summaryrefslogtreecommitdiffstats
path: root/WrStat.tex
diff options
context:
space:
mode:
Diffstat (limited to 'WrStat.tex')
-rw-r--r--WrStat.tex435
1 files changed, 435 insertions, 0 deletions
diff --git a/WrStat.tex b/WrStat.tex
new file mode 100644
index 0000000..fe4efa6
--- /dev/null
+++ b/WrStat.tex
@@ -0,0 +1,435 @@
+\documentclass[a4paper]{article}
+
+%
+% Packages
+%
+
+%% styling for this document
+\usepackage{tex/docstyle}
+
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{dsfont}
+
+\usepackage{graphicx}
+
+\usepackage{tabularx}
+\usepackage{multirow}
+\usepackage{multicol}
+\usepackage{booktabs}
+\usepackage{colortbl}
+\usepackage{array}
+
+\usepackage{enumitem}
+\usepackage{parskip}
+
+\usepackage{polyglossia}
+\setmainlanguage[variant=swiss]{german}
+
+
+%
+% Metadata
+%
+
+\title{}
+\author{
+ Naoki Pross%\footnote{University of Applied Sciences of Eastern Switzerland}
+}
+\date{}
+
+%
+% Document
+%
+
+
+\renewcommand{\P}[1]{\mathrm{P}(#1)}
+\newcommand{\given}{\,|\,}
+\newcommand{\E}[1]{\mathrm{E}(#1)}
+\newcommand{\Var}[1]{\mathrm{Var}(#1)}
+\newcommand{\Cov}[1]{\mathrm{Cov}(#1)}
+\DeclareMathOperator{\med}{\mathrm{med}}
+
+\begin{document}
+
+{\bfseries \huge \noindent
+ Formelblatt --- Wahrscheinlichkeit und Statistik
+}
+
+\vspace{5mm}
+
+\renewcommand{\arraystretch}{2}
+
+\aboverulesep=0pt
+\belowrulesep=0pt
+
+\rowcolors{3}{lightgray!20}{white}
+
+\noindent
+\begin{tabularx}{\linewidth}{%
+ | >{\columncolor{black}\cellcolor{black}}p{3mm} m{10.5cm} X |
+ }
+ \hline
+ & \textbf{Produktregel} \newline \(k\) Positionen m\"ussen unabh\"angig von einadner markiert werden, wobai \(n_i\) verschiedene Markierungen zur Verf\"ugung stehen.
+ & \(\displaystyle n_1 n_2\cdots n_k = \prod_{i=1}^k n_i \)
+ \\
+
+ & \textbf{Permutation} \newline Auf wie viele Arten lassen sich \(n\) verschiedene Objekte anordnen?
+ & \(\displaystyle P_n = n(n-1)(n-2)\cdots1 = n! \)
+ \\
+
+ & \textbf{Kombination} \newline Auf wie vielen Arten kann man \(k\) aus \(n\) verschiedenen Objekte ausw\"ahlen?
+ & \(\displaystyle C_n^k = {n \choose k} = \frac{n!}{k!(n-k)!}\)
+ \\
+
+ \multirow{-7}{*}{\centering
+ \rotatebox[origin = c]{90}{
+ \textcolor{white}{\bfseries Kombinatorik}
+ }
+ }
+ & \textbf{Variation} \newline Auf wie viele Arten kann man \(k\) mal unter \(n\) verschiedenen Objekten ausw\"ahlen?
