
+9c81236a22c18964c1a3dc6b47a384cf48f9dcda4481ac84ee0234b1825028609526349bd3bebd
+3275055bdb3d52e2595512a9d803f68a9237ef9f933f367f4cf21bc4aa61ae6222051ca394db85
+b9bcd0c78e7cff1b38db843b76e9eb828fdefef5790cd372d971e5bb8ab00df0cc66afb0fc526d
+9e6a4d1bceaf99078466dbcc1d96c22b022ee2b84ec839a896acfbc1baf7cbdbc883b8dcd3368d
+579e95d20124d58a0d8e896eaa9ca2dcd4d3f084aa237af69c9a958ae0129ed065740b556cbbd6
+7695d32b1ac85b0f26bb974bd8468f058a619486ce6fc45b074a6541d409eb725ff3af49d5ae3b
+d896d1d6bd78746535a61e265056b9dca3c637dbf690b539ec8fe181acf0ec5edced82868355e0
+8d64edd445413bf367c817170006d3dcc6a9a7288531311a44035d457837b97044fb3beda4503e
+e5820e5532bb9304e8c83201f9c46a1d6739b2da74d046a75a60ca064cafe82168bd87e88005cf
+a68f9db5faf2f75f0d7bfdba7ccedf205bb6c7361a62e619af888a9e753f1522d7094e5a9bc206
+cbce76f0b6a1d85a2b93789aa0cb3105e43acaf226d61764d6962dbb1ecb372fc27ab8e79763d8
+3df97805bc70614355bdc853942f8f4d271b54b3c475b27d7f5985dd84b14c22480a6b156b9a81
+2adc8ec155bf922fba301815ac958e68109c186984b28592719e1579e7510fc5b0429b577f83b8
+aa4e11a93291dcd14a1ff76cc5e54de58ae4b399f086c0c8283d938d5f4254f37e43aac99f49cf
+259036817690e55f09e8c20ee7e627cd38a0ca9d7a574a816238478497dffedb41bc0a56b7eba0
+9b58a4d8d5711b931598873b73f54a94cb7db62a78b590a189c0b83d7bcc665ae203d5669c721b
+b4c34ba9b85388afde9502da1ad77994941dfb0c8d9673fe3801ed7b646a3f7b86c87e2a5234b0
+2507e05189732e574b7f2294b59c2945666bca518a71b9b5c34f823217326b827cb5c75195caf9
+b93dfff259bf3e0ca4b2c6bee5860851ea5ecef377689a76b98c4e81e8f17067f47439f0fc5194
+d5a0a1959d1e71c88eed68a2b915e56b38c00507921917cb41bcdfcbb6e041d80b1e06a41e974c
+ae2bed5381d03bb4e1f2117d109277de28efe7bebcca40d687561b073614d885440c9130c12643
+1c95e73f4c7a9d2c9ea5a86e1f9ace968bd2db67c0900ecf65dfe8eddd61a11c285867c06a4557
+ed0ad36fce2e0192435bece4fd8d7cfc355c6c019ca83dc0c9290e10d0f166ff639ee6fdef87ad
+b19fdf0215f52da1ed5eb65876fb24c0ded82ec96814c0f8afbc1db375051bdabae230a873df8b
+5b55e6c006e6f7b6334287820ba8f20d65b01155c9032d6393ea04d967e4106ee05423610be003
+033e86cc7f177df3e49dc911d5cad22495e430ee44d9fa74960ce44ff6867327dd3985c0f7f456
+b049bbe721f07a2eb9149a44f06086ff1391a6e2bd4a5278ff89beed802bab6f81a8d4c25f1759
+7beafb760a318ea610b5f145274a2b3aa611858529712d404991ea274f2270452da3b68d891699
+43ba7686e3019263133290796975cb035b2e6169b8621e7136990ab699d1c89fa0e94551191523
+fd1a69cda50cf8aded596f56dfa218cccc84acda3226a0451e87ff0e44fe54f52b37a59220fb13
+5473a469ea525805de37d223c18319139185b97fc2ea83356ef7799081d1e2a97d89f977de1458
+9ca8446cd692fdf2419459618475c952f389db09c0749798af8397ac3e11d4e7302e39ac34ca03
+df273851301a1ae9b226e84fe2e0b65131299516bd64aa90efe39f280591af10c90b652ae14e80
+cc1201b4109629558e83b83483d4dd57e0857ae0dfcd5a64b5cc36c1f28ddc752ac1d1bcfde5f5
+b1511a3e6b30d835186f38e35215a328d396db7c634aad187428b23f68d013bd6b8ac2d7ff93a1
+d399c360245641c2200021b9f8dd69304f74616ea2dda34144fc11ec42b09af21134c2c7fbf153
+4abd44083021d4ba466e732a1fab596e9f6afd4874ceefad852697601ad8f15aa5d59e20c11e25
+b8fcf60d6138d6e72a8f4cf154c97bf5990595c479ba3a2f96dd65396d54a42b209ca55d3eb21c
+be6c44f0780d2c43fcddddea5a65ee645aacbef909a155b55247a4dbd5d59e7d0fc8c20a219344
+312a1d86cb69662d2c7cf928f6d817ba34ff554890aef5afe8b01db6537b9725b88cff02db92e7
+87b593a6491f930eda75143528147e0341763f3f8b9794a0dee7a4889530c765a8e665f58c9334
+0c99a098250ef663f3158ea3e6dccfef4212909a5c5c23e2d61189d23d69e8bc366c947019c230
+5017afc9d36c6e8c560efaa4093c944a4457698c5f5de74374ffdd24cb5e6d24a04b531793be80
+2d5ae400e2b068a62252c678f4547fba7c677e634cc76a0373124d65ce68dd5d085841569a2f8e
+9c9b71ed1b3794e6f899d6f3cf7b6eee7f33a285abc190b8f17454b084c8a83a7c64cb899733eb
+e3ea8d710bf15470c8699b265b4d3714870776f16ae4a5402c0a40070a16114298a51c1646f6cd
+e88114626af0e4cae0ff7384d863891521eac6f31a5cd295cc0c0e7d59de52de04bf5238156f4c
+e33cd4897cc482ae5ad1826628529ce5a6a5e6a55aca0b20b657cdf5e57c5a73f96f93622c6cf5
+00bcd7e6922bc3ca96bba05fea0b0ff7ddcac109be83fa8934851e9be9bd3109192202eab1c77b
+0c86d1ff97e3b8732fdbb9eecd2a547e3a1cc4402d8f1d213c98890afb12ce908ea3cec9d2e7b5
+bce47c25c32ef337c45f3ee522f5cc76d1505ded96156f80bf6c8e2cf5c3f28898c2f7cedcad10
+f6dc5c45ff4979906b2fd4db0d9435bd85ff5b78e78e441d140ab53db156f4c6402f716ed7ab7c
+5617ae1d1a22bfa5bbc89dddcf9f14feb699d206e1345b793185d2907babe65547a9a17f8b0ce7
+18d98db6039357616cc44be309ec11368ac4d965927773cdaf50ed2d48e692b2a3b31521bad488
+bf684f01e3506733b27eddbb5d0d6d3d8e65a5e1bc745e1eec0547984018419179b38d42e30997
+94341d97885f230300ec6fa06b18c17a1fa77dc186886492d150df1440db4efae287f2f2a4ecbc
+f0683eedea3f78b1b68fc1911cbf2625185f73c141dbc9674e7affff580b4a0296073f5b6505e4
+d63a4a736bc3b794809e801860ce4691a57eb02c0947efc1de4bed3962346769c613f240db1574
