aboutsummaryrefslogtreecommitdiffstats
path: root/ElMag.tex
blob: 646fbb0918f36a5dfbf4875a3d88e3c43c45305f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
% !TeX program = xelatex
% !TeX encoding = utf8
% !TeX root = ElMag.tex
% vim: sw=2 ts=2 et:

%% TODO: publish to CTAN
\documentclass[margin=normal]{tex/hsrzf}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Packages

%% TODO: publish to CTAN
\usepackage{tex/hsrstud}

%% Language configuration
\usepackage{polyglossia}
\setdefaultlanguage{english}

%% License configuration
\usepackage[
    type={CC},
    modifier={by-nc-sa},
    version={4.0},
    lang={english},
]{doclicense}

%% Theorems
\usepackage{amsthm}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Metadata

\course{Electrical Engineering}
\module{ElMag}
\semester{Fall Semseter 2021}

\authoremail{naoki.pross@ost.ch}
\author{\textsl{Naoki Pross} -- \texttt{\theauthoremail}}

\title{\texttt{\themodule} Zusammenfassung}
\date{\thesemester}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros and settings

%% Theorems
\newtheoremstyle{elmagzf} % name of the style to be used
  {\topsep}
  {\topsep}
  {}
  {0pt}
  {\bfseries}
  {.}
  { }
  { }

\theoremstyle{elmagzf}
\newtheorem{theorem}{Theorem}
\newtheorem{method}{Method}
\newtheorem{application}{Application}
\newtheorem{definition}{Definition}
\newtheorem{remark}{Remark}
\newtheorem{note}{Note}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Document

\begin{document}

% use roman numberals for introductiory pages
\pagenumbering{roman}

\maketitle

% \begin{abstract}
% \end{abstract}

\tableofcontents

\section*{License}
\doclicenseThis

% actual content
\clearpage
\twocolumn
\setcounter{page}{1}
\pagenumbering{arabic}

\section{Vector Analysis Recap}

\subsection{Partial derivatives}

\begin{definition}[Partial derivative]
  A vector valued function \(f: \mathbb{R}^m\to\mathbb{R}\), with
  \(\vec{v}\in\mathbb{R}^m\), has a partial derivative with respect to \(v_i\)
  defined as
  \[
    \partial_{v_i} f(\vec{v})
      % = f_{v_i}(\vec{v})
      = \frac{\partial f}{\partial v_i}
      = \lim_{h\to 0} \frac{f(\vec{v} + h\uvec{e}_i) - f(\vec{v})}{h}
  \]
\end{definition}

\begin{theorem}[Integration of partial derivatives]
  Let \(f: \mathbb{R}^m\to\mathbb{R}\) be a partially differentiable function
  of many \(x_i\). When \(x_i\) is \emph{indipendent} with respect to all other
  \(x_j\) \((0 < j \leq m, j \neq i)\) then
  \[
    \int \partial_{x_i} f \,d x_i = f + C,
  \]
  where \(C\) is a function of \(x_1, \ldots, x_m\) but not of \(x_i\).
\end{theorem}

To illustrate the previous theorem, in a simpler case with \(f(x,y)\), we get
\[
  \int \partial_x f(x,y) \,dx = f(x, y) + C(y).
\]
Beware that this is valid only if \(x\) and \(y\) are indipendent.
If there is a relation \(x(y)\) or \(y(x)\) the above does not hold.

\subsection{Vector derivatives}

\begin{definition}[Gradient vector]
  The \emph{gradient} of a function \(f(\vec{x}), \vec{x}\in\mathbb{R}^m\) is a
  column vector containing the partial derivatives
  in each direction.
  \[
    \grad f (\vec{x}) = \sum_{i=1}^m \partial_{x_i} f(\vec{x}) \uvec{e}_i
      = \begin{pmatrix}
        \partial_{x_1} f(\vec{x}) \\
        \vdots \\
        \partial_{x_m} f(\vec{x}) \\
      \end{pmatrix}
  \]
\end{definition}

\begin{theorem}[Gradient in curvilinear coordinates]
  Let \(f: \mathbb{R}^3 \to \mathbb{R}\) be a scalar field. In cylindrical
  coordinates \((r,\phi,z)\)
  \[
    \grad f = \uvec{r}\,\partial_r f 
      + \uvec{\phi}\,\frac{1}{r}\partial_\phi f
      + \uvec{z}\,\partial_z f,
  \]
  and in spherical coordinates \((r,\theta,\phi)\)
  \[
    \grad f = \uvec{r}\,\partial_r f
      + \uvec{\theta}\,\frac{1}{r} \partial_\theta f
      + \uvec{\phi}\,\frac{1}{r \sin\theta} \partial_\phi f.
  \]
\end{theorem}

