1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
%
% teil2.tex -- Beispiel-File für teil2
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
\section{L\"osungsmethoden}
\rhead{L\"osungsmethoden}
In diesem Abschnitt werden mehrere Algorithmen zur Berechnung der Matrizenmultiplikation vorgestellt, auch werden Libraries zur automatisierten Verwendung von vordefinierten Algorithmen gezeigt.
\subsection{Standard Algorithmus}
Der Standard Methode kann im Algorithmus \ref{multiplikation:alg:smm} entnommen werden.
Hierf\"ur wurde die Gleichung \eqref{multiplikation:eq:MM} direkt implementiert.
Die \texttt{For i} Schleife iteriert \"uber alle Zeilen der $\mathbf{A}$ Matrix, die \texttt{For j} Schleife iteriert \"uber alle Spalten der $\mathbf{B}$ Matrix und die \texttt{For k} Schleife iteriert \"uber alle Eintr\"age dieser Zeilen bzw. Spalten.
\begin{algorithm}\caption{Matrix Multiplication}
\label{multiplikation:alg:smm}
\setlength{\lineskip}{7pt}
\begin{algorithmic}[1]
\Function{MM}{$\textbf{A}, \textbf{B}$}
\State $sum \gets 0$
\State $n \gets columns(\textbf{A}) == rows(\textbf{B})$
\State $m \gets rows(\textbf{A})$
\State $p \gets columns(\textbf{B})$
\State $\textbf{C} \gets zeros(m,p)$
\For{$i = 0,1,2 \dots,m-1$}
\For{$j = 0,1,2 \dots,p-1$}
\State $sum \gets 0$
\For{$k = 0,1,2 \dots,n-1$}
\State $sum \gets sum + \textbf{A}[i][k] \cdot \textbf{B}[k][j]$
\EndFor
\State $\textbf{C}[i][j] \gets sum $
\EndFor
\EndFor
\State \textbf{return} $\textbf{C}$
\EndFunction
\end{algorithmic}
\end{algorithm}
Die Laufzeit dieser Struktur mit drei \texttt{For} Schleifen ist $\mathcal{O}(n^3)$
\subsubsection{Divide and Conquer Methode}
F\"ur gewisse Algorithmen f\"uhren \textit{Divide and Conquer} Ans\"atze zu markant besseren Laufzeiten.
Das bekannteste Beispiel ist wohl die \textit{Fast Fourier Transform} wobei die Laufzeit von $\mathcal{O}(n^2)$ zu $\mathcal{O}(n \log n)$ verbessert werden kann.
Die Matrizenmultiplikation kann ebenfalls mit solch einem Ansatz berechnet werden.
Zur vereinfachten Veranschaulichung kann die Situation, mit $\mathbf{A}$ und $\mathbf{B}$ der gr\"osse $2^n \times 2^n$ verwendet werden.
Die Matrizen $\mathbf{A}$ und $\mathbf{B}$ werden in jeweils vier Blockmatrizen der gr\"osse $2^{n-1} \times 2^{n-1}$
\begin{equation}
\mathbf{A}\mathbf{B}=
\begin{bmatrix}
\mathbf{A}_{11} & \mathbf{A}_{12}\\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{bmatrix}
\begin{bmatrix}
\mathbf{B}_{11} & \mathbf{B}_{12}\\
\mathbf{B}_{21} & \mathbf{B}_{22}
\end{bmatrix}
=
\begin{bmatrix}
\mathbf{C}_{11} & \mathbf{C}_{12}\\
\mathbf{C}_{21} & \mathbf{C}_{22}
\end{bmatrix}
\end{equation}
aufgeteilt.
Die Berechnung
\begin{equation}
\mathbf{C}_{ij} = \sum_{k=1}^n \mathbf{A}_{ik} \mathbf{B}_{kj}
\label{multiplikation:eq:MM_block}
\end{equation}
ist identisch zu der Gleichung \eqref{multiplikation:eq:MM}, wobei hier f\"ur die Multiplikation die Matrizenmultiplikation verwendet wird.