+368b28f186b608bb99da33ae1b3c266e49d58ae67a462fcf2e6bfed1ac1ffcc24c9752ea793f60
+923f7579d2b8ef9860975e6a80d5f9637d594a9567f8a2d1e15ccb1edd3d502972c969ee42f57d
+74500d30170904a463d659af0d96ee6fed9f4c7fa0c7800ebb2ed3b78c3f095d18068f96573a03
+3ef343c07bca94dd9897af2830b6a40086c1e8945b26f8baedb8c0af3371060ce18cf8d8693738
+c15c2eb95a4f7f7a37e82abff54ce8d19524e45379c92bee3ae74131231fb175d96fbe54274a88
+135fc74d9f429b9794912a8d157c0ce5045f3b16a4bc78811f1007c96eaef9bbd706533a7ad804
+11e4a3adb0bdbc27a94632d00a5a561df53e0c63a0c17d9df09ada247b420b524135e9e7c34699
+8993f716f41a8601099fb2cbad6f760245a1b52e1f8c45fb5379021a64ee55e368f1e2d704bc41
+76d8e1a1f034a631aa520c6039639207386175c7913af1aeeb95f1c6f995387a454c25e6f78af6
+0ec1d34e0fa0bb4bb8b9417b5d8c59d31bbd89cebd28c490d8436128eaa23c69816af90a4622b8
+2a030514aa5eb2865f5fc5247dbfef5be641da1448376de08544b9902118a5259175d547a87932
+6510c732848d4e5d6d4569021cffaf8be720fc9b73df8a0b8be87eb08c3a2cdeb28d6acc63694c
+a9cbd263838f26a9f538d85fa00cb23f053094977019ff9a935d627668bf9e94eac831d09da176
+27b4a4f4b6a790273ec536a5d8f66f478bbacaf17382f7a3e9257e554ed267eb03cd70b80359ae
+7667c44c0c9411a2ee41a9b0a6a12418a37e6e814069df72d0534d6bd5631f158a3fed39fe33e4
+d97f5b8d0133f8d67b92c72466cb2b82def502a67fa8a37ea4473056da8b1a1c589960957b0e1f
+e2316dabbb150f8f8be2c4da45e4014cdbb22df11a9fa8b85278ac7f0a6f75996a7eba0e524eda
+ab6ca54ec3b3dade7c9edd4ac5eba9087cfd542cdccdb9410202ea1c5dfd4abfc5c0e1c0ec8224
+6a93f453389bdef4fe8a94f9aa5b492ae04400c73f55f67ad0b02f092d87e10bc9f14ad36c3e8c
+c6519bd9ac63f795a51f61a9877cc56e8d87e1078a1562332869ec5d52bc95be2923ce6e9ab07c
+7b9ce0382a5afc60a44693aa58cfd33baa0415f5c8afc239125af4452c3a0010fef23c70df02d5
+d1fee6d23fcbd6b59137ef773e877df1e42eccd49373383b53556929650002a51973c5cb12eb66
+96f8d09086c7a0818b7372d1d17fea577704df4eaa121e0271b9459d57e1fd89a3db3d4c75c620
+79c3cadf03ef97d04c5a4cc5e608ef1599afb139ad7fe73fda41b81dc0cd9fbf93834f9ba7fb12
+38e895e9da72f1bbb8ff581c45a14a39981170d15d4e04022a9aa5a2aef9f6d38d68df4bff98a3
+71296a4e9ebdd2feb5bb616bde6c9a4647901613239b815ded225e3408799fa2f73d7be239cf11
+494c456dcdb4d618d21d19d81879bfacb55ef117fdfdd0d5f66bc97fbd7c6aeffc84d196359698
+e9f36512d6cc42775d1adabf6c99b4f4a232579106d27801f76a71f0770168e40a85403af26be1
+4ba533ec0551c3b18ea8ee97c57f9faeb4192419978ee50242ad61347104fab8f4260f518922ae
+10276c55fd46ea3d4f6471207910d77c8db13e391124b50453b60fbb4e4f15855fa03ac4c3a5e0
+f6cdb7995b1118bc4c9bd2f869682bfb9be20d917cf997d4c2000abd5e11e2dbd79c9c8b7685a1
+7943a2de2ac4cc60a50cafb37baf863aa8b8350d7dbb1b52c2d3652745ce06b1193d2785073f5c
+668c4a117d268d839d41e497165a50d08c3292fbd174411692a3b744da54986d1ef767d6bea6a5
+f437e5fb61f7581c72fa8df1f51909443be412c321c9e1fd626b345b705dc4a8017eb0d8cb61cf
+e5f3f80f796bba6fc7502bb925a33915953141c4444698a18663eeb95e492f20542eef84b047ac
+52a439bc794ccd488ee9b25bc467ed09a418256bc0c14a808f007231fbf97efc1881425ddb64fd
+6c170debd330257427c9d8b53dbde875aec06196cb8f0d33bf10b681605a02e750feadb3196bb3
+ec2c251e5f549c2fb6c91fb32c1bba3c9af6ce30cb6b71cc2ba681231b1b521619b863addda93f
+bae29f8c7a439415d22bb35f59608609cd13d22612cbc6aeb6601b37a6c9f09eb1eb8f60f12134
+956e456db374fdd7a93302dc2fa405641d09fe7c28314b08e4fc9de9294b2caacb8f8673647ea3
+2571bd33996045e3a3a6ebd1315c3c0c91fce65dbba1d1dc730bfbf02a1d5b16c74a8e5841450a
+24fb0d87108469267cd21aea77cdd8b317629be24dca7fbaabd757acf62f5733cde3c4f6d138ac
+ee93de18cb485c9178214351fa3f0a44ed41a3f7de68816b7fef6c2869af4f677f3f358533afb7
+d4f090c65f0358bb63e52d2c4878d2ea0620d1fddce9b8bc22e99bcb711de2d4086cc2950ed2fc
+50508e3aa0c15b109a3221caa9cbd6be368bc6b7a7033656d9ffc85f729d4bff1c18b00e78b5eb
+5c9cf181906885c45e315b2aba41d3cdf32f0cf301dd4eb4bf9b28c0a4d429fc84aa97633a6bba
+6ab0f43f61d0f6fa9a35256ef7bcd8fb934fa1c035a8ae3b600920b608ebb40850e4c7e3564572
+675ccc7002cc2029bb963d87385c2aaedd472a224f92187298652ba268336df3bc28b33441c1a8
+985bfe71eb30e33ee83f738123d76f94308a1a2f2f549d40b7ff6d97ed87b1989dc12aad21ba8b
+c42b2c361c50e44b74ec9db17061db171b932c910397d42c1d6a305299545952ff8ab117bff8e2
+bc2e52e7ffdf6cb64d61aef2e79481ce9a1915b207c58c4dda3d71172cd99883a27078693831a0
+7ac70c67e1eecc1dd5b3dbd0f7b445a167e77f54ecd3f88a4622771c55c53c9cb58631b60374fc
+4e6ff1ff4a26dabbc2ae562a124333c2822e4b52598cf5b4d5292df4b06800d9689c04ecd895d1
+7847d93faa68b508e524b39321aff9e749343638acab6cc92af4b447b87c3798277b3e83341988
+8cda9aeeb978ffbdda27b6628fff08a55fc41f646741d092148a2e149cb295f283b9c3a6ee040a
+ecf8a895dde8dd46908ff65a57f7cabe8dd42fbd82206e77cc64aba562e6d21726a63f5a75c4f7
+fce6a8bcd6523bc18679cf3730bcf4f1ecf3cd00d8bf63af271164211a34e3beb928abe1a06def
+8b2de826c893604c5f375c7c254c4a2a797fc1ef11b38ce154a5b337c453a307e501929d361a66