\begin{definition}[Divergence]
  Let \(\vec{F}: \mathbb{R}^m \to \mathbb{R}^m\) be a vector field.
  The divergence of \(\vec{F} = (F_{x_1},\ldots, F_{x_m})^t\) is
  \[
    \div\vec{F} = \sum_{i = 1}^m \partial_{x_i} F_{x_i} ,
  \]
  as suggested by the (ab)use of the dot product notation.
\end{definition}

\begin{theorem}[Divergence in curvilinear coordinates]
  Let \(\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3\) be a field. In cylindrical
  coordinates \((r,\phi,z)\)
  \[
    \div \vec{F} = \frac{1}{r} \partial_r (r F_r)
      + \frac{1}{r}\partial_\phi F_\phi
      + \partial_z F_z,
  \]
  and in spherical coordinates \((r,\theta,\phi)\)
  \begin{align*}
    \div \vec{F} = \frac{1}{r^2} \partial_r (r^2 F_r)
      & + \frac{1}{r \sin\theta} \partial_\theta (\sin\theta F_\theta) \\
      & + \frac{1}{r \sin\theta} \partial_\phi F_\phi
  \end{align*}
\end{theorem}

\begin{theorem}[Divergence theorem, Gauss's theorem]
  Because the flux on the boundary \(\partial V\) of a volume \(V\) contains
  information of the field inside of \(V\), it is possible relate the two with
  \[
    \int_V \div \vec{F} \,dv = \oint_{\partial V} \vec{F} \dotp d\vec{s} .
  \]
\end{theorem}

\begin{definition}[Curl]
  Let \(\vec{F}\) be a vector field. In 2 dimensions
  \[
    \curl \vec{F} = \left(\partial_x F_y - \partial_y F_x\right)\uvec{z}.
  \]
  And in 3D
  \[
    \curl \vec{F} = \begin{pmatrix}
      \partial_y F_z - \partial_z F_y \\
      \partial_z F_x - \partial_x F_z \\
      \partial_x F_y - \partial_y F_x
    \end{pmatrix}
    = \begin{vmatrix}
      \uvec{x} & \uvec{y} & \uvec{z} \\
      \partial_x & \partial_y & \partial_z \\
      F_x & F_y & F_z
    \end{vmatrix} .
  \]
\end{definition}

\begin{definition}[Curl in curvilinear coordinates]
  Let \(\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3\) be a field. In cylindrical
  coordinates \((r,\phi,z)\)
  \begin{align*}
    \curl \vec{F} =
      &\left(\frac{1}{r} \partial_\phi F_z - \partial_z F_\phi \right) \uvec{r} \\
      &+ \left(\partial_z F_r - \partial_r F_z \right) \uvec{\phi} \\
      &+ \frac{1}{r} \bigg[
        \partial_r (rF_\phi) - \partial_\phi F_r
        \bigg] \uvec{z},
  \end{align*}
  and in spherical coordinates \((r,\theta,\phi)\)
  \begin{align*}
      \curl \vec{F} =
        &\frac{1}{r \sin\theta} \bigg[
          \partial_\theta (\sin\theta F_\phi) - \partial_\phi F_\theta
        \bigg] \uvec{r} \\
        &+ \frac{1}{r} \bigg[
          \frac{1}{\sin\theta} \partial_\phi F_r - \partial_r (r F_\phi)
        \bigg] \uvec{\theta} \\
        &+ \frac{1}{r} \bigg[
          \partial_r (r F_\theta) - \partial_\theta F_r
        \bigg] \uvec{\phi} .
  \end{align*}
\end{definition}

\begin{theorem}[Stokes' theorem]
  \[
    \int_S \curl \vec{F} \dotp d\vec{s}
    = \oint_{\partial S} \vec{F} \dotp d\vec{r}
  \]
\end{theorem}

\subsection{Second vector derivatives}

\begin{definition}[Laplacian operator]
  A second vector derivative is so important that it has a special name.  For a
  scalar function \(f: \mathbb{R}^m \to \mathbb{R}\) the divergence of the
  gradient
  \[
    \laplacian f = \div (\grad f) = \sum_{i=1}^m \partial_{x_i}^2 f_{x_i}
  \]
  is called the \emph{Laplacian operator}.
\end{definition}