+ & \(\displaystyle V_{n,k} = n^k \)
+ \\
+ \hline
+\end{tabularx}
+
+\vspace{3mm}
+
+\noindent
+\begin{tabularx}{\linewidth}{%
+ | >{\cellcolor{black}}p{3mm} m{5cm} X |
+ }
+
+ \hline
+
+ & \textbf{Ereignis}
+ &
+ \(
+ \Omega = (\text{sicheres Ereignis}) \quad
+ \emptyset = (\text{unm\"ogliches Ereignis}) \quad
+ A,B \subseteq \Omega
+ \)
+ \newline
+ \(
+ A \cap B = (A \text{ und } B) \quad
+ A \cup B = (A \text{ oder } B) \quad
+ \bar{A} = \Omega \setminus A = (\text{nicht } A)
+ \)
+ \\[5pt]
+
+ & \textbf{Wahrscheinlichkeit}
+ & \(\displaystyle
+ \mathrm{P}: \Omega \to [0;1] \quad
+ \P{\emptyset} = 0 \quad
+ \P{\Omega} = 1 \quad
+ \P{\bar{A}} = 1 - \P{A}
+ \) \newline
+ \(A\) und \(B\) unabh\"angig \(\iff \P{A \cap B} = \P{A}\cdot\P{B}\)
+ \\[5pt]
+
+ & \textbf{Bedingte Wahrscheinlichkeit} \newline Wahrscheinlichkeit von \(A\) wenn \(B\) bereits eingetreten ist
+ & \(\displaystyle
+ \P{A \given B} = \frac{\P{A \cap B}}{\P{B}}
+ \stackrel{\text{\footnotesize unabh.}}{=} \P{A} \qquad
+ \P{\bar{A} \given B} = 1 - \P{A \given B}
+ \)
+ \\[5pt]
+
+ & \textbf{Totale Wahrscheinlichkeit}
+ & \(\displaystyle
+ \P{A} = \sum_i \P{A \given B_i} \qquad
+ A \subset \bigcup_i B_i
+ \)
+ \\[8pt]
+
+ & \textbf{Satz von Bayes}
+ & \(
+ \P{A \given B} \cdot \P{B} = \P{B \given A} \cdot \P{A} = \P{A \cap B}
+ \)
+ \\[5pt]
+
+ %% TODO: fix this dimexpr
+ & \multicolumn{2}{p{\dimexpr\linewidth-12mm} | }{
+ \textbf{Experimente} \newline
+ In einem Laplace Experiment haben alle Elementarereignisse die gleiche Wahrscheinlichkeit. In einem Bernoulli Experiment es gibt nur 2 Ereignisse \(A\) und \(\bar{A}\) mit Wahrscheinlichkeiten \(p\) und \(1-p\).
+ }
+ \\[5pt]
+
+ & \textbf{Zufallsvariable}
+ & \(
+ X : \Omega \to U \subseteq \mathbb{R} \quad
+ \text{Ereignisse} \subset \Omega \,\text{ wie }\, \{ X = k \}, \{ X \leq x \}, \{ X > x \}
+ \)
+ \\[5pt]
+
+ & \textbf{Erwartungswert}
+ & \(\displaystyle
+ \E{X} = \sum_{x \in U} x\cdot \P{X = x} \qquad
+ \E{X + Y} = \E{X} + \E{Y}
+ \)
+ \newline
+ \(
+ \E{\lambda X} = \lambda \E{X} \qquad
+ \E{XY} \stackrel{\text{\footnotesize unabh.}}{=} \E{X}\E{Y}
+ \)
+ \\[5pt]
+
+ & \textbf{Varianz} \newline Mass f\"ur Streuung der Werte % \newline Quadratische Abweichung
+ & \(\Var{X} = \E{(X - \E{X})^2} = \E{X^2} - \E{X}^2\) \newline
+ \(
+ \Var{\lambda X} = \lambda^2 \Var{X} \qquad
+ \Var{X + Y} \stackrel{\text{\footnotesize unabh.}}{=} \Var{X} + \Var{Y}
+ \)
+ \\[5pt]
+
+ & \textbf{Covarianz}
+ & \(\Cov{X,Y} = \E{XY} - \E{X}\E{Y} \stackrel{\text{\footnotesize unabh.}}{=} 0\)
+ \\[5pt]
+
+ \multirow{-21}{*}{\centering
+ \rotatebox[origin = c]{90}{
+ \textcolor{white}{\bfseries Wahrscheinlichkeit}
+ }
+ }
+ & \textbf{Satz von Tschebyscheff}
+ &
+ \\[5pt]
+ \hline
+\end{tabularx}
+
+\vspace{3mm}