+aa0ec59243a64f8cdc31f57ec829093184386859fe4b6792265a6b32d03cf1c81e583addc7bada
+c25c98fd44a3796e33e53e9b2019d0d8c6ba3685019e67d931b5a817b2ce47a88be668bd45dac0
+5199d05b5f02de05455bf2cdd48f2b93b50edea9a5e0c871f8ac1665fedcd0bab330ee628e3df4
+514d679aa059ab3c1da74e2590354028facc543cfdbba7f90010a2aa33b7329faaa0df1c555e03
+b71f153a5cae8a5f9738bc5c53da38544cc23c785088062e05e3896956986b6210d343068b5106
+361486b7545b0547cf0d349f8c8243a143da36873b6b976134637dcce4848d2b8079a823ff9b9c
+24b103c2431fd4355629b72066f2b789f812d0565f4b4796f2ae15ca2d8f85e7ba1aa6507f3775
+58fbdc1a504365bed2f254525f45e522b942af4755133b3ab52f2e454991c89c4c24dcd62d6c73
+03b47e17f7f9b58d64dec62022d89ab52b3fcbd13a311968a98e564a9df26842017e6c4a0a075b
+cbf6487eda91be673e1d7c76577eb40a27fa83823ce39752ce607c96e88c9c19fa150199eb8729
+bacb9207ccd6a4f22d27319d869d50f823c2adc48707cc34e1e04af2648c9460c19a00f5ab0954
+5b850d0e63de15a3ec3d5b986abae7c519e6ca0adb76cbf3387e3c67f6e210441942013d380d0d
+93529278b9bb64c591c9c118dfc8403a1c556a13fc28e31a4367e2556822d88ca5ac62b3737019
+2fb1331594fc1c8ea78c6b9908ae572843bae2804bfee34bb6e37c6d12083e2522e7623aa970f1
+b29e0332f373ce43190276f774e74ec8299537f23d99
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+
+%%EndResource
+%%BeginResource: font CMR10
+%!PS-AdobeFont-1.0: CMR10 003.002
+%%Title: CMR10
+%Version: 003.002
+%%CreationDate: Mon Jul 13 16:17:00 2009
+%%Creator: David M. Jones
+%Copyright: Copyright (c) 1997, 2009 American Mathematical Society
+%Copyright: (<http://www.ams.org>), with Reserved Font Name CMR10.
+% This Font Software is licensed under the SIL Open Font License, Version 1.1.
+% This license is in the accompanying file OFL.txt, and is also
+% available with a FAQ at: http://scripts.sil.org/OFL.
+%%EndComments
+
+11 dict begin
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0 ]readonly def
+/FontName /f-2-1 def
+/FontBBox {-40 -250 1009 750 }readonly def
+/PaintType 0 def
+/FontInfo 9 dict dup begin
+/version (003.002) readonly def
+/Notice (Copyright \050c\051 1997, 2009 American Mathematical Society \050<http://www.ams.org>\051, with Reserved Font Name CMR10.) readonly def
+/FullName (CMR10) readonly def
+/FamilyName (Computer Modern) readonly def
+/Weight (Medium) readonly def
+/ItalicAngle 0 def
+/isFixedPitch false def
+/UnderlinePosition -100 def
+/UnderlineThickness 50 def
+end readonly def
+/Encoding 256 array
+0 1 255 {1 index exch /.notdef put} for
+dup 1 /Delta put
+readonly def
+currentdict end
+currentfile eexec
+f983ef0097ece61cf3a79690d73bfb4b0027b78229ecae63571dca5d489f77bdeee69161ac65b8
+1a171acfec6a38e69dd162ea7d456fbeadb28c016db3bfa3a91b731dd3d89e31936de5e0ebbee4
+d9bf15a1d35b3bfa43ade27c55337a53e8117722f41ae71510be6095ec8fcc4480cf4d4b3c8a65
+dec16f24a875f2c200388e757c8d066a3bd39db828e62e2d3d19908b221b8f5b58f7a6a2ebb901
+d705aee915d9f92114c59f6a9124885e77bd754ad8dacd1e7fa44ef6a4733c0ef482d5f4f7788b
+0d58fe7cceea728243b0a6d07c975363fe2f68dc120d39bc1437b4ac6e91b4f1adcd675ae140b6
+f59a96ca858bbd5c861ee4d4da5cd8c0810bbf81fb77d72f04692826e26e06411cd5bf235072b9
+a22bff0b022257caea6b35a80f6584f84fb25d2b12b487b122a82e32ffef3260f9ade779b4795d
+3c56adfeb29c4e258b2d9f9a28e54efd9bb6a98778a6cc09348657ae5c4f1cbd6a6657b6960225
+2e89f0dc72dc41fa2151c8680593116af44bb56979d80ae7eb28ed92dd5211a953ef3956453d15
+90fb10f8f053d924da5eedf7ba9ae7eef8e88adc91b40f9aa66111521e97affc76678b95a94c1b
+10498274d41eb5dce6c800cfc2b1daaded801c27fd5b57ddf20a4e7acceb6ec82bdcc67f5ec5b6
+9221de716f66d38f37d936a4379b1ef049d22ff23aeaea253f840f67cde55a9c0449f09f5c0144
+ebd1be42eb4dc7654dea77f4821c36b37e6367f23bfd70288ebc289858ae641a75597dc3453bed
+fea0eb27f30b6dfd61e07ec4ab199fea4c2f59d6f6b04bf3f8356318f0ed8e1e663838237ef143
+fee4ccc3540ea39b05197d2d9c149a2a71569b89e3526966b4860666d7394635cec4328c5e453a
+59e314fb4aee07dd60c6ce98b1c7e0fa4983414f17c728d92a27a7c1402b6bc51e3a9474e312be
+1e6d5b802895af8e46ae6dfe64ff5e41bc52a3648091f713c7f4021c9ee000cbfd06faae97bae0
+55c337de33c9cd0c6f45c4918db239e6e63d795f44b9d097118d083b6d6ebe2062308845affa58
+d04bfccbfa3d1f3b4d086f1e362357eda652158996fb06cf39ebc15946fd58e6040e2150803bb9
+d9156133cec43034651f6a759639393fe2cc6d608730180c4ff6fe77346eda3b4b747bdddcd33a
+9c81236a22c18964c1a3dc6b47a384cf48f9dcda4481ac84ee0234b1825028609526349bd3bebd
+3275055bdb3d52e2595512a9d803f68a9237ef9f933f367f4cf21bc4aa61ae6222051ca394db85
+b9bcd0c78e7cff1b38db843b76e9eb828fdefef5790cd372d971e5bb8ab00df0cc66afb0fc526d
+9e6a4d1bceaf99078466dbcc1d96c22b022ee2b84ec839a896acfbc1baf7cbdbc883b8dcd3368d
+579e95d20124d58a0d8e896eaa9ca2dcd4d3f084aa237af69c9a958ae0129ed065740b556cbbd6
+7695d32b1ac85b0f26bb974bd8468f058a619486ce6fc45b074a6541d409eb725ff3af49d5ae3b