\begin{theorem}[Laplacian in curvilinear coordinates]
  Let \(f: \mathbb{R}^3 \to \mathbb{R}\) be a scalar field. In cylindrical
  coordinates \((r,\phi,z)\)
  \[
    \laplacian f = \frac{1}{r} \partial_r (r \partial_r f)
      + \frac{1}{r^2} \partial_\phi^2 f
      + \partial_z^2 f
  \]
  and in spherical coordinates \((r,\theta,\phi)\)
  \begin{align*}
    \laplacian f = 
      \frac{1}{r^2} \partial_r ( r^2 \partial_r f)
      & + \frac{1}{r^2\sin\theta} \partial_\theta (\sin\theta \partial_\theta f) \\
      & + \frac{1}{r^2 \sin^2 \theta} \partial_\phi^2 f.
  \end{align*}
\end{theorem}

\begin{definition}[Vector Laplacian]
  The Laplacian operator can be extended on a vector field \(\vec{F}\) to the 
  \emph{Laplacian vector} by applying the Laplacian to each component:
  \[
    \vlaplacian \vec{F} 
      = (\laplacian F_x)\uvec{x} 
      + (\laplacian F_y)\uvec{y} 
      + (\laplacian F_z)\uvec{z} .
  \]
  The vector Laplacian can also be defined as
  \[
    \vlaplacian \vec{F} = \grad (\div \vec{F}) - \curl (\curl \vec{F}).
  \]
\end{definition}

\begin{theorem}[Product rules and second derivatives]
  Let \(f,g\) be sufficiently differentiable scalar functions \(D
  \subseteq\mathbb{R}^m \to \mathbb{R}\) and \(\vec{A}, \vec{B}\) be
  sufficiently differentiable vector fields in \(\mathbb{R}^m\) (with \(m = 2\)
  or 3 for equations with the curl).
  \begin{itemize}
    \item Rules with the gradient
      \begin{align*}
        \grad (\div \vec{A}) &= \curl \curl \vec{A} + \vlaplacian \vec{A} \\
        \grad (f\cdot g) &= (\grad f)\cdot g + f\cdot \grad g \\
        \grad (\vec{A} \dotp \vec{B}) &= 
          (\vec{A} \dotp \grad) \vec{B}
          + (\vec{B} \dotp \grad) \vec{A} \\
          & + \vec{A} \crossp (\curl \vec{B})
          + \vec{B} \crossp (\curl \vec{A})
      \end{align*}
    \item Rules with the divergence
      \begin{align*}
        \div (\grad f) &= \laplacian f \\
        \div (\curl \vec{A}) &= 0 \\
        \div (f\cdot \vec{A}) &= (\grad f) \dotp \vec{A} + f\cdot (\div \vec{A}) \\
        \div (\vec{A}\crossp\vec{B}) &= (\curl \vec{A})\dotp \vec{B} 
          - \vec{A} \cdot (\curl\vec{B})
      \end{align*}
    \item Rules with the curl
      \begin{align*}
        \curl (\grad f) &= \vec{0} \\
        \curl (\curl \vec{A}) &= \grad (\div \vec{A}) - \vlaplacian \vec{A} \\
        \curl (\vlaplacian \vec{A}) &= \vlaplacian (\curl \vec{A}) \\
        \curl (f\cdot \vec{A}) &= (\grad f)\crossp \vec{A} + f\cdot \curl \vec{A} \\
        \curl (\vec{A}\crossp\vec{B}) &= 
          (\vec{B} \dotp \grad) \vec{A} - (\vec{A} \dotp \grad) \vec{B} \\
          &+ \vec{A} \dotp (\div \vec{B}) - \vec{B} \dotp (\div \vec{A})
      \end{align*}
  \end{itemize}
\end{theorem}

\section{Electrodynamics Recap}

\subsection{Maxwell's equations}

Maxwell's equations in matter in their integral form are
\begin{subequations}
  \begin{align}
    \oint_{\partial S} \vec{E} \dotp d\vec{l} &= -\frac{d}{dt} \int_S \vec{B} \dotp d\vec{s}, \\
    \oint_{\partial S} \vec{H} \dotp d\vec{l} &= \int_S \left(
      \vec{J} + \partial_t \vec{D}
    \right) \dotp d\vec{s}, \\
    \oint_{\partial V} \vec{D} \dotp d\vec{s} &= \int_V \rho \,dv, \\
    \oint_{\partial V} \vec{B} \dotp d\vec{s} &= 0.
  \end{align}
\end{subequations}
Where \(\vec{J}\) and \(\rho\) are the \emph{free current density} and
\emph{free charge density} respectively.