+
+\noindent
+\begin{tabularx}{\linewidth}{%
+ | >{\cellcolor{black}}p{3mm} m{4.5cm} X |
+ }
+ \hline
+ & \textbf{Verteilungsfunktion}
+ &
+ ZV ist verteilt \(X \sim \mathcal{V}\) mit \(F : \mathbb{R} \to [0,1]\) monoton steigend \newline
+ \(
+ F(x) = \P{X \leq x} \qquad
+ F(x\to\infty) = 1\) \qquad
+ \(F(x\to-\infty) = 0
+ \)
+ \\[8pt]
+
+ & \textbf{Median}
+ & \(\displaystyle \med X = \inf \left\{ x : F(x) = 0.5 \right\} \)
+ \\[4pt]
+
+ & \textbf{Dichtefunktion}
+ & \(\displaystyle
+ \varphi(x) = \frac{dF}{dx} \qquad
+ \P{a \leq X \leq b} = \int_a^b \varphi \,dx \qquad
+ 1 = \int_\mathbb{R} \varphi \,dx
+ \)
+ \\[8pt]
+
+ & \textbf{Erwartungswert}
+ & \(\displaystyle
+ \E{X} = \int_\mathbb{R} x \varphi(x) \,dx \qquad
+ \E{X^n} = \int_\mathbb{R} x^n \varphi(x) \, dx
+ \)
+ \\[8pt]
+
+ & \textbf{Variablentransformation}
+ & \(\displaystyle
+ Y = g(X) \qquad
+ \varphi_Y = \frac{\varphi_X}{g'} \circ g^{-1}
+ \)
+ \\[8pt]
+
+ & \textbf{Standardisierung}
+ & \(\displaystyle
+ X \sim \mathcal{N}(\mu, \sigma) \qquad
+ Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0,1)
+ \)
+ \\[8pt]
+
+ \multirow{-9}{*}{\centering
+ \rotatebox[origin = c]{90}{
+ \textcolor{white}{\bfseries W'keitsverteliung}
+ }
+ }
+ & \textbf{Rechenregeln}
+ &
+ \\[8pt]
+ \hline
+\end{tabularx}
+
+\vspace{3mm}
+
+{
+\noindent
+\renewcommand{\arraystretch}{2.1}
+\begin{tabularx}{\linewidth}{%
+ | >{\cellcolor{black}}p{3mm} m{4.5cm} X c c c |
+ }
+
+ \hline
+ & \bfseries Name
+ & \(X \sim\)
+ & \(\varphi(x) \text{ oder } \P{X = k}\)
+ & \(\E{X}\)
+ & \(\Var{X}\)
+ \\[5pt]
+ \hline
+
+ & \textbf{Gleichverteilung} \newline Laplace Experimente
+ & \(\displaystyle \mathcal{U}(a,b)\)
+ & \(\displaystyle \frac{1}{b-a} \cdot \mathds{1}_{[a,b]} \)
+ & \(\displaystyle \frac{a + b}{2}\)
+ & \(\displaystyle \frac{(b - a)^2}{12} \)
+ \\[5pt]
+
+ & \textbf{Exponentialverteilung} \newline Halbwertszeit \(t_\frac{1}{2} = \log(2)/a\)
+ & \(\displaystyle \mathcal{E}(a)\)
+ & \(\displaystyle ae^{-ax} \cdot \mathds{1}_{[0,\infty)} \)
+ & \(\displaystyle \frac{1}{a}\)
+ & \(\displaystyle \frac{1}{a^2}\)
+ \\[5pt]
+
+ & \textbf{Normalverteilung} \newline Viele unabh. ZV
+ & \(\displaystyle \mathcal{N}(\mu, \sigma)\)
+ & \(\displaystyle \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-(x-\mu)^2 / 2\sigma^2} \)
+ & \(\displaystyle \mu\)
+ & \(\displaystyle \sigma^2 \)
+ \\[5pt]
+
+ & \textbf{Potenzverteilung} \newline Pareto Verteilung
+ & \(\displaystyle \mathrm{Pow}(x_\textrm{m}, \alpha)\)
+ &
+ % \(\displaystyle \frac{\alpha - 1}{x_\textrm{m}} \left(
+ % \frac{x}{x_\textrm{m}}
+ % \right)^{-\alpha} \mathds{1}_{[x_\textrm{m},\infty)}\)
+ & \(\displaystyle x_\textrm{m} \cdot \frac{\alpha - 1}{\alpha - 2}\)
+ &
+ % \(\displaystyle \left(