+d896d1d6bd78746535a61e265056b9dca3c637dbf690b539ec8fe181acf0ec5edced82868355e0
+8d64edd445413bf367c817170006d3dcc6a9a7288531311a44035d457837b97044fb3beda4503e
+e5820e5532bb9304e8c83201f9c46a1d6739b2da74d046a75a60ca064cafe82168bd87e88005cf
+a68f9db5faf2f75f0d7bfdba7ccedf205bb6c7361a62e619af888a9e753f1522d7094e5a9bc206
+cbce76f0b6a1d85a2b93789aa0cb3105e43acaf226d61764d6962dbb1ecb372fc27ab8e79763d8
+3df97805bc70614355bdc853942f8f4d271b54b3c475b27d7f5985dd84b14c22480a6b156b9a81
+2adc8ec155bf922fba301815ac958e68109c186984b28592719e1579e7510fc5b0429b577f83b8
+aa4e11a93291dcd14a1ff76cc5e54de58ae4b399f086c0c8283d938d5f4254f37e43aac99f49cf
+259036817690e55f09e8c20ee7e627cd38a0ca9d7a574a816238478497dffedb41bc0a56b7eba0
+9b58a4d8d5711b931598873b73f54a94cb7db62a78b590a189c0b83d7bcc665ae203d5669c721b
+b4c34ba9b85388afde9502da1ad77994941dfb0c8d9673fe3801ed7b646a3f7b86c87e2a5234b0
+2507e05189732e574b7f2294b59c2945666bca518a71b9b5c34f823217326b827cb5c75195caf9
+b93dfff259bf3e0ca4b2c6bee5860851ea5ecef377689a76b98c4e81e8f17067f47439f0fc5194
+d5a0a1959d1e71c88eed68a2b915e56b38c00507921917cb41bcdfcbb6e041d80b1e06a41e974c
+ae2bed5381d03bb4e1f2117d109277de28efe7bebcca40d687561b073614d885440c9130c12643
+1c95e73f4c7a9d2c9ea5a86e1f9ace968bd2db67c0900ecf65dfe8eddd61a11c285867c06a4557
+ed0ad36fce2e0192435bece4fd8d7cfc355c6c019ca83dc0c9290e10d0f166ff639ee6fdef87ad
+b19fdf0215f52da1ed5eb65876fb24c0ded82ec96814c0f8afbc1db375051bdabae230a873df8b
+5b55e6c006e6f7b6334287820ba8f20d65b01155c9032d6393ea04d967e4106ee05423610be003
+033e86cc7f177df3e49dc911d5cad22495e430ee44d9fa74960ce44ff6867327dd3985c0f7f456
+b049bbe721f07a2eb9149a44f06086ff1391a6e2bd4a5278ff89beed802bab6f81a8d4c25f1759
+7beafb760a318ea610b5f145274a2b3aa611858529712d404991ea274f2270452da3b68d891699
+43ba7686e3019263133290796975cb035b2e6169b8621e7136990ab699d1c89fa0e94551191523
+fd1a69cda50cf8aded596f56dfa218cccc84acda3226a0451e87ff0e44fe54f52b37a59220fb13
+5473a469ea525805de37d223c18319139185b97fc2ea83356ef7799081d1e2a97d89f977de1458
+9ca8446cd692fdf2419459618475c952f389db09c0749798af8397ac3e11d4e7302e39ac34ca03
+df273851301a1ae9b226e84fe2e0b65131299516bd64aa90efe39f280591af10c90b652ae14e80
+cc1201b4109629558e83b83483d4dd57e0857ae0dfcd5a64b5cc36c1f28ddc752ac1d1bcfde5f5
+b1511a3e6b30d835186f38e35215a328d396db7c634aad187428b23f68d013bd6b8ac2d7ff93a1
+d399c360245641c2200021b9f8dd69304f74616ea2dda34144fc11ec42b09af21134c2c7fbf153
+4abd44083021d4ba466e732a1fab596e9f6afd4874ceefad852697601ad8f15aa5d59e20c11e25
+b8fcf60d6138d6e72a8f4cf154c97bf5990595c479ba3a2f96dd65396d54a42b209ca55d3eb21c
+be6c44f0780d2c43fcddddea5a65ee645aacbef909a155b55247a4dbd5d59e7d0fc8c20a219344
+312a1d86cb69662d2c7cf928f6d817ba34ff554890aef5afe8b01db6537b9725b88cff02db92e7
+87b593a6491f930eda75143528147e0341763f3f8b9794a0dee7a4889530c765a8e665f58c9334
+0c99a098250ef663f3158ea3e6dccfef4212909a5c5c23e2d61189d23d69e8bc366c947019c230
+5017afc9d36c6e8c560efaa4093c944a4457698c5f5de74374ffdd24cb5e6d24a04b531793be80
+2d5ae400e2b068a62252c678f4547fba7c677e634cc76a0373124d65ce68dd5d085841569a2f8e
+9c9b71ed1b3794e6f899d6f3cf7b6eee7f33a285abc190b8f17454b084c8a83a7c64cb899733eb
+e3ea8d710bf15470c8699b265b4d3714870776f16ae4a5402c0a40070a16114298a51c1646f6cd
+e88114626af0e4cae0ff7384d863891521eac6f31a5cd295cc0c0e7d59de52de04bf5238156f4c
+e33cd4897cc482ae5ad1826628529ce5a6a5e6a55aca0b20b657cdf5e57c5a73f96f93622c6cf5
+00bcd7e6922bc3ca96bba05fea0b0ff7ddcac109be83fa8934851e9be9bd3109192202eab1c77b
+0c86d1ff97e3b8732fdbb9eecd2a547e3a1cc4402d8f1d213c98890afb12ce908ea3cec9d2e7b5
+bce47c25c32ef337c45f3ee522f5cc76d1505ded96156f80bf6c8e2cf5c3f28898c2f7cedcad10
+f6dc5c45ff4979906b2fd4db0d9435bd85ff5b78e78e441d140ab53db156f4c6402f716ed7ab7c
+5617ae1d1a22bfa5bbc89dddcf9f14feb699d206e1345b793185d2907babe65547a9a17f8b0ce7
+18d98db6039357616cc44be309ec11368ac4d965927773cdaf50ed2d48e692b2a3b31521bad488
+bf684f01e3506733b27eddbb5d0d6d3d8e65a5e1bc745e1eec0547984018419179b38d42e30997
+94341d97885f230300ec6fa06b18c17a1fa77dc186886492d150df1440db4efae287f2f2a4ecbc
+f0683eedea3f78b1b68fc1911cbf2625185f73c141dbc9674e7affff580b4a0296073f5b6505e4
+d63a4a736bc3b794809e801860ce4691a57eb02c0947efc1de4bed3962346769c613f240db1574
+368b28f186b608bb99da33ae1b3c266e49d58ae67a462fcf2e6bfed1ac1ffcc24c9752ea793f60
+923f7579d2b8ef9860975e6a80d5f9637d594a9567f8a2d1e15ccb1edd3d502972c969ee42f57d
+74500d30170904a463d659af0d96ee6fed9f4c7fa0c7800ebb2ed3b78c3f095d18068f96573a03
+3ef343c07bca94dd9897af2830b6a40086c1e8945b26f8baedb8c0af3371060ce18cf8d8693738
+c15c2eb95a4f7f7a37e82abff54ce8d19524e45379c92bee3ae74131231fb175d96fbe54274a88
+135fc74d9f429b9794912a8d157c0ce5045f3b16a4bc78811f1007c96eaef9bbd706533a7ad804