Der Algorithmus \ref{multiplikation:alg:devide_mm} zeigt den \textit{Divide and Conquer} Ansatz,
Der Grundstruktur dieser Methode besteht aus dem rekursiven Aufruf der Funktion mit den erzeugten Blockmatrizen.
Der rekursive Aufruf wird bis zu der Gr\"osse der Matrizen von $N = 2 \times 2$ durchgef\"uhrt.
\begin{algorithm}\caption{Divide and Conquer Matrix Multiplication}
\setlength{\lineskip}{7pt}
\label{multiplikation:alg:devide_mm}
\begin{algorithmic}
\Function{MM}{$\textbf{A}, \textbf{B}, n$}
\If{$n = 2$}
\State $ \mathbf{C} \gets zeros(n, n)$
\State $C[0, 0] \gets A[0][0]\cdot B[0][0]+A[0][1]\cdot B[1][0]$
\State $C[0, 1] \gets A[0][0]\cdot B[0][1]+A[0][1]\cdot B[1][1]$
\State $C[1, 0] \gets A[1][0]\cdot B[0][0]+A[1][1]\cdot B[1][0]$
\State $C[1, 1] \gets A[1][0]\cdot B[0][1]+A[1][1]\cdot B[1][1]$
\Else
\State $ m \gets n/2$
\State $\mathbf{A11}, \mathbf{A12}, \mathbf{A21}, \mathbf{A22} \gets \mathbf{A}[:m][:m], \mathbf{A}[:m][m:], \mathbf{A}[m:][:m], \mathbf{A}[m:][m:]$
\State $\mathbf{B11}, \mathbf{B12}, \mathbf{B21}, \mathbf{B22} \gets \mathbf{B}[:m][:m], \mathbf{B}[:m][m:], \mathbf{B}[m:][:m], \mathbf{B}[m:][m:]$
\State $\mathbf{C11} \gets \text{MM}(\mathbf{A11}, \mathbf{B11},n) + \text{MM}(\mathbf{A12}, \mathbf{B21},n)$
\State $\mathbf{C12} \gets \text{MM}(\mathbf{A11},\mathbf{B12},n) + \text{MM}(\mathbf{A12}, \mathbf{B22},n)$
\State $\mathbf{C21} \gets \text{MM}(\mathbf{A21}, \mathbf{B11},n) + \text{MM}(\mathbf{A22}, \mathbf{B21},n)$
\State $\mathbf{C22} \gets \text{MM}(\mathbf{A21}, \mathbf{B12},n) + \text{MM}(\mathbf{A22}, \mathbf{B22},n)$
\State $ C \gets vstack(hstack(C11, C12), hstack(C21, C22))$
\EndIf
\State \textbf{return} $\textbf{C}$
\EndFunction
\end{algorithmic}
\end{algorithm}
Die Laufzeit dieser rekursiven Funktion kann mit dem \textit{Master Theorem} berechnet werden.
Ohne auf diesen vertieft einzugehen, bestimmt die Anzahl rekursiver Aufrufe der Funktion die Laufzeit.
In diesem Fall wird die Funktion pro Durchlauf acht mal rekursiv aufgerufen, dies f\"uhrt
\begin{equation} \label{multiplikation:eq:laufzeitdac}
\mathcal{T}(n) =
\begin{cases}
1 & \text{if } n \leq 2\\
8 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
\end{cases} = \mathcal{O}(n^{\log_2 8}) = \mathcal{O}(n^{3})
\end{equation}
zu einer kubischen Laufzeit.
Die Addition zweier Matrizen $\mathbf{A} + \mathbf{B} = \mathbf{C}$ hat eine Laufzeit von $\mathcal{O}(n^{2})$ und kann neben dem dominierendem Anteil von $\mathcal{O}(n^{3})$ ignoriert werden.
