aboutsummaryrefslogtreecommitdiffstats
path: root/DigSig1.tex
blob: 2ca62076e4a2cf7022541b3d665d196dc1b436f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
% !TeX program = xelatex
% !TeX encoding = utf8
% !TeX root = DigSig1.tex
% vim: set ts=2 sw=2 et:

\documentclass[margin=small]{tex/hsrzf}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Packages

\usepackage{tex/hsrstud}
\usepackage{tex/docmacros}

%% Font configuration
\usepackage{fontspec}
% \usepackage{gfsbaskerville}
\setmainfont[Ligatures = TeX]{TeX Gyre Pagella}

%% Language configuration
\usepackage{polyglossia}
\setdefaultlanguage{english}

%% License configuration
\usepackage[
    type={CC},
    modifier={by-nc-sa},
    version={4.0},
]{doclicense}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Metadata

\course{Electrial Engineering}
\module{DigSig1}
\semester{Fall Semester 2021}

\authoremail{naoki.pross@ost.ch}
\author{\textsl{Naoki Pross} -- \texttt{\theauthoremail}}

\title{\texttt{\themodule} Lecture Notes}
\date{\thesemester}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Document

\begin{document}

\pagenumbering{roman}
\maketitle
\tableofcontents

\section*{License}
\doclicenseThis

\twocolumn
\setcounter{page}{1}
\pagenumbering{arabic}


\section{Probability and stochastics}

\subsection{Random variables}

A \emph{random variable} (RV) is a function \(x : \Omega \to \mathbb{R}\).
The \emph{distribution function} of a RV is a function \(F_x : \mathbb{R} \to [0,1]\) that is always monotonically increasing and given by
\[
  F_x(\alpha) = \Pr{x \leq \alpha}.
\]
The probability density function (PDF) is
\[
  f_x(\alpha) = \frac{dF_x}{d\alpha}.
\]
The \emph{expectation} of a RV is
\[
  \E{x} = \int_\mathbb{R} \alpha f_x(\alpha) \,d\alpha,
\]
and in the case of a discrete RV
\[
  \E{x} = \sum_k \alpha_k \Pr{x = \alpha_k}.
\]
In general it holds that
\[
  \E{g(x)} = \int_\mathbb{R} g(\alpha) f_x(\alpha) \,d\alpha,
\]
for example
\begin{align*}
  \E{x^2} &= \int_\mathbb{R} \alpha^2 f_x(\alpha) \,d\alpha \\
  \E{|x|} &= \int_\mathbb{R} |\alpha| f_x(\alpha) \,d\alpha \\
    &= \int_0^\infty \alpha \left[ f_x(\alpha) + f_x(-\alpha) \right] \,d\alpha
\end{align*}
The \emph{variance} of a RV is
\[
  \sigma^2 = \Var{x} = \E{(x - \E{x})^2} = \E{x^2} - \E{x}^2,
\]
where \(\sigma\) is called the \emph{standard deviation}.
The variance is sometimes also called the \emph{second moment} of a RV, the \emph{\(n\)-th moment} of a RV is \(\E{x^n}\).

\subsection{Jointly distributed RVs}

\section{Analog signals}

\paragraph{Notation} \(\Omega = 2\pi f\) is used for physical analog frequencies (in radians / second), whereas \(\omega\) is for digital frequencies (in radians / sample).

\paragraph{Transformations} Recall the three important operations for the analysis of analog signals.
\begin{flalign*}
  \textit{Fourier Transform} &&
  X(\Omega) &= \int_\mathbb{R} x(t) e^{j\Omega t} \,dt \\
  %
  \textit{Inverse Fourier Transform} &&
  x(t) &= \int_\mathbb{R} X(\Omega) e^{j\Omega t} \,\frac{d\Omega}{2\pi} \\
  %
  \textit{Laplace Transform} &&
  X(s) &= \int_\mathbb{R} x(t) e^{-st} \,dt
\end{flalign*}
The Laplace transform reduces to the Fourier transform under the substitution \(s = j\Omega\).

\paragraph{Linear Systems}
Recall that superposition holds.
Thus the system is characterized completely by the impulse response function \(h(t)\).
The output in the time domain \(y(t)\) is given by the convolution product
\[
  y(t) = h(t) * x(t) = \int_\mathbb{R} h(t - t') x(t') \,dt',
\]
and in the frequency domain \(Y(\Omega) = H(\Omega) X(\Omega)\), where \(H(\Omega)\) is the Fourier transform of \(h(t)\).

% Analog signals:
% TODO: FT of eigenfunctions e^{j\Omega_k t\}

\section{Sampling and reconstruction}

Sampling theorem: \(f_s = 2 f_\text{max}\) is called Nyquist rate. In other words you need at least 2 samples/cycle to reconstruct a signal.
%% TODO: ideal sampler
Nyquist intervals are bounded by Nyquist frequencies, i.e. \(\left[-f_s / 2, f_2 / 2\right]\)

Alias frequency \(f_a = f \pmod f_s\).

Anti-aliasing: analog LP prefilter cutoff \@ \(f_s/2\)

Processing: Upper limit on sampling frequency given by processing time \(T_\text{proc}\). Thus \(2f_\text{max} \leq f_s \leq f_\text{proc}\).




\end{document}