+11e4a3adb0bdbc27a94632d00a5a561df53e0c63a0c17d9df09ada247b420b524135e9e7c34699
+8993f716f41a8601099fb2cbad6f760245a1b52e1f8c45fb5379021a64ee55e368f1e2d704bc41
+76d8e1a1f034a631aa520c6039639207386175c7913af1aeeb95f1c6f995387a454c25e6f78af6
+0ec1d34e0fa0bb4bb8b9417b5d8c59d31bbd89cebd28c490d8436128eaa23c69816af90a4622b8
+2a030514aa5eb2865f5fc5247dbfef5be641da1448376de08544b9902118a5259175d547a87932
+6510c732848d4e5d6d4569021cffaf8be720fc9b73df8a0b8be87eb08c3a2cdeb28d6acc63694c
+a9cbd263838f26a9f538d85fa00cb23f053094977019ff9a935d627668bf9e94eac831d09da176
+27b4a4f4b6a790273ec536a5d8f66f478bbacaf17382f7a3e9257e554ed267eb03cd70b80359ae
+7667c44c0c9411a2ee41a9b0a6a12418a37e6e814069df72d0534d6bd5631f158a3fed39fe33e4
+d97f5b8d0133f8d67b92c72466cb2b82def502a67fa8a37ea4473056da8b1a1c589960957b0e1f
+e2316dabbb150f8f8be2c4da45e4014cdbb22df11a9fa8b85278ac7f0a6f75996a7eba0e524eda
+ab6ca54ec3b3dade7c9edd4ac5eba9087cfd542cdccdb9410202ea1c5dfd4abfc5c0e1c0ec8224
+6a93f453389bdef4fe8a94f9aa5b492ae04400c73f55f67ad0b02f092d87e10bc9f14ad36c3e8c
+c6519bd9ac63f795a51f61a9877cc56e8d87e1078a1562332869ec5d52bc95be2923ce6e9ab07c
+7b9ce0382a5afc60a44693aa58cfd33baa0415f5c8afc239125af4452c3a0010fef23c70df02d5
+d1fee6d23fcbd6b59137ef773e877df1e42eccd49373383b53556929650002a51973c5cb12eb66
+96f8d09086c7a0818b7372d1d17fea577704df4eaa121e0271b9459d57e1fd89a3db3d4c75c620
+79c3cadf03ef97d04c5a4cc5e608ef1599afb139ad7fe73fda41b81dc0cd9fbf93834f9ba7fb12
+38e895e9da72f1bbb8ff581c45a14a39981170d15d4e04022a9aa5a2aef9f6d38d68df4bff98a3
+71296a4e9ebdd2feb5bb616bde6c9a4647901613239b815ded225e3408799fa2f73d7be239cf11
+494c456dcdb4d618d21d19d81879bfacb55ef117fdfdd0d5f66bc97fbd7c6aeffc84d196359698
+e9f36512d6cc42775d1adabf6c99b4f4a232579106d27801f76a71f0770168e40a85403af26be1
+4ba533ec0551c3b18ea8ee97c57f9faeb4192419978ee50242ad61347104fab8f4260f518922ae
+10276c55fd46ea3d4f6471207910d77c8db13e391124b50453b60fbb4e4f15855fa03ac4c3a5e0
+f6cdb7995b1118bc4c9bd2f869682bfb9be20d917cf997d4c2000abd5e11e2dbd79c9c8b7685a1
+7943a2de2ac4cc60a50cafb37baf863aa8b8350d7dbb1b52c2d3652745ce06b1193d2785073f5c
+668c4a117d268d839d41e497165a50d08c3292fbd174411692a3b744da54986d1ef767d6bea6a5
+f437e5fb61f7581c72fa8df1f51909443be412c321c9e1fd626b345b705dc4a8017eb0d8cb61cf
+e5f3f80f796bba6fc7502bb925a33915953141c4444698a18663eeb95e492f20542eef84b047ac
+52a439bc794ccd488ee9b25bc467ed09a418256bc0c14a808f007231fbf97efc1881425ddb64fd
+6c170debd330257427c9d8b53dbde875aec06196cb8f0d33bf10b681605a02e750feadb3196bb3
+ec2c251e5f549c2fb6c91fb32c1bba3c9af6ce30cb6b71cc2ba681231b1b521619b863addda93f
+bae29f8c7a439415d22bb35f59608609cd13d22612cbc6aeb6601b37a6c9f09eb1eb8f60f12134
+956e456db374fdd7a93302dc2fa405641d09fe7c28314b08e4fc9de9294b2caacb8f8673647ea3
+2571bd33996045e3a3a6ebd1315c3c0c91fce65dbba1d1dc730bfbf02a1d5b16c74a8e5841450a
+24fb0d87108469267cd21aea77cdd8b317629be24dca7fbaabd757acf62f5733cde3c4f6d138ac
+ee93de18cb485c9178214351fa3f0a44ed41a3f7de68816b7fef6c2869af4f677f3f358533afb7
+d4f090c65f0358bb63e52d2c4878d2ea0620d1fddce9b8bc22e99bcb711de2d4086cc2950ed2fc
+50508e3aa0c15b109a3221caa9cbd6be368bc6b7a7033656d9ffc85f729d4bff1c18b00e78b5eb
+5c9cf181906885c45e315b2aba41d3cdf32f0cf301dd4eb4bf9b28c0a4d429fc84aa97633a6bba
+6ab0f43f61d0f6fa9a35256ef7bcd8fb934fa1c035a8ae3b600920b608ebb40850e4c7e3564572
+675ccc7002cc2029bb963d87385c2aaedd472a224f92187298652ba268336df3bc28b33441c1a8
+985bfe71eb30e33ee83f738123d76f94308a1a2f2f549d40b7ff6d97ed87b1989dc12aad21ba8b
+c42b2c361c50e44b74ec9db17061db171b932c910397d42c1d6a305299545952ff8ab117bff8e2
+bc2e52e7ffdf6cb64d61aef2e79481ce9a1915b207c58c4dda3d71172cd99883a27078693831a0
+7ac70c67e1eecc1dd5b3dbd0f7b445a167e77f54ecd3f88a4622771c55c53c9cb58631b60374fc
+4e6ff1ff4a26dabbc2ae562a124333c2822e4b52598cf5b4d5292df4b06800d9689c04ecd895d1
+7847d93faa68b508e524b39321aff9e749343638acab6cc92af4b447b87c3798277b3e83341988
+8cda9aeeb978ffbdda27b6628fff08a55fc41f646741d092148a2e149cb295f283b9c3a6ee040a
+ecf8a895dde8dd46908ff65a57f7cabe8dd42fbd82206e77cc64aba562e6d21726a63f5a75c4f7
+fce6a8bcd6523bc18679cf3730bcf4f1ecf3cd00d8bf63af271164211a34e3beb928abe1a06def
+8b2de826c893604c5f375c7c254c4a2a797fc1ef11b38ce154a5b337c453a307e501929d361a66
+aa0ec59243a64f8cdc31f57ec829093184386859fe4b6792265a6b32d03cf1c81e583addc7bada
+c25c98fd44a3796e33e53e9b2019d0d8c6ba3685019e67d931b5a817b2ce47a88be668bd45dac0
+5199d05b5f02de05455bf2cdd48f2b93b50edea9a5e0c871f8ac1665fedcd0bab330ee628e3df4
+514d679aa059ab3c1da74e2590354028facc543cfdbba7f90010a2aa33b7329faaa0df1c555e03
+b71f153a5cae8a5f9738bc5c53da38544cc23c785088062e05e3896956986b6210d343068b5106
+361486b7545b0547cf0d349f8c8243a143da36873b6b976134637dcce4848d2b8079a823ff9b9c