+ % \frac{\alpha - 1}{\alpha - 3} - \left(
+ % \frac{\alpha - 1}{\alpha - 2}
+ % \right)^2
+ % \right) x_\textrm{m}^2\)
+ \\[5pt]
+
+ & \textbf{Chi--Quadrat V.} \newline F\"ur das \(\chi^2\) Test
+ & \(\displaystyle \mathcal{X}^2(k)\)
+ &
+ &
+ &
+ \\[5pt]
+
+ \hline
+
+ & \textbf{Geometrische V.}
+ & \(\displaystyle \mathcal{G}(p)\)
+ & \(\displaystyle p(1-p)^k \)
+ & \(\displaystyle \frac{1}{p}\)
+ & \(\displaystyle \frac{1-p}{p^2}\)
+ \\[5pt]
+
+ & \textbf{Hypergeometrische V.}
+ & \(\displaystyle \mathcal{H}(N,R,n)\)
+ & \({R \choose k}{N-R \choose n-k} / {N \choose n} \)
+ & \(\displaystyle \frac{nR}{N}\)
+ & \(\displaystyle \frac{nR}{N} \left(1 - \frac{R}{N}\right) \frac{N - n}{N - 1}\)
+ \\[5pt]
+
+ & \textbf{Poissonverteilung} \newline Seltener Ereignisse
+ & \(\displaystyle \mathcal{P}(\lambda)\)
+ & \(\displaystyle \frac{\lambda^k}{k!} e^{-\lambda} \)
+ & \(\displaystyle \lambda\)
+ & \(\displaystyle \lambda\)
+ \\[5pt]
+
+ \multirow{-12}{*}{\centering
+ \rotatebox[origin = c]{90}{
+ \textcolor{white}{\bfseries Katalog von W'keitsverteliungen}
+ }
+ }
+ & \textbf{Binomialverteilung} \newline Bernoulli Experimente \newline
+ & \(\displaystyle \mathcal{B}(n,p)\)
+ & \(\displaystyle {n \choose k} p^k (1 - p)^{n - k} \)
+ & \(\displaystyle np\)
+ & \(\displaystyle np(1 - p) \)
+ \\[5pt]
+
+ %% TODO: fix this dimexpr and manual cell color
+ &
+ \multicolumn{5}{p{\dimexpr\linewidth-12mm} | }{
+ % \cellcolor{lightgray!20}
+ \cellcolor{white}
+ F\"ur grosse \(n\) wird \(\mathcal{B}(n,p)\)
+ \(\displaystyle \approx \mathcal{N}\left(\mu = np, \sigma = \sqrt{np(1-p)}\right) \)
+ und f\"ur kleine \(p\) (selten) ist
+ \(\displaystyle \approx \mathcal{P}\left(\lambda = np\right) \).
+ }
+ \\[4pt]
+
+ \hline
+\end{tabularx}
+}
+
+\vspace{3mm}
+
+\noindent
+\setlength{\parskip}{55pt}
+\begin{tabularx}{\linewidth}{%
+ | >{\cellcolor{black}}p{3mm} m{4.5cm} X |
+ }
+ \hline
+
+
+ & \textbf{Regression} \newline Lineares Modell
+ & \(\displaystyle
+ \text{ZV } X, Y \qquad
+ y \approx ax + b \qquad
+ a = \frac{\Cov{X,Y}}{\Var{X}} \qquad
+ b = \E{Y} - a\E{X}
+ \)
+ \\
+ & \textbf{Regressionskoeffizient}
+ & \(\displaystyle
+ r = \frac{\Cov{X,Y}}{\sqrt{\Var{X}\Var{Y}}} \qquad
+ r^2 \approx 1 \implies \text{gute Approx.}
+ \)
+ \\
+
+ &&\\
+ &&\\
+ &&\\
+ &&\\
+
+ \multirow{-5}{*}{\centering
+ \rotatebox[origin = c]{90}{
+ \textcolor{white}{\bfseries Sch\"atzen}
+ }
+ }
+ & \textbf{}
+ &
+ \\
+ \hline
+\end{tabularx}
+
+\noindent
+\begin{tabularx}{\linewidth}{%
+ | >{\cellcolor{black}}p{3mm} m{4.5cm} X |
+ }
+ \hline
+
+ &&\\
+ &&\\
+ &&\\
+ &&\\
+
+ \multirow{-5}{*}{\centering
+ \rotatebox[origin = c]{90}{
+ \textcolor{white}{\bfseries Hypotesentesten}
+ }
+ }
+ & \textbf{}
+ &
+ \\
+ \hline
+\end{tabularx}
+
+\end{document}