In diesem Fall hat der \textit{Divide and Conquer} Ansatz zu keiner Verbesserung gef\"uhrt.
\subsection{Strassen's Algorithmus}
Strassen's Algorithmus \cite{multiplikation:strassen_1969} beschreibt die Matrizenmultiplikation mit einer Vielzahl von Additionen, Subtraktionen und Multiplikationen.
Die Grundlegenden Terme
\begin{equation} \label{multiplikation:eq:strassen}
\begin{split}
\text{\textbf{P}} &= (\mathbf{A}_{11} + \mathbf{A}_{22}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{22}) \\
\text{\textbf{Q}} &= (\mathbf{A}_{21} + \mathbf{A}_{22}) \cdot \mathbf{B}_{11} \\
\text{\textbf{R}} &= \mathbf{A}_{11} \cdot (\mathbf{B}_{12}-\mathbf{B}_{22}) \\
\text{\textbf{S}} &= \mathbf{A}_{22} \cdot (-\mathbf{B}_{11}+\mathbf{B}_{21}) \\
\text{\textbf{T}} &= (\mathbf{A}_{11} + \mathbf{A}_{12}) \cdot \mathbf{B}_{22} \\
\text{\textbf{U}} &= (-\mathbf{A}_{11} + \mathbf{A}_{21}) \cdot (\mathbf{B}_{11} + \mathbf{B}_{12}) \\
\text{\textbf{V}} &= (\mathbf{A}_{12} - \mathbf{A}_{22}) \cdot (\mathbf{B}_{21} + \mathbf{B}_{22})
\end{split}
\end{equation}
aus $\mathbf{A}$ und $\mathbf{B}$, werden f\"ur die Berechnung der Matrix $\mathbf{C}$
\begin{equation} \label{multiplikation:eq:strassen2}
\begin{split}
\mathbf{C}_{11} &= \text{\textbf{P}} + \text{\textbf{S}} - \text{\textbf{T}} + \text{\textbf{V}} \\
\mathbf{C}_{21} &= \text{\textbf{R}} + \text{\textbf{T}} \\
\mathbf{C}_{12} &= \text{\textbf{Q}} + \text{\textbf{S}}\\
\mathbf{C}_{22} &= \text{\textbf{P}} + \text{\textbf{R}} - \text{\textbf{Q}} + \text{\textbf{U}}
\end{split}
\end{equation}
gebraucht.
\begin{algorithm}\caption{Strassen Matrix Multiplication}
\label{multiplikation:alg:strassen}
\setlength{\lineskip}{7pt}
\begin{algorithmic}
\Function{strassen}{$\textbf{A}, \textbf{B}, n$}
\If{$n = 2$}
\State $ \mathbf{C} \gets zeros((n, n))$
\State $P \gets (A[0][0]+A[1][1])\cdot( B[0][0]+B[1][1])$
\State $Q \gets (A[1][0]+A[1][1])\cdot B[0][0]$
\State $R \gets A[0][0]\cdot (B[0][1]-B[1][1])$
\State $S \gets A[1][1]\cdot (B[1][0]-B[0][0])$
\State $T \gets (A[0][0]+A[0][1])\cdot B[1][1]$
\State $U \gets (A[1][0]-A[0][0])\cdot (B[0][0]+B[0][1])$
\State $V \gets (A[0][1]-A[1][1])\cdot (B[1][0]+B[1][1])$
\State $C[0][0] \gets P+S-T+V$
\State $C[0][1] \gets R+T$
\State $C[1][0] \gets Q+S$
\State $C[1][1] \gets P+R-Q+U$
\Else
\State $ m \gets n/2$
\State $\mathbf{A11}, \mathbf{A12}, \mathbf{A21}, \mathbf{A22} \gets \mathbf{A}[:m][:m], \mathbf{A}[:m][m:], \mathbf{A}[m:][:m], \mathbf{A}[m:][m:]$