+24b103c2431fd4355629b72066f2b789f812d0565f4b4796f2ae15ca2d8f85e7ba1aa6507f3775
+58fbdc1a504365bed2f254525f45e522b942af4755133b3ab52f2e454991c89c4c24dcd62d6c73
+03b47e17f7f9b58d64dec62022d89ab52b3fcbd13a311968a98e564a9df26842017e6c4a0a075b
+cbf6487eda91be673e1d7c76577eb40a27fa83823ce39766a689c84b9225b83feba8e6b759ad23
+545710bca017911049af5b0772fe7af33c738aa80413f9b3e002740552023d267012ef1cf6faa4
+f6f88475d53a6a7c02b848e3fb5008e55baaed98c0e46c1d2cb08f023cdaab46d5d0e4308ac63b
+44ef4323b0441da2a18b82dbc5606da7dae66929f3ef612ef2c114984e31f355ffe818e9cf7892
+4106021b86bf3c9cbc2e0984d3e4c42629aee3ea34874f6ededee80259ed752ed0adb8996d4756
+fa344dfd27ebfd0fdafecb6339c062d10eab
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+
+%%EndResource
+%%EndSetup
+%%Page: 1 1
+%%BeginPageSetup
+%%PageBoundingBox: 0 1 244 226
+%%EndPageSetup
+q 0 1 244 225 rectclip
+1 0 0 -1 0 226 cm q
+0 g
+0.8 w
+0 J
+1 j
+[] 0.0 d
+10 M 16.602 223.176 m 16.602 15.176 l S
+16.602 15.176 m 14.27 22.176 l 16.602 20.777 l 18.93 22.176 l h
+16.602 15.176 m f*
+16.602 15.176 m 14.27 22.176 l 16.602 20.777 l 18.93 22.176 l h
+16.602 15.176 m S
+1.2 w
+0.602 207.176 m 232.602 207.176 l S
+232.602 207.176 m 225.602 204.844 l 227 207.176 l 225.602 209.508 l h
+232.602 207.176 m f*
+232.602 207.176 m 225.602 204.844 l 227 207.176 l 225.602 209.508 l h
+232.602 207.176 m S
+BT
+14.3462 0 0 -14.3462 16.599928 7.176 Tm
+/f-0-0 1 Tf
+(y)Tj
+15.336326 -13.940974 Td
+(x)Tj
+9.9626 0 0 -9.9626 119.953228 157.74742 Tm
+/f-1-1 1 Tf
+<01>Tj
+5.284434 0.759984 Td
+<01>Tj
+/f-2-0 1 Tf
+[()-250(+)]TJ
+/f-2-1 1 Tf
+[<>-222<01>]TJ
+/f-1-1 1 Tf
+[<01>]TJ
+/f-2-1 1 Tf
+0.803003 2.910887 Td
+<01>Tj
+/f-1-1 1 Tf
+<01>Tj
+7.259781 -6.822681 -6.822681 -7.259781 151.146744 120.059612 Tm
+/f-2-1 1 Tf
+<01>Tj
+/f-1-0 1 Tf
+(s)Tj
+9.9626 0 0 -9.9626 177.317928 53.984 Tm
+(R)Tj
+ET
+0.4 w
+88.602 159.176 m 212.602 159.176 l S
+212.602 43.176 m 132.602 199.176 l S
+88.602 159.176 m 208.602 119.574 l S
+1.2 w
+8.602 103.176 m 32.602 79.176 36.602 101.176 40.602 116.844 c 44.602 132.508
+ 48.602 141.844 52.602 148.508 c 56.602 155.176 60.602 159.176 68.602 160.176
+ c 76.602 161.176 88.602 159.176 88.602 159.176 c S
+200.602 67.176 m 212.602 31.176 204.602 19.176 204.602 19.176 c S
+89.801 159.176 m 89.801 157.574 87.398 157.574 87.398 159.176 c 87.398
+160.777 89.801 160.777 89.801 159.176 c h
+89.801 159.176 m f*
+201.801 67.176 m 201.801 65.574 199.398 65.574 199.398 67.176 c 199.398
+ 68.777 201.801 68.777 201.801 67.176 c h
+201.801 67.176 m f*
+88.602 159.176 m 110.598 151.918 119.598 147.547 130.098 140.695 c 140.602
+ 133.844 152.602 124.508 163.66 113.574 c 174.723 102.637 184.844 90.098
+ 191.316 81.23 c 197.785 72.367 200.602 67.176 200.602 67.176 c S
+0.4 w
+167.711 159.176 m 167.711 153.699 164.648 148.684 159.773 146.188 c S
+179.293 129.246 m 178.164 125.82 175.73 122.98 172.52 121.332 c S
+110 159.176 m 110 156.898 109.633 154.633 108.922 152.469 c S
+[ 4 2 1 2] 0 d
+204.648 49.176 m 204.648 25.953 185.82 7.129 162.602 7.129 c 139.379 7.129
+ 120.551 25.953 120.551 49.176 c 120.551 72.398 139.379 91.223 162.602 91.223
+ c 185.82 91.223 204.648 72.398 204.648 49.176 c h
+204.648 49.176 m S
+[ 4 2 1 2] 0 d
+109.285 133.176 m 109.285 118.438 97.336 106.492 82.602 106.492 c 67.863
+ 106.492 55.918 118.438 55.918 133.176 c 55.918 147.914 67.863 159.859 82.602
+ 159.859 c 97.336 159.859 109.285 147.914 109.285 133.176 c h
+109.285 133.176 m S
+83.801 133.176 m 83.801 131.574 81.398 131.574 81.398 133.176 c 81.398
+134.777 83.801 134.777 83.801 133.176 c h
+83.801 133.176 m f*
+163.801 49.176 m 163.801 47.574 161.398 47.574 161.398 49.176 c 161.398
+ 50.777 163.801 50.777 163.801 49.176 c h
+163.801 49.176 m f*
+[] 0.0 d
+82.602 133.176 m 88.602 159.176 l S
+162.602 49.176 m 200.602 67.176 l S
+[ 4 4] 0 d
+88.602 159.176 m 88.602 215.176 l S
+[ 4 4] 0 d
+200.602 67.176 m 200.602 139.176 l S
+[ 4 4] 0 d
+200.602 159.176 m 200.602 215.176 l S
+BT
+9.9626 0 0 -9.9626 84.599928 223.176 Tm
+/f-1-0 1 Tf
+[(x)-9575(x)]TJ
+/f-2-0 1 Tf
+[()-223(+)]TJ
+/f-2-1 1 Tf
+[<>-222<01>]TJ
+/f-1-0 1 Tf
+[(x)]TJ
+ET
+Q Q
+showpage
+%%Trailer
+end
+%%EOF
diff --git a/fig/plane-curvature.ipe b/fig/plane-curvature.ipe
new file mode 100644
index 0000000..7159dec
--- /dev/null
+++ b/fig/plane-curvature.ipe
@@ -0,0 +1,356 @@
+<?xml version="1.0"?>
+<!DOCTYPE ipe SYSTEM "ipe.dtd">
+<ipe version="70206" creator="Ipe 7.2.7">
+<info created="D:20200409115248" modified="D:20200412162138"/>
+<ipestyle name="basic">