\subsection{Linear materials and boundary conditions}

Inside of so called isotropic linear materials fluxes and current
densities are proportional and parallel to the fields, i.e.
\begin{align*}
  \vec{D} &= \epsilon \vec{E}, & \vec{J} &= \sigma \vec{E}, & \vec{B} &= \mu \vec{H}.
\end{align*}

Where two materials meet the following boundary conditions must be satisfied:
\begin{align*}
  &\uvec{n} \dotp \vec{D}_1 = \uvec{n} \dotp \vec{D}_2 + \rho_s &
    &\uvec{n} \crossp \vec{E}_1 = \uvec{n} \crossp \vec{E}_2 \\
  &\uvec{n} \dotp \vec{J}_1 = \uvec{n} \dotp \vec{J}_2 - \partial_t \rho_s &
    &\uvec{n} \crossp \vec{H}_1 = \uvec{n} \crossp \vec{H}_2 + \vec{J}_s \\
  &\uvec{n} \dotp \vec{B}_1 = \uvec{n} \dotp \vec{B}_2 - \partial_t \rho_s &
    &\uvec{n} \crossp \vec{M}_1 = \uvec{n} \crossp \vec{M}_2 + \vec{J}_{s,m}
\end{align*}

\subsection{Potentials}

Because \(\vec{E}\) is often conservative (\(\curl \vec{E} = \vec{0}\)), and
\(\div \vec{B}\) is always zero, it is often useful to use \emph{potentials} to
describe these quantities instead. The electric scalar potential and magnetic
vector potentials are in their integral form:
\begin{align*}
  \varphi &= \int_\mathsf{A}^\mathsf{B} \vec{E} \dotp d\vec{l}, &
  \vec{A} &= \frac{\mu_0}{4\pi} \int_V \frac{\vec{J} dv}{R}
\end{align*}
With differential operators:
\begin{align*}
  \vec{E} &= - \grad \varphi, &
  \mu_0 \vec{J} &= - \vlaplacian \vec{A}.
\end{align*}
By taking the divergence on both sides of the equation with the electric field
we get \(\rho/\epsilon = - \laplacian \varphi\), which also contains the
Laplacian operator. We will study equations with of form in \S \ref{sec:poisson}.

% \subsection{Energy density}

\section{Boundary value problems}

\subsection{Steady-state flow analysis}
The equatation for the steady-state analysis is
\begin{equation}
  \laplacian \varphi = 0 \quad\text{for}\quad \vec{r} \in \Omega,
\end{equation}
with its boundary conditions:
\(
  \varphi = 0 \text{ for } \vec{r}\in\Gamma_e,
  \varphi = U \text{ for } \vec{r}\in\Gamma_b,
  \nabla_\uvec{n} \varphi = 0 \text{ for } \vec{r}\in\Gamma_s.
\)

\subsection{Magnetostatic analysis}
The equation for the magnetostatic analysis is
\begin{equation}
  \vlaplacian \vec{A} = -\mu_0 \vec{J} \quad\text{for}\quad \vec{r} \in \Omega.
\end{equation}

\subsection{Magnetoquasistatic analysis}
The equation for the magnetoquasistatic analysis is
\begin{equation}
  \vlaplacian \vec{A} - \mu_0 \sigma \partial_t \vec{A}
    = -\mu_0 \vec{J}_q \quad\text{for}\quad \vec{r} \in \Omega.
\end{equation}

\subsection{Electrodynamic analysis}
The equationsfor the electrodynamic analysis are
\begin{subequations}
  \begin{gather}
    \vlaplacian \vec{E}
      - \mu \sigma \partial_t \vec{E}
      - \mu \epsilon \partial^2_t \vec{E} = \vec{0}, \\
    \vlaplacian \vec{H}
      - \mu \sigma \partial_t \vec{H}
      - \mu \epsilon \partial^2_t \vec{H} = \vec{0}.
  \end{gather}
\end{subequations}

\section{Laplace and Poisson's equations} \label{sec:poisson}

The so called \emph{Poisson's equation} has the form
\[
  \laplacian \varphi = - \frac{\rho}{\epsilon}.
\]
When the right side of the equation is zero, it is also known as \emph{Laplace's
equation}.

\subsection{Easy solutions of Laplace and Poisson's equations}

\subsubsection{Geometry with zenithal and azimuthal symmetries (\"Ubung 2)}

Suppose we have a geometry where, using spherical coordinates, there is a
symmetry such that the solution does not depend on \(\phi\) or \(\theta\).
Then Laplace's equation reduces down to
\[
  \laplacian \varphi = \frac{1}{r^2} \partial_r ( r^2 \partial_r \varphi) = 0,
\]
which has solutions of the form
\[
  \varphi(r) = \frac{C_1}{r} + C_2.
\]

\subsection{Geometry with azimuthal and translational symmetry (\"Ubung 3)}

Suppose that when using cylindrical coordinates, the solution does not depend
on \(\phi\) or \(z\). Then Laplace's equation becomes
\[
  \laplacian A_z = \frac{1}{r} \partial_r (r \partial_r A_z) = 0.
\]

\end{document}