aboutsummaryrefslogtreecommitdiffstats
path: root/tex/lti.tex
diff options
context:
space:
mode:
Diffstat (limited to 'tex/lti.tex')
-rw-r--r--tex/lti.tex89
1 files changed, 89 insertions, 0 deletions
diff --git a/tex/lti.tex b/tex/lti.tex
new file mode 100644
index 0000000..b01a31f
--- /dev/null
+++ b/tex/lti.tex
@@ -0,0 +1,89 @@
+\section{LTI systems}
+
+\subsection{Properties}
+Let \(\mathcal{S}\) denote a system.
+\begin{table}[H]
+ \begin{tabularx}{\linewidth}{p{.3\linewidth} X}
+ \toprule
+ \bfseries Property & \bfseries Meaning \\
+ \midrule
+ static \(\leftrightarrow\)\newline dynamic & Static means that it is memoryless (in the statistical sense), whereas dynamic has memory. Static systems depend only on the input \(u\), dynamic systems on \(du/dt\) or \(\int u\,dt\). \\
+ causal \(\leftrightarrow\)\newline acausal & Causal systems use only informations from the past, i.e. \(h(t < 0) = 0\). Real systems are always causal. \\
+ linear \(\leftrightarrow\)\newline nonlinear & The output of a linear system does not have new frequency that were not in the input. For linear system the superposition principle is valid: \(\mathcal{S}(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 \mathcal{S} x_1 + \alpha_2 \mathcal{S} x_2\). \\
+ time invariant \newline\(\leftrightarrow\) time variant & Time invariant systems do not depend on time, but for ex. only on time differences. \\
+ \midrule
+ SISO, MIMO & Single input single output, multiple input multiple output. \\
+ BIBO & Bounded input bounded output, i.e. there are some \(A\), \(B\) such that \(|x| < A\) and \(|y| < B\) for all \(t\), equivalently \(\int_\mathbb{R} |h|\,dt < \infty\).\\
+ \bottomrule
+ \end{tabularx}
+\end{table}
+
+\subsection{Impulse response}
+%% TODO: impulse response
+
+\subsection{Stability}
+Let \(\mathcal{S}\) be a system with impulse response \(h(t)\) and transfer function \(H(s)\).
+\begin{table}[H]
+ \centering
+ \begin{tabularx}{\linewidth}{lX}
+ \toprule
+ Stable & All poles are on the LHP\footnote{Left half plane, where \(\mathrm{Re}(s) < 0\).}. \\
+ Marginally stable & There are no poles in the RHP but a simple pole on the \(j\)-axis. \\
+ Instable & There are poles in the RHP or poles of hider order on the \(j\)-axis. \\
+ \bottomrule
+ \end{tabularx}
+\end{table}
+\subsection{Distortion}
+\subsection{Stochastic inputs}
+
+\iffalse
+\begin{figure}
+\begin{tikzpicture}[
+ system/.style = {draw, thick, inner sep = 4mm, outer sep = 1mm}
+ ]
+ \matrix[row sep=3mm, column sep=1cm] (M) {
+ \node (x) {\(x(t)\)}; &
+ \node (g) {\(g(t) = y_\delta (t)\)}; &
+ \node (y) {\(y(t) = g(t) * x(t)\)}; \\
+
+ &
+ \node (h) {\(h(t)\)}; &
+ \node (yw) {\(y_\omega(t) = h(t) * x(t)\)}; \\
+
+ \node (in) {Input}; &
+ \node[system, fill=white] (sys) {LTI-System \(\mathcal{S}\)}; &
+ \node (out) {Response}; \\
+
+ \node (X) {\(X(s)\)}; &
+ \node (G) {\(G(s) = 1/p(s)\)}; &
+ \node (Y) {\(Y(s) = G(s) \cdot X(s)\)}; \\
+
+ \node (Xw) {\(X(\omega)\)}; &
+ \node (H) {\(H(\omega) = G(j\omega)\)}; &
+ \node (Yw) {\(Y_\omega (\omega) = H(\omega) \cdot X(\omega)\)}; \\
+ };
+
+ \draw[thick, ->] (in) to (sys);
+ \draw[thick, ->] (sys) to (out);
+
+ \begin{pgfonlayer}{background}
+ \coordinate (T1) at ($(x.north west) - (.8,-.1)$);
+ \coordinate (T2) at ($(yw.south east) + (.8,-.1)$);
+
+ \coordinate (B1) at ($(X.north west) - (0,-.1)$);
+ \coordinate (B2) at ($(Y.south east) + (0,-.1)$);
+
+ \coordinate (F1) at ($(Xw.north west) - (0,-.1)$);
+ \coordinate (F2) at ($(Yw.south east) + (0,-.1)$);
+
+ \fill[color=blue!20] (T1) rectangle (T2);
+ \fill[color=magenta!20] (B1 -| T1) rectangle (B2 -| T2);
+ \fill[color=red!20] (F1 -| T1) rectangle (F2 -| T2);
+ % \fill[top color=blue!20, bottom color=magenta!20]
+ % (T1) rectangle (B2);
+ \end{pgfonlayer}
+\end{tikzpicture}
+\end{figure}
+\fi
+
+