\State $\mathbf{B11}, \mathbf{B12}, \mathbf{B21}, \mathbf{B22} \gets \mathbf{B}[:m][:m], \mathbf{B}[:m][m:], \mathbf{B}[m:][:m], \mathbf{B}[m:][m:]$
\State $ \mathbf{P} \gets \text{strassen}((\mathbf{A11}+ \mathbf{A22}),(\mathbf{B11}+\mathbf{B22}), m)$
\State $ \mathbf{Q} \gets \text{strassen}((\mathbf{A21}+ \mathbf{A22}), \mathbf{B11},m)$
\State $ \mathbf{R} \gets \text{strassen}( \mathbf{A11},(\mathbf{B12}- \mathbf{B22}),m)$
\State $ \mathbf{S} \gets \text{strassen}( \mathbf{A22},(\mathbf{B21}- \mathbf{B11}),m)$
\State $ \mathbf{T} \gets \text{strassen}((\mathbf{A11}+ \mathbf{A12}), \mathbf{B22},m)$
\State $ \mathbf{U} \gets \text{strassen}((\mathbf{A21}- \mathbf{A11}),(\mathbf{B11}+\mathbf{B12}),m)$
\State $ \mathbf{V} \gets \text{strassen}((\mathbf{A12}- \mathbf{A22}),(\mathbf{B21}+\mathbf{B22}),m)$
\State $\mathbf{C11} \gets \mathbf{P+S-T+V}$
\State $\mathbf{C12} \gets \mathbf{R+T}$
\State $\mathbf{C21} \gets \mathbf{Q+S}$
\State $\mathbf{C22} \gets \mathbf{P+R-Q+U}$
\State $ C \gets vstack(hstack(C11, C12), hstack(C21, C22))$
\EndIf
\State \textbf{return} $\textbf{C}$
\EndFunction
\end{algorithmic}
\end{algorithm}
Strassens's Methode wird in der Abbildung \ref{multiplikation:fig:strassen} grafisch dargestellt.
\begin{figure}
\center
\includegraphics[width=\linewidth]{papers/multiplikation/images/strassen.pdf}
\caption{Strassen's Algorithmus}
\label{multiplikation:fig:strassen}
\end{figure}
Die Funktion wird sieben mal rekursiv aufgerufen.
Dies f\"uhrt zu einer Laufzeit von
\begin{equation} \label{multiplikation:eq:laufzeitstrassen}
\mathcal{T}(n) =
\begin{cases}
1 & \text{if } n \leq 2\\
7 \cdot \mathcal{T}(\frac{n}{2}) + n^2 & \text{if } n > 2
\end{cases} = \mathcal{O}(n^{\log_2 7}) = \mathcal{O}(n^{2.8074})
\end{equation}
und ist somit schneller als die Standard Methode.
\subsection{Winograd's Algorithmus}
Ein weiterer Ansatz lieferte Shmuel Winograd im Jahre 1968 \cite{multiplikation:winograd_1968}.
Er zeigte einen neuen Algorithmus f\"ur das
\begin{equation}
\langle x,y \rangle = \sum_{i=1}^{n}x_i y_i
\end{equation}
Skalarprodukt.
F\"ur jeden Vektor berechne
\begin{equation}
\xi = \sum_{j=1}^{ \lfloor n/2 \rfloor} x_{2j-1} \cdot x_{2j}
\end{equation}
und
\begin{equation}
\eta = \sum_{j=1}^{ \lfloor n/2 \rfloor} y_{2j-1} \cdot y_{2j}.
\end{equation}
Das Skalarprodukt ist nun geben mit
\begin{equation}
\langle x,y \rangle =
\begin{cases}
\displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta & \text{if $n$ is even}\\
\displaystyle \quad \sum_{j=1}^{ \lfloor n/2 \rfloor} (x_{2j-1} + y_{2j})(x_{2j}+y_{2j-1})-\xi - \eta + x_n y_n & \text{if $n$ is odd}.
