aboutsummaryrefslogtreecommitdiffstats
path: root/komfour_zf.tex
blob: 7d3786b00632a1da6a8696122027faf1cab321ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
% !TeX program = xelatex
% !TeX encoding = utf8
% !TeX root = komfour_zf.tex

%% TODO: publish to CTAN
\documentclass[twocolumn, margin=normal]{tex/hsrzf}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Packages

%% TODO: publish to CTAN
\usepackage{tex/hsrstud}

%% Language configuration
\usepackage{polyglossia}
\setdefaultlanguage[variant=uk]{english}

%% Math
\usepackage{amsmath}
\usepackage{amsthm}

%% Layout
\usepackage{enumitem}


%% License configuration
\usepackage[
  type={CC},
  modifier={by-nc-sa},
  version={4.0},
  lang={english},
]{doclicense}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Metadata

\course{Electrical Engineering}
\module{KomFour}
\semester{Spring Semester 2020}

\authoremail{npross@hsr.ch}
\author{Naoki Pross -- \texttt{\theauthoremail}}

\title{Cheat sheets for \texttt{\themodule}}
\date{\thesemester}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros and settings

%% Equal by definition
\newcommand\defeq{\overset{\mathrm{def.}}{=}}

%% number sets
\newcommand\Nset{\mathbb{N}}
\newcommand\Zset{\mathbb{Z}}
\newcommand\Qset{\mathbb{Q}}
\newcommand\Rset{\mathbb{R}}
\newcommand\Cset{\mathbb{C}}

%% Complex operators
\DeclareMathOperator\cjs{cjs}
\newcommand\cjsl[1]{\cos #1 + j\sin #1}

\newcommand\ej[1]{e^{j#1}}

\newcommand\conj[1]{\overline{#1}}
\newcommand\len[1]{\lvert#1\rvert}

\renewcommand\Re{\operatorname{Re}}
\renewcommand\Im{\operatorname{Im}}

%% Theorems
\newtheoremstyle{komfourzf} % name of the style to be used
  {\topsep}
  {\topsep}
  {}
  {0pt}
  {\bfseries}
  {.}
  { }
  { }

\theoremstyle{komfourzf}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\newtheorem{lemma}{Lemma}

\setlist[description]{%
  align=right, labelwidth=2cm, leftmargin=!, %
  format={\normalfont\itshape}}

\setlist[itemize]{%
  align=right, labelwidth=5mm, leftmargin=!}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Document

\begin{document}

\section{Complex Numbers}

\begin{definition}[Complex Unit and Zero]
  \[
    j \defeq +\sqrt{-1} \iff j^2 = -1
  \]
  \[
    1 = (1,0) \quad 0 = (0,0) \quad j = (0,1)
  \]
\end{definition}

\begin{definition}[Negation and Sum] Let \(z, w \in \Cset\)
\[
  -z = (-z_1, -z_2) \quad
  z \oplus w =  (z_1 + w_1, z_2 + w_2)
\]
\end{definition}

\begin{lemma}
  The complex numbers form an additive group. Let \(z, w, v \in \Cset\), we have
  \begin{description}[leftmargin=3cm]
    \item[Identity] \(z + 0 = z\)
    \item[Commutativity] \(z + w = w + z\)
    \item[Associativity] \(z + (w + v) = (z + w) + v\)
    \item[Inverse property] \(z + (-z) = (-z) + z = 0\)
  \end{description}
\end{lemma}

\begin{definition}[Multiplication] Let \(z, w \in \Cset\)
  \[
    (a,b) \odot (c,d) = (ac - bd, ad + bc)
  \]
\end{definition}

\begin{lemma} The complex numbers form a commutative ring. Let \(z,w,v \in\Cset\)
  \begin{description}[leftmargin=3cm]
    \item[Identity] \(1\cdot z = z\)
    \item[Commutativity] \(z \cdot w = w \cdot z\)
    \item[Associativity] \(z (w v) = (z w) v\)
    \item[Distributivity] \(z (w + v) = zw + zv\)
  \end{description}
\end{lemma}

