summaryrefslogtreecommitdiffstats
path: root/uav_sim_step_lqr.m
blob: e672d35a6b8bcabe950e38b9a8cda10e6e47bce4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
% Simulate a step responses of ducted-fan VTOL micro-UAV.
%
% Copyright (C) 2024, Naoki Sean Pross, ETH Zürich
% This work is distributed under a permissive license, see LICENSE.txt

function [simout] = uav_sim_step_lqr(params, model, ctrl, nsamp, do_plots)

% TODO: Close loop

% Create step inputs (normalized)
noise = zeros(7, nsamp); % no noise
ref_step = ones(1, nsamp); % 1d step function

in_step_x = [ noise; ref_step; zeros(2, nsamp) ];
in_step_y = [ noise; zeros(1, nsamp); ref_step; zeros(1, nsamp) ];
in_step_z = [ noise; zeros(2, nsamp); ref_step ];

% Simulation time
n_settle_times = 10;
T_final_horiz = n_settle_times * params.performance.HorizontalSettleTime;
T_final_vert = n_settle_times * params.performance.VerticalSettleTime;

t_xy = linspace(0, T_final_horiz, nsamp);
t_z = linspace(0, T_final_vert, nsamp);

% Simulate step responses
out_step_x = lsim(P_nom_clp, in_step_x, t_xy);
out_step_y = lsim(P_nom_clp, in_step_y, t_xy);
out_step_z = lsim(P_nom_clp, in_step_z, t_z);

if do_plots
  % Conversion factors
  to_deg = 180 / pi; % radians to degrees
  to_rpm = pi / 30; % rad / s to RPM

  % Figure for flaps and Euler angles
  figure;
  sgtitle(sprintf(...
    '\\bfseries Step Response of Flap and Euler Angles (%s)', ...
    ctrl.Name), 'Interpreter', 'latex');

  % Plot limits
  ref_value     = params.performance.ReferencePosMaxDistance;
  alpha_max_deg = params.actuators.ServoAbsMaxAngle * to_deg;
  euler_lim_deg = 1.5; % params.performance.AngleMaxPitchRoll * to_deg;
  omega_max_rpm = (params.actuators.PropellerMaxAngularVelocity ...
    - params.linearization.Inputs(5)) * to_rpm;
  omega_min_rpm = -params.linearization.Inputs(5) * to_rpm;

  % Plot step response from x to alpha
  subplot(2, 3, 1);
  hold on;
  plot(t_xy, out_step_x(:, Ialpha(1)) * to_deg);
  plot(t_xy, out_step_x(:, Ialpha(2)) * to_deg);
  plot(t_xy, out_step_x(:, Ialpha(3)) * to_deg);
  plot(t_xy, out_step_x(:, Ialpha(4)) * to_deg);
  plot([0, T_final_horiz], [1, 1] * alpha_max_deg, 'r--');
  plot([0, T_final_horiz], [-1, -1] * alpha_max_deg, 'r--');
  grid on;
  xlim([0, T_final_horiz]);
  ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]);
  title('Horizontal $x$ to Flaps', 'Interpreter', 'latex');
  ylabel('Flap Angle (degrees)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ...
    'Interpreter', 'latex');

  % Plot step response from y to alpha
  subplot(2, 3, 2); hold on;
  plot(t_xy, out_step_y(:, Ialpha(1)) * to_deg);
  plot(t_xy, out_step_y(:, Ialpha(2)) * to_deg);
  plot(t_xy, out_step_y(:, Ialpha(3)) * to_deg);
  plot(t_xy, out_step_y(:, Ialpha(4)) * to_deg);
  plot([0, T_final_horiz], [1, 1] * alpha_max_deg, 'r--');
  plot([0, T_final_horiz], [-1, -1] * alpha_max_deg, 'r--');
  grid on;
  xlim([0, T_final_horiz]);
  ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]);
  title('Horizontal $y$ to Flaps', 'Interpreter', 'latex');
  ylabel('Flap Angle (degrees)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ...
    'Interpreter', 'latex');

  % Plot step response from z to alpha
  subplot(2, 3, 3); hold on;
  plot(t_z, out_step_z(:, Ialpha(1)) * to_deg);
  plot(t_z, out_step_z(:, Ialpha(2)) * to_deg);
  plot(t_z, out_step_z(:, Ialpha(3)) * to_deg);
  plot(t_z, out_step_z(:, Ialpha(4)) * to_deg);
  plot([0, T_final_vert], [1, 1] * alpha_max_deg, 'r--');
  plot([0, T_final_vert], [-1, -1] * alpha_max_deg, 'r--');
  grid on;
  xlim([0, T_final_vert]);
  ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]);
  title('Vertical $z$ to Flaps', 'Interpreter', 'latex');
  ylabel('Flap Angle (degrees)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ...
    'Interpreter', 'latex');