+<symbol name="arrow/arc(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/farc(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/ptarc(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/fptarc(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="mark/circle(sx)" transformations="translations">
+<path fill="sym-stroke">
+0.6 0 0 0.6 0 0 e
+0.4 0 0 0.4 0 0 e
+</path>
+</symbol>
+<symbol name="mark/disk(sx)" transformations="translations">
+<path fill="sym-stroke">
+0.6 0 0 0.6 0 0 e
+</path>
+</symbol>
+<symbol name="mark/fdisk(sfx)" transformations="translations">
+<group>
+<path fill="sym-fill">
+0.5 0 0 0.5 0 0 e
+</path>
+<path fill="sym-stroke" fillrule="eofill">
+0.6 0 0 0.6 0 0 e
+0.4 0 0 0.4 0 0 e
+</path>
+</group>
+</symbol>
+<symbol name="mark/box(sx)" transformations="translations">
+<path fill="sym-stroke" fillrule="eofill">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+-0.4 -0.4 m
+0.4 -0.4 l
+0.4 0.4 l
+-0.4 0.4 l
+h
+</path>
+</symbol>
+<symbol name="mark/square(sx)" transformations="translations">
+<path fill="sym-stroke">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+</path>
+</symbol>
+<symbol name="mark/fsquare(sfx)" transformations="translations">
+<group>
+<path fill="sym-fill">
+-0.5 -0.5 m
+0.5 -0.5 l
+0.5 0.5 l
+-0.5 0.5 l
+h
+</path>
+<path fill="sym-stroke" fillrule="eofill">
+-0.6 -0.6 m
+0.6 -0.6 l
+0.6 0.6 l
+-0.6 0.6 l
+h
+-0.4 -0.4 m
+0.4 -0.4 l
+0.4 0.4 l
+-0.4 0.4 l
+h
+</path>
+</group>
+</symbol>
+<symbol name="mark/cross(sx)" transformations="translations">
+<group>
+<path fill="sym-stroke">
+-0.43 -0.57 m
+0.57 0.43 l
+0.43 0.57 l
+-0.57 -0.43 l
+h
+</path>
+<path fill="sym-stroke">
+-0.43 0.57 m
+0.57 -0.43 l
+0.43 -0.57 l
+-0.57 0.43 l
+h
+</path>
+</group>
+</symbol>
+<symbol name="arrow/fnormal(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/pointed(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/fpointed(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-0.8 0 l
+-1 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/linear(spx)">
+<path stroke="sym-stroke" pen="sym-pen">
+-1 0.333 m
+0 0 l
+-1 -0.333 l
+</path>
+</symbol>
+<symbol name="arrow/fdouble(spx)">
+<path stroke="sym-stroke" fill="white" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+-1 0 m
+-2 0.333 l
+-2 -0.333 l
+h
+</path>
+</symbol>
+<symbol name="arrow/double(spx)">
+<path stroke="sym-stroke" fill="sym-stroke" pen="sym-pen">
+0 0 m
+-1 0.333 l
+-1 -0.333 l
+h
+-1 0 m
+-2 0.333 l
+-2 -0.333 l
+h
+</path>
+</symbol>
+<pen name="heavier" value="0.8"/>
+<pen name="fat" value="1.2"/>
+<pen name="ultrafat" value="2"/>
+<symbolsize name="large" value="5"/>
+<symbolsize name="small" value="2"/>
+<symbolsize name="tiny" value="1.1"/>
+<arrowsize name="large" value="10"/>
+<arrowsize name="small" value="5"/>
+<arrowsize name="tiny" value="3"/>
+<color name="red" value="1 0 0"/>
+<color name="green" value="0 1 0"/>
+<color name="blue" value="0 0 1"/>
+<color name="yellow" value="1 1 0"/>
+<color name="orange" value="1 0.647 0"/>
+<color name="gold" value="1 0.843 0"/>
+<color name="purple" value="0.627 0.125 0.941"/>
+<color name="gray" value="0.745"/>
+<color name="brown" value="0.647 0.165 0.165"/>
+<color name="navy" value="0 0 0.502"/>
+<color name="pink" value="1 0.753 0.796"/>
+<color name="seagreen" value="0.18 0.545 0.341"/>
+<color name="turquoise" value="0.251 0.878 0.816"/>
+<color name="violet" value="0.933 0.51 0.933"/>
+<color name="darkblue" value="0 0 0.545"/>
+<color name="darkcyan" value="0 0.545 0.545"/>
+<color name="darkgray" value="0.663"/>
+<color name="darkgreen" value="0 0.392 0"/>
+<color name="darkmagenta" value="0.545 0 0.545"/>
+<color name="darkorange" value="1 0.549 0"/>
+<color name="darkred" value="0.545 0 0"/>
+<color name="lightblue" value="0.678 0.847 0.902"/>
+<color name="lightcyan" value="0.878 1 1"/>
+<color name="lightgray" value="0.827"/>
+<color name="lightgreen" value="0.565 0.933 0.565"/>
+<color name="lightyellow" value="1 1 0.878"/>
+<dashstyle name="dashed" value="[4] 0"/>
+<dashstyle name="dotted" value="[1 3] 0"/>
+<dashstyle name="dash dotted" value="[4 2 1 2] 0"/>
+<dashstyle name="dash dot dotted" value="[4 2 1 2 1 2] 0"/>
+<textsize name="large" value="\large"/>
+<textsize name="small" value="\small"/>
+<textsize name="tiny" value="\tiny"/>
+<textsize name="Large" value="\Large"/>
+<textsize name="LARGE" value="\LARGE"/>
+<textsize name="huge" value="\huge"/>
+<textsize name="Huge" value="\Huge"/>
+<textsize name="footnote" value="\footnotesize"/>
+<textstyle name="center" begin="\begin{center}" end="\end{center}"/>
+<textstyle name="itemize" begin="\begin{itemize}" end="\end{itemize}"/>
+<textstyle name="item" begin="\begin{itemize}\item{}" end="\end{itemize}"/>