\end{cases}
\end{equation}
Angenommen man hat $N$ Vektoren mit welchen man $T$ Skalarprodukte berechnen m\"ochte.
Daf\"ur werden $N\lfloor n/2 \rfloor + T\lfloor (n+1)/2 \rfloor $ Multiplikationen ben\"otigt.
Eine Matrizenmultiplikation mit $\mathbf{A}$ einer $m \times n$ und $\mathbf{B}$ einer $n \times p$ Matrix, entspricht $N=m+p$ Vektoren mit welchen man $T=mp$ Skalarprodukte berechnet.
Dies f\"uhrt zu
\begin{equation}
(m+p) \left \lfloor \frac{n}{2} \right \rfloor + mp \left \lfloor \frac{n+1}{2} \right \rfloor = \frac{mn}{2} + \frac{pn}{2} + \frac{mpn}{2} + \frac{mp}{2}
\end{equation}
Multiplikationen.
Wenn $m,p,n$ gross werden, dominiert der Term $\frac{mpn}{2}$ und es werden $\frac{mpn}{2}$ Multiplikationen ben\"otigt.
Was im Vergleich zu den $mpn$ Multiplikation der Standard Methode nur die H\"alfte ist.
Die Implementation kann im Algorithmus \ref{multiplikation:alg:winograd} entnommen werden.
\begin{algorithm}\caption{Winograd Matrix Multiplication}
\setlength{\lineskip}{7pt}
\label{multiplikation:alg:winograd}
\begin{algorithmic}
\Function{Winograd}{$\textbf{A}, \textbf{B}, n$}
\State $ m \gets rows(\mathbf{A})$
\State $ n \gets columns(\mathbf{A}) == rows(\mathbf{B})$
\State $ p \gets columns(\mathbf{B})$
\State $ \mathbf{\xi} \gets zeros(m)$
\State $ \mathbf{\eta} \gets zeros(p)$
\For{$i = 0,1,2 \dots,m-1$}
\For{$j = 0,1,2 \dots,\lfloor n/2 \rfloor-1$}
\State $\xi[i] \gets \xi[i]+A[i,2 j]A[i,2 j+1]$
\EndFor
\EndFor
\For{$i = 0,1,2 \dots,p-1$}
\For{$j = 0,1,2 \dots,\lfloor n/2 \rfloor-1$}
\State $\eta[i] \gets \eta[i]+B[2 j,i]B[2 j+1,i]$
\EndFor
\EndFor
\If{$n \% 2 == 0$}
\For{$i = 0,1,2 \dots,m-1$}
\For{$j = 0,1,2 \dots,p-1$}
\State $ab \gets 0$
\For{$k = 0,1,2 \dots,\lfloor n/2 \rfloor-1$}
\State $ab \gets ab + (A[i,2k]+B[2k+1,j])(A[i,2k+1]+B[2k,j])$
\EndFor
\State $C[i,j] \gets ab-\eta[j]-\xi[i]$
\EndFor
\EndFor
\Else
\For{$i = 0,1,2 \dots,n-1$}
\For{$j = 0,1,2 \dots,n-1$}
\State $ab \gets 0$
\For{$k = 0,1,2 \dots,\lfloor n/2 \rfloor-1$}
\State $ab \gets ab + (A[i,2k]+B[2k+1,j])(A[i,2k+1]+B[2k,j])$
\EndFor
\State $C[i,j] \gets ab-\eta[j]-\xi[i]+A[i,-1]B[-1,j]$
\EndFor
\EndFor
\EndIf
\State \textbf{return} $\textbf{C}$
\EndFunction
\end{algorithmic}
\end{algorithm}
\subsection{Weitere Algorithmen}
\textcolor{red}{TODO: BLAS}
\section{Implementation}
\rhead{Implementation}
\textcolor{red}{TODO: messresultate}
\section{Fazit}
\rhead{Fazit}
|