aboutsummaryrefslogtreecommitdiffstats
path: root/komfour_zf.tex
blob: c1a08130bdd2180e042ab8f749dc4c6ff3ae5c85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
% !TeX program = xelatex
% !TeX encoding = utf8
% !TeX root = komfour_zf.tex

%% TODO: publish to CTAN
\documentclass[twocolumn, small]{tex/hsrzf}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Packages

%% TODO: publish to CTAN
\usepackage{tex/hsrstud}

%% Language configuration
\usepackage{polyglossia}
\setdefaultlanguage[variant=uk]{english}

%% Math
\usepackage{amsmath}
\usepackage{amsthm}

%% Layout
\usepackage{enumitem}


%% License configuration
\usepackage[
  type={CC},
  modifier={by-nc-sa},
  version={4.0},
  lang={english},
]{doclicense}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Metadata

\course{Elektrotechnik}
\module{KomFour}
\semester{Fr\"uhlingssemester 2020}

\authoremail{npross@hsr.ch}
\author{Naoki Pross -- \texttt{\theauthoremail}}

\title{\texttt{\themodule} Zusammenfassung}
\date{\thesemester}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros and settings

%% Equal by definition
\newcommand\defeq{\overset{\mathrm{def.}}{=}}

%% number sets
\newcommand\Nset{\mathbb{N}}
\newcommand\Rset{\mathbb{R}}
\newcommand\Cset{\mathbb{C}}

%% Complex operators
\DeclareMathOperator\cjs{cjs}
\newcommand\cjsl[1]{\cos #1 + j\sin #1}

\newcommand\ej[1]{e^{j#1}}

\newcommand\conj[1]{\overline{#1}}
\newcommand\len[1]{\lvert#1\rvert}

\renewcommand\Re{\operatorname{Re}}
\renewcommand\Im{\operatorname{Im}}

%% Theorems
\newtheoremstyle{komfourzf} % name of the style to be used
  {\topsep}
  {\topsep}
  {}
  {0pt}
  {\bfseries}
  {.}
  { }
  { }

\theoremstyle{komfourzf}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\newtheorem{lemma}{Lemma}

\setlist[description]{%
  align=right, labelwidth=2cm, leftmargin=!, %
  format={\normalfont\itshape}}

\setlist[itemize]{%
  align=right, labelwidth=5mm, leftmargin=!}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Document

\begin{document}

\section{Complex Numbers}

\begin{definition}[Complex Unit and Zero]
  \[
    j \defeq +\sqrt{-1} \iff j^2 = -1
  \]
  \[
    1 = (1,0) \quad 0 = (0,0) \quad j = (0,1)
  \]
\end{definition}

\begin{definition}[Negation and Sum] Let \(z, w \in \Cset\)
\[
  -z = (-z_1, -z_2) \quad
  z \oplus w =  (z_1 + w_1, z_2 + w_2)
\]
\end{definition}

\begin{lemma}
  The complex numbers form an additive group. Let \(z, w, v \in \Cset\), we have
  \begin{description}[leftmargin=3cm]
    \item[Identity] \(z + 0 = z\)
    \item[Commutativity] \(z + w = w + z\)
    \item[Associativity] \(z + (w + v) = (z + w) + v\)
    \item[Inverse property] \(z + (-z) = (-z) + z = 0\)
  \end{description}
\end{lemma}

\begin{definition}[Multiplication] Let \(z, w \in \Cset\)
  \[
    (a,b) \odot (c,d) = (ac - bd, ad + bc)
  \]
\end{definition}

\begin{lemma} The complex numbers form a commutative ring. Let \(z,w,v \in\Cset\)
  \begin{description}[leftmargin=3cm]
    \item[Identity] \(1\cdot z = z\)
    \item[Commutativity] \(z \cdot w = w \cdot z\)
    \item[Associativity] \(z (w v) = (z w) v\)
    \item[Distributivity] \(z (w + v) = zw + zv\)
  \end{description}
\end{lemma}

\begin{definition}[Real and imaginary part and conjugation]
  Let \(z = a + jb\). The \emph{real} part of \(z\) is \(\Re(z) = a\), similarly the \emph{imaginary} part is \(\Im(z) = b\). We can thus define the \emph{complex conjugate} \(\conj{z}\).
  \[
    z = \Re(z) + j\Im(z)
    \quad
    \conj{z} = \Re(z) - j\Im(z)
  \]
\end{definition}