+<gridsize name="4 pts" value="4"/>
+<gridsize name="8 pts (~3 mm)" value="8"/>
+<gridsize name="16 pts (~6 mm)" value="16"/>
+<gridsize name="32 pts (~12 mm)" value="32"/>
+<gridsize name="10 pts (~3.5 mm)" value="10"/>
+<gridsize name="20 pts (~7 mm)" value="20"/>
+<gridsize name="14 pts (~5 mm)" value="14"/>
+<gridsize name="28 pts (~10 mm)" value="28"/>
+<gridsize name="56 pts (~20 mm)" value="56"/>
+<anglesize name="90 deg" value="90"/>
+<anglesize name="60 deg" value="60"/>
+<anglesize name="45 deg" value="45"/>
+<anglesize name="30 deg" value="30"/>
+<anglesize name="22.5 deg" value="22.5"/>
+<opacity name="10%" value="0.1"/>
+<opacity name="30%" value="0.3"/>
+<opacity name="50%" value="0.5"/>
+<opacity name="75%" value="0.75"/>
+<tiling name="falling" angle="-60" step="4" width="1"/>
+<tiling name="rising" angle="30" step="4" width="1"/>
+</ipestyle>
+<page>
+<layer name="alpha"/>
+<view layers="alpha" active="alpha"/>
+<path layer="alpha" stroke="black" pen="heavier" arrow="ptarc/normal">
+128 496 m
+128 704 l
+</path>
+<path matrix="0.805556 0 0 1 21.7778 0" stroke="black" pen="fat" arrow="ptarc/normal">
+112 512 m
+400 512 l
+</path>
+<text transformations="translations" pos="128 712" stroke="black" type="label" width="7.364" height="6.176" depth="2.79" valign="baseline" size="Large" style="math">y</text>
+<text matrix="1 0 0 1 -59.982 0" transformations="translations" pos="408 512" stroke="black" type="label" width="7.982" height="6.177" depth="0" valign="baseline" size="Large" style="math">x</text>
+<text matrix="1 0 0 1 -72.6467 -6.57142" transformations="translations" pos="304 568" stroke="black" type="label" width="4.954" height="6.918" depth="0" valign="baseline" style="math">\theta</text>
+<text matrix="1 0 0 1 -48 -3" transformations="translations" pos="332 572" stroke="black" type="label" width="30.386" height="6.919" depth="0.83" valign="baseline" style="math">\theta + \Delta \theta</text>
+<text matrix="1 0 0 1 -44 6" transformations="translations" pos="336 592" stroke="black" type="label" width="13.256" height="6.918" depth="0" valign="baseline" style="math">\Delta \theta</text>
+<text matrix="0.728703 0.684829 -0.684829 0.728703 452.094 -40.6393" transformations="rigid" pos="300 596" stroke="black" type="label" width="12.972" height="6.808" depth="0" valign="baseline" style="math">\Delta s</text>
+<text matrix="1 0 0 1 24.718 81.192" transformations="translations" pos="264 584" stroke="black" type="label" width="7.641" height="6.808" depth="0" valign="baseline" style="math">R</text>
+<path matrix="1 0 0 1 24 0" stroke="black">
+176 560 m
+300 560 l
+</path>
+<path matrix="2.5 0 0 1.5 -356 -308" stroke="black">
+272 656 m
+240 552 l
+240 552 l
+</path>
+<path matrix="1.36364 0 0 0.825 -72.7273 101.3" stroke="black">
+200 556 m
+288 604 l
+288 604 l
+</path>
+<path stroke="black" pen="fat">
+120 616 m
+144 640
+152 596
+164 568
+176 556
+200 560
+200 560 c
+</path>
+<path stroke="black" pen="fat">
+312 652 m
+324 688
+316 700
+316 700 c
+</path>
+<use name="mark/disk(sx)" pos="200 560" size="small" stroke="black"/>
+<use name="mark/disk(sx)" pos="312 652" size="small" stroke="black"/>
+<path stroke="black" pen="fat">
+200 560 m
+221.997 567.259
+240 576
+276 604
+306.368 641.618
+312 652
+312 652 c
+</path>
+<path stroke="black">
+279.111 560 m
+14.5981 0 0 14.5981 264.513 560 271.174 572.99 a
+</path>
+<path stroke="black">
+290.693 589.929 m
+13.7303 0 0 13.7303 277.654 585.626 283.92 597.843 a
+</path>
+<path stroke="black">
+221.399 560 m
+21.3987 0 0 21.3987 200 560 220.321 566.706 a
+</path>
+<path stroke="black" dash="dash dotted">
+42.0476 0 0 42.0476 274 670 e
+</path>
+<path stroke="black" dash="dash dotted">
+26.6833 0 0 26.6833 194 586 e
+</path>
+<use name="mark/disk(sx)" pos="194 586" size="small" stroke="black"/>
+<use name="mark/disk(sx)" pos="274 670" size="small" stroke="black"/>
+<path stroke="black">
+194 586 m
+200 560 l
+</path>
+<path stroke="black">
+274 670 m
+312 652 l
+</path>
+<path matrix="1 0 0 1.07692 0 -43.0769" stroke="black" dash="dashed">
+200 560 m
+200 508 l
+200 508 l
+</path>
+<path stroke="black" dash="dashed">
+312 652 m
+312 580 l
+</path>
+<path matrix="1 0 0 1 0 -4" stroke="black" dash="dashed">
+312 564 m
+312 508 l
+</path>
+<text transformations="translations" pos="196 496" stroke="black" type="label" width="5.694" height="4.289" depth="0" valign="baseline" style="math">x</text>
+<text matrix="1.47976 0 0 1 -158.686 0" transformations="translations" pos="308 496" stroke="black" type="label" width="31.867" height="6.808" depth="0.83" valign="baseline" style="math">x + \Delta x</text>
+</page>
+</ipe>