  % Plot step response from x to Theta
  subplot(2, 3, 4); hold on;
  plot(t_xy, out_step_x(:, ITheta(1)) * to_deg);
  plot(t_xy, out_step_x(:, ITheta(2)) * to_deg);
  plot(t_xy, out_step_x(:, ITheta(3)) * to_deg);
  grid on;
  xlim([0, T_final_horiz]);
  ylim([-euler_lim_deg, euler_lim_deg]);
  title('Horizontal $x$ to Euler Angles', 'Interpreter', 'latex');
  ylabel('Euler Angle (degrees)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ...
    'Interpreter', 'latex');

  % Plot step response from y to Theta
  subplot(2, 3, 5); hold on;
  plot(t_xy, out_step_y(:, ITheta(1)) * to_deg);
  plot(t_xy, out_step_y(:, ITheta(2)) * to_deg);
  plot(t_xy, out_step_y(:, ITheta(3)) * to_deg);
  grid on;
  xlim([0, T_final_horiz]);
  ylim([-euler_lim_deg, euler_lim_deg]);
  title('Horizontal $y$ to Euler Angles', 'Interpreter', 'latex');
  ylabel('Euler Angle (degrees)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ...
    'Interpreter', 'latex');

  % Plot step response from z to Theta
  subplot(2, 3, 6); hold on;
  plot(t_z, out_step_z(:, ITheta(1)) * to_deg);
  plot(t_z, out_step_z(:, ITheta(2)) * to_deg);
  plot(t_z, out_step_z(:, ITheta(3)) * to_deg);
  grid on;
  xlim([0, T_final_vert]);
  ylim([-euler_lim_deg, euler_lim_deg]);
  title('Vertical $z$ to Euler Angles', 'Interpreter', 'latex');
  ylabel('Euler Angle (degrees)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ...
    'Interpreter', 'latex');

  % Plot step response from z to omega
  figure;
  sgtitle(sprintf(...
    '\\bfseries Step Response to Propeller (%s)', ...
    ctrl.Name), 'Interpreter', 'latex');

  hold on;
  step(P_nom_clp(Iomega, Ir(3)) * to_rpm, T_final_vert);
  plot([0, T_final_vert], [1, 1] * omega_min_rpm, 'r--');
  plot([0, T_final_vert], [1, 1] * omega_max_rpm, 'r--');
  grid on;
  ylim([omega_min_rpm - 1, omega_max_rpm + 1]);
  title('Vertical $z$ to Thruster $\omega$', 'Interpreter', 'latex');
  ylabel('Angular Velocity (RPM)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$\omega(t)$', 'Interpreter', 'latex');

  % Figure for position and velocity
  figure;
  sgtitle(sprintf(...
    '\\bfseries Step Response of Position and Speed (%s)', ...
    ctrl.Name), 'Interpreter', 'latex');

  % Plot step response from horizontal reference to horizontal position
  subplot(2, 2, 1); hold on;
  plot(t_xy, out_step_x(:, IP(1)));
  plot(t_xy, out_step_y(:, IP(2)));
  % plot([0, T_final_horiz], [1, 1] * ref_value, 'r:');
  % plot(t_xy, out_step_xydes, 'r--');
  grid on;
  title('Horizontal Position Error', 'Interpreter', 'latex');
  ylabel('Error (meters)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$x(t)$', '$y(t)$', 'Interpreter', 'latex');

  % Plot step response horizontal reference to horizontal speed
  subplot(2, 2, 2); hold on;
  plot(t_xy, out_step_x(:, IPdot(1)));
  plot(t_xy, out_step_y(:, IPdot(2)));
  grid on;
  title('Horizontal Velocity', 'Interpreter', 'latex');
  ylabel('Velocity (m / s)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$\dot{x}(t)$', '$\dot{y}(t)$', 'Interpreter', 'latex');

  % Plot step response from vertical reference to vertical position
  subplot(2, 2, 3); hold on;
  plot(t_z, out_step_z(:, IP(3)));
  % plot([0, T_final_vert], [1, 1] * ref_value, 'r:');
  % plot(t_z, out_step_zdes, 'r--');
  grid on;
  title('Vertical Position Error', 'Interpreter', 'latex');
  ylabel('Error (meters)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$z(t)$', 'Interpreter', 'latex');

  % Plot step response vertical reference to vertical speed
  subplot(2, 2, 4); hold on;
  plot(t_z, out_step_z(:, IPdot(3)));
  grid on;
  title('Vertical Velocity', 'Interpreter', 'latex');
  ylabel('Velocity (m / s)', 'Interpreter', 'latex');
  xlabel('Time (seconds)', 'Interpreter', 'latex');
  legend('$\dot{z}(t)$', 'Interpreter', 'latex');
end

end
% vim:ts=2 sw=2 et: