aboutsummaryrefslogtreecommitdiffstats
path: root/tex/lti.tex
blob: 2e1819a7279c881ec043948a9fd39084e5467acd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
\section{LTI systems}

\subsection{Properties}
Let \(\mathcal{S}\) denote a system.
\begin{table}[H]
  \begin{tabularx}{\linewidth}{p{.3\linewidth} X}
    \toprule
    \bfseries Property & \bfseries Meaning \\
    \midrule
    static \(\leftrightarrow\)\newline dynamic & Static means that it is memoryless (in the statistical sense), whereas dynamic has memory. Static systems depend only on the input \(u\), dynamic systems on \(du/dt\) or \(\int u\,dt\). \\
    causal \(\leftrightarrow\)\newline acausal & Causal systems use only informations from the past, i.e. \(h(t < 0) = 0\). Real systems are always causal. \\
    linear \(\leftrightarrow\)\newline nonlinear & The output of a linear system does not have new frequency that were not in the input. For linear system the superposition principle is valid: \(\mathcal{S}(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 \mathcal{S} x_1 + \alpha_2 \mathcal{S} x_2\). \\
    time invariant \newline\(\leftrightarrow\) time variant & Time invariant systems do not depend on time, but for ex. only on time differences. \\
    \midrule
    SISO, MIMO & Single input single output, multiple input multiple output. \\
    BIBO & Bounded input bounded output, i.e. there are some \(A\), \(B\) such that \(|x| < A\) and \(|y| < B\) for all \(t\), equivalently \(\int_\mathbb{R} |h|\,dt < \infty\).\\
    \bottomrule
  \end{tabularx}
\end{table}

\subsection{Time domain description}
A general LTI system with input \(x\) and output \(y\) is described in the time domain with a linear differential equation of the form
\[
  \sum_{i=0}^n a_i y^{(i)} = \sum_{k=0}^m b_k x^{(k)}.
\]

\subsection{Impulse response}
%% TODO: Impulse response

\subsection{Transfer function}
By taking the Laplace transform of the differential equation of the system a and assuming all initial conditions to be zero, we obtain
\[
  Y \sum_{i=0}^n a_i s^i = X \sum_{k=0}^m b_k s^k,
\]
where \(Y\) and \(X\) are the Laplace transform of \(y\) and \(x\) respectively. We then define the \emph{transfer function} to be the ratio \(H = Y/X\), or
\[
  H(s) = \frac{\displaystyle\sum_{k=0}^m b_k s^k}{\displaystyle\sum_{i=0}^n a_i s^i}
    = \frac{\displaystyle\prod_{k=0}^m s - z_k}{\displaystyle\prod_{i=0}^n s - p_i},
\]
since polynomials can be expressed in terms of their roots. We say the roots of \(Y\) are \emph{zeroes} and those of \(X\) \emph{poles}, because of how they appear in the complex plane of \(H\).

\subsection{Frequency response}
%% TODO: Frequency response

\subsection{Stability}
%% TODO: Hurwitz

Let \(\mathcal{S}\) be a system with impulse response \(h(t)\) and transfer function \(H(s)\).
\begin{table}[H]
  \centering
  \begin{tabularx}{\linewidth}{lX}
    \toprule
    Stable & All poles are on the LHP\footnote{Left half plane, where \(\mathrm{Re}(s) < 0\).}. \\
    Marginally stable & There are no poles in the RHP but a simple pole on the \(j\)-axis. \\
    Instable & There are poles in the RHP or poles of hider order on the \(j\)-axis. \\
    \bottomrule
  \end{tabularx}
\end{table}

\subsection{Distortion}

For a periodic signal the Fourier transform is a bunch of weighted Dirac deltas (or a Fourier series), i.e.
\[
  \fourier\{f\} = \sum_i d_i \delta(\omega - \omega_i).
\]
The spectrum of a sinusoidal signal of frequency \(\omega_1\) is only one weighted delta \(d_1\delta(\omega - \omega_1)\). When a system introduces a \emph{nonlinear} distortion, with a clean sine input new higher harmonics are found in the output.

To measure the distortion of a signal in the English literature there is the \emph{total harmonic distortion} (THD) defined as
\[
  \text{THD} = \frac{1}{d_1}\sqrt{\sum_{i=2}^n d_i^2}.
\]
In the German literature there is the distortion factor (\emph{Klirrfaktor}, always between 0 and 1)
\[
	k = \sqrt{\frac{d^2_2 + d^2_3 + \cdots + d^2_n}{d^2_1 + d^2_2 + \cdots + d^2_n}}.
\]
Both are usually given in percent (\%) and are related with
\[
  (\text{THD})^2 = \frac{k^2}{1-k^2},
\]
thus THD \(\geq k\).

\subsection{Stochastic inputs}


\iffalse
\begin{figure}
\begin{tikzpicture}[
    system/.style = {draw, thick, inner sep = 4mm, outer sep = 1mm}
  ]
  \matrix[row sep=3mm, column sep=1cm] (M) {
    \node (x) {\(x(t)\)}; &
    \node (g) {\(g(t) = y_\delta (t)\)}; &
    \node (y) {\(y(t) = g(t) * x(t)\)}; \\

    &
    \node (h) {\(h(t)\)}; &
    \node (yw) {\(y_\omega(t) = h(t) * x(t)\)}; \\

    \node (in) {Input}; &
    \node[system, fill=white] (sys) {LTI-System \(\mathcal{S}\)}; &
    \node (out) {Response}; \\

    \node (X) {\(X(s)\)}; &
    \node (G) {\(G(s) = 1/p(s)\)}; &
    \node (Y) {\(Y(s) = G(s) \cdot X(s)\)}; \\

    \node (Xw) {\(X(\omega)\)}; &
    \node (H)  {\(H(\omega) = G(j\omega)\)}; &
    \node (Yw) {\(Y_\omega (\omega) = H(\omega) \cdot X(\omega)\)}; \\
  };

  \draw[thick, ->] (in) to (sys);
  \draw[thick, ->] (sys) to (out);

  \begin{pgfonlayer}{background}
    \coordinate (T1) at ($(x.north west) - (.8,-.1)$);
    \coordinate (T2) at ($(yw.south east) + (.8,-.1)$);

    \coordinate (B1) at ($(X.north west) - (0,-.1)$);
    \coordinate (B2) at ($(Y.south east) + (0,-.1)$);

    \coordinate (F1) at ($(Xw.north west) - (0,-.1)$);
    \coordinate (F2) at ($(Yw.south east) + (0,-.1)$);

    \fill[color=blue!20] (T1) rectangle (T2);
    \fill[color=magenta!20] (B1 -| T1) rectangle (B2 -| T2);
    \fill[color=red!20] (F1 -| T1) rectangle (F2 -| T2);
    % \fill[top color=blue!20, bottom color=magenta!20]
      % (T1) rectangle (B2);
  \end{pgfonlayer}
\end{tikzpicture}
\end{figure}
\fi