\begin{definition}[Absolute value]
  If \(z = a + jb\) we define the \emph{abolute value} \(\len{z} = \sqrt{a^2 + b^2}\)
\end{definition}

\begin{lemma}[Properties of absolute value]
  Let \(z,w\in\Cset\). We have \(\len{z} \in\Rset^+_0\), \(z\conj{z} = \len{z}^2\) and as a consequence \(\len{zw} = \len{z}\cdot\len{w}\) and \(\len{\conj{z}} = \len{z}\). In additon we have the inequalities
  \begin{align*}
    -\len{z} \leq &\Re(z) \leq \len{z} &
    \len{z} &\leq \len{\Re(z)} + \len{\Im(z)} \\
    -\len{z} \leq &\Im(z) \leq \len{z} &
    \len{z + w} &\leq \len{z} + \len{w}
  \end{align*}
  The last one is the \emph{triangle inequality}.
\end{lemma}

\begin{definition}[Reciprocal and quotients]
  If \(z\) is a non-zero complex number we define the \emph{reciprocal} \(z^{-1}\) of \(z\) to be \(z^{-1} = \len{z}^{-2}\conj{z}\). If \(z = 0\) the reciprocal \(0^{-1}\) is left undefined.
  It is now possible to define \(z/w = zw^{-1}\) with \(z,w \in\Cset\) and \(w \neq 0\).
\end{definition}

\begin{lemma}[More properties of conjugation]
  Let \(z,w \in\Cset\).
  \(\conj{z} = z\) iff \(z \in \Rset\) and \(\conj{z} = \conj{w}\) iff \(z = w\).
  Furthermore:
  \begin{align*}
    \conj{\conj{z}} &= z &
    \conj{z \pm  w} &= \conj{z} \pm \conj{w} &
    \Re(z) &= (z + \conj{z})/2 \\
    \conj{z\cdot w} &= \conj{z}\cdot\conj{w} &
    \conj{z/w} &= \conj{z}/\conj{w} &
    \Im(z) &= (z - \conj{z})/2j
  \end{align*}
\end{lemma}

\begin{definition}[Polar notation]
  An alternative rapresentation of a complex number \(z = a + jb\) is its \emph{polar form} \(z = r \angle \phi\), where \(r = \len{z}\) and \(\phi = \arg{z} = r(\cos\phi + j\sin\phi)\).
  \begin{align*}
    a &= r\cos\phi &
    b &= r \sin\phi &
    r &= \sqrt{z\conj{z}}
  \end{align*}
  For \(a = 0\) we define \(\phi = \lim_{a\to 0} \arctan(b/a)\) and otherwise
  \begin{align*}
    \phi = \arg(z)
    &= \begin{cases}
      \arctan(b/a) & a > 0 \\
      \arctan(b/a) + \pi & a < 0
    \end{cases} \\
    &= \begin{cases}
      \arccos(a/r) & b \geq 0 \\
      -\arccos(b/r) & b < 0 \\
    \end{cases}
  \end{align*}
  Another variant of this notation is
  \[
    z = r\cjs\phi = r(\cos\phi + j\sin\phi)
  \]
\end{definition}

\begin{lemma}[Arithmetic in polar notation]
  Let \(z,w\in\Cset\) then the product \(zw\) has
  \[
    \len{zw} = \len{z}\cdot\len{w} \quad
    \arg(zw) = \arg z + \arg w
  \]
  Similarly the quotient \(z/w\) follows
  \[
    \len{z/w} = \len{z}/\len{w} \quad
    \arg(z/w) = \arg z - \arg w
  \]
\end{lemma}

\begin{theorem}[De Moivre's formula]
  Let \(n \in\Nset\)
  \[
    \left(\cos\phi + j\sin\phi\right)^n = \cos(n\phi) + j\sin(n\phi)
  \]
  As a consequence with the binomial formula
  \((a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^n\) we have
  \[
    \sin(n\phi) = 
  \]
\end{theorem}

\section{Complex valued functions}

\section{License}
\doclicenseThis

\end{document}
% vim: set et ts=2 sw=2 spelllang=us spell linebreak :