\begin{definition}[Real and imaginary part and conjugation]
  Let \(z = a + jb\). The \emph{real} part of \(z\) is \(\Re(z) = a\), similarly the \emph{imaginary} part is \(\Im(z) = b\). We can thus define the \emph{complex conjugate} \(\conj{z}\).
  \[
    z = \Re(z) + j\Im(z)
    \quad
    \conj{z} = \Re(z) - j\Im(z)
  \]
\end{definition}

\begin{definition}[Absolute value]
  If \(z = a + jb\) we define the \emph{absolute value} \(\len{z} = \sqrt{a^2 + b^2}\)
\end{definition}

\begin{lemma}[Properties of absolute value]
  Let \(z,w\in\Cset\). We have \(\len{z} \in\Rset^+_0\), \(z\conj{z} = \len{z}^2\) and as a consequence \(\len{zw} = \len{z}\cdot\len{w}\) and \(\len{\conj{z}} = \len{z}\). In addition we have the inequalities
  \begin{align*}
    -\len{z} \leq &\Re(z) \leq \len{z} &
    \len{z} &\leq \len{\Re(z)} + \len{\Im(z)} \\
    -\len{z} \leq &\Im(z) \leq \len{z} &
    \len{z + w} &\leq \len{z} + \len{w}
  \end{align*}
  The last one is the \emph{triangle inequality}.
\end{lemma}

\begin{definition}[Reciprocal and quotients]
  If \(z\) is a non-zero complex number we define the \emph{reciprocal} \(z^{-1}\) of \(z\) to be \(z^{-1} = \len{z}^{-2}\conj{z}\). If \(z = 0\) the reciprocal \(0^{-1}\) is left undefined.
  It is now possible to define \(z/w = zw^{-1}\) with \(z,w \in\Cset\) and \(w \neq 0\).
\end{definition}

\begin{lemma}[More properties of conjugation]
  Let \(z,w \in\Cset\).
  \(\conj{z} = z\) iff \(z \in \Rset\) and \(\conj{z} = \conj{w}\) iff \(z = w\).
  Furthermore:
  \begin{align*}
    \conj{\conj{z}} &= z &
    \conj{z \pm  w} &= \conj{z} \pm \conj{w} &
    \Re(z) &= (z + \conj{z})/2 \\
    \conj{z\cdot w} &= \conj{z}\cdot\conj{w} &
    \conj{z/w} &= \conj{z}/\conj{w} &
    \Im(z) &= (z - \conj{z})/2j
  \end{align*}
\end{lemma}

\begin{definition}[Polar notation]
  An alternative representation of a complex number \(z = a + jb\) is its \emph{polar form} \(z = r \angle \phi\), where \(r = \len{z}\) and \(\phi = \arg{z} = r(\cos\phi + j\sin\phi)\).
  \begin{align*}
    a &= r\cos\phi &
    b &= r \sin\phi &
    r &= \sqrt{z\conj{z}}
  \end{align*}
  For \(a = 0\) we define \(\phi = \lim_{a\to 0} \arctan(b/a)\) and otherwise
  \begin{align*}
    \phi = \arg(z)
    &= \begin{cases}
      \arctan(b/a) & a > 0 \\
      \arctan(b/a) + \pi & a < 0
    \end{cases} \\
    &= \begin{cases}
      \arccos(a/r) & b \geq 0 \\
      -\arccos(b/r) & b < 0 \\
    \end{cases}
  \end{align*}
  Another variant of this notation is
  \[
    z = r\cjs\phi = r(\cos\phi + j\sin\phi)
  \]
\end{definition}

\begin{lemma}[Arithmetic in polar notation]
  Let \(z,w\in\Cset\) then the product \(zw\) has
  \[
    \len{zw} = \len{z}\cdot\len{w} \quad
    \arg(zw) = \arg z + \arg w
  \]
  Similarly the quotient \(z/w\) follows
  \[
    \len{z/w} = \len{z}/\len{w} \quad
    \arg(z/w) = \arg z - \arg w
  \]
  Lastly from the product we see that for \(k \in \Nset\)
  \[
    \len{z^k} = \len{z}^k \quad
    \arg{z^k} = k \arg{z}
  \]
\end{lemma}

\begin{theorem}[De Moivre's formula]
  Let \(n \in\Nset\)
  \[
    \left(\cos\phi + j\sin\phi\right)^n = \cos(n\phi) + j\sin(n\phi)
  \]
  As a consequence with the binomial formula
  \((a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^n\), recalling that \(\binom{n}{k} = n!/(k!(n-k)!)\) (Pascal's triangle), we have
  \begin{align*}
    \sin(nx)&=\sum _{k=0}^{n}{\binom {n}{k}}(\cos x)^{k}\,(\sin x)^{n-k}\,\sin {\frac {(n-k)\pi }{2}}\\
    \cos(nx)&=\sum _{k=0}^{n}{\binom {n}{k}}(\cos x)^{k}\,(\sin x)^{n-k}\,\cos {\frac {(n-k)\pi }{2}}
  \end{align*}
\end{theorem}

\section{Complex valued functions}

\begin{definition}[Function in \(\Cset\)]
  Let \(f: \mathbb{D} \to \mathbb{W}\) with both \(\mathbb{D}, \mathbb{W} \subseteq \Cset\) 
  that maps \(z = (a + jb) \mapsto w = (u + jv)\),
  then \(u = \Re f(z)\) and \(v = \Im f(z)\).
  If \(f\) is a bijection with inverse \(f^{-1}\), then \(a = \Re f^{-1}(w), b = \Im f^{-1}(w)\).
\end{definition}

\begin{definition}[Differentiation in \(\Cset\)]
  Let \(f\) be a function of \(z\) and \(h \in \Cset\). We have the limit
  \[
    \lim_{\len{h} \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = f'(z_0)
  \]
  to define the \emph{derivative} of \(f\) at the point \(z_0\).
\end{definition}

\begin{lemma}[Local dilation and rotation]
  Let \(f\) be a differentiable function in \(\Cset\).
  If \(f'(z) \neq 0\) everywhere, then \(f\) is a conformal map (i.e. preserves angles) with local dilation of \(\len{f'(z)}\) and rotation of \(\arg f'(z)\)
\end{lemma}

\begin{definition}[Linear function]

\end{definition}

\begin{definition}[Monomial and \(n\)-th root]
  Let \(w = z^n\) be a monomial of degree \(n\in\Nset\). Using the polar notation we see that
  \((r\angle \phi)^n = r^n \angle (n\phi)\). Because \(r\angle\phi = r\angle(\phi+2\pi)\) there cannot be a bijection between \(w\) and \(z\), if we want to define an inverse function \(z = \sqrt[n]{w}\) we get many values with the form
  \[
    z_k = \sqrt[n]{r}\angle(\phi + k2\pi)/n \qquad 0 \leq k < n
  \]
  This fact implies that in general for \(z,u \in\Cset\) \(\sqrt[n]{zu} \neq \sqrt[n]{z}\sqrt[n]{u}\), as the relationship holds only for \emph{some} values of \(\sqrt[n]{z} \text{ and } \sqrt[n]{u}\).
\end{definition}

\begin{theorem}[Roots of a polynomial]
  Every complex polynomial of degree \(n\) has always \(n\) roots in \(\Cset\).
\end{theorem}

\begin{theorem}
  Every complex polynomial of degree \(n\) with coefficients can be \emph{uniquely} rewritten in term of its roots.
  \[
    P(z) = \sum_{k=0}^n a_k z^k = a_n \prod_{k=0}^{n} (z - z_k)
  \]
\end{theorem}

\begin{theorem}[Polynomal with real coefficients]
  The roots of a polynomial with real coefficients of degree \(n\), always come in conjugate complex pairs of \(r\) and \(\conj{r}\). That is because
  \[
    (z - r)(z - \conj{r}) = z^2 - 2\Re(r)z + \len{z}^2
  \]
\end{theorem}

\begin{lemma}
  From the previous theorem follows that a polynomial of \emph{odd} degree, has always at least one real solution because \(r \in\Rset \iff r = \conj{r}\).
\end{lemma}

\begin{theorem}
  All roots of a polynomial \(p(z) = \sum_{k=0}^n a_k z^k\) are inside of the open disk centered at the origin of radius \(\sum_{k=0}^n \len{a_k / a_n}\).
\end{theorem}

\begin{theorem}[Cardano's cubic formula]
  % TODO
\end{theorem}

\begin{definition}[Exponential]
  If \(z\) is a complex number we define the exponential function \(e^z\) by its convergent power series
  \[
    e^z = \sum_{n=0}^\infty \frac{z^n}{n!}
  \]
\end{definition}

\begin{theorem}[Euler's formula]
  By setting the argument of the exponential function to \(jt\) for some \(t \in\Rset\) we can reorder the power series to be a sum of the power series of \(j\sin\) and \(\cos\), and thus define
  \[
    e^{jt} = \cos t + j\sin t = \cjs t = 1\angle t
  \]
\end{theorem}

\begin{lemma} Let \(a,b \in\Cset\) and \(k\in\Zset\)
  \[
    e^a e^b = e^{a+b} \quad
    e^a / e^b = e^{a-b} \quad
    \left(e^a \right)^k = e^{ak}
  \]
\end{lemma}

\begin{definition}[Trigonometric functions]
\end{definition}

\begin{definition}[Logarithm]
  Because \(w = e^z\) defined from \(\Cset \to \Cset\) is not a bijection (\(e^{z + 2\pi j} = e^z\)), unless we restrict the imaginary part of the domain to \((\pi, \pi]\), we get only an equivalence relationship because
  \[
    \ln\left[\len{w} e^{j(\phi + k2\pi)}\right] = \ln\len{w} + j(\phi + k2\pi)
  \]
  where \(k \in\Zset\). Similarly for \(z,w\in\Cset\)
  \begin{align*}
    \ln(w) &\equiv z &\pmod{2\pi j} \\
    \ln(w^k) &\equiv k\ln(w) &\pmod{2\pi j} \\
    \ln(zw) &\equiv \ln(z) + \ln(w) &\pmod{2\pi j} \\
    \ln(z/w) &\equiv \ln(z) - \ln(w) &\pmod{2\pi j}
  \end{align*}
\end{definition}

\begin{lemma}[General exponentiation]
  So far we have only exponentiation for an exponent \(k\in\Zset\), by adding \(m \in\Nset\) we can define the quotient \(k/m \in\Qset\) that together with \(z\in\Cset\) gives
  \begin{align*}
    z^{k/m} &= e^{\ln(z) k/m} \\
    &= \exp\big((\ln\len{z} + j(\arg z + 2\pi n)) k/m\big) \\
    &= \exp\big(\ln\len{z}\cdot k/m)\exp((\arg z + 2\pi n)jk/m\big) \\
    &= \len{z}^{k/m}\exp\big((\arg z + 2\pi n)jk/m\big)= \sqrt[m]{z^k}
  \end{align*}
  like in the reals, except that we have \(m\) values instead of 1 or 2. If we let \(w \in\Cset\) the expression \(z^w\) cannot be equal to an unique value because
  \begin{align*}
    z^w = e^{w \ln z} &= \exp\big( w (\ln\len{z} + j \arg{z} + 2\pi nj)\big) \\
    &= e^{w(\ln\len{z} + j\arg z)} e^{w2\pi nj}
  \end{align*}
  instead it is said to be \emph{multivalued}.
\end{lemma}

\section{Fourier Series}

\section{Fourier Transform}

\section{License}
\doclicenseThis

\end{document}
% vim: set et ts=2 sw=2 spelllang=en spell linebreak :