summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-05-20 01:16:53 +0200
committerNao Pross <np@0hm.ch>2024-05-20 01:16:53 +0200
commit072aaf269fd47f6c7909cfef82a09fb23ecc306d (patch)
tree0e505cfc44f26b165726da377ea2013cb3a25acf
parentClean up comments (diff)
downloaduav-072aaf269fd47f6c7909cfef82a09fb23ecc306d.tar.gz
uav-072aaf269fd47f6c7909cfef82a09fb23ecc306d.zip
Improve code for DK-iteration
-rw-r--r--uav.m165
1 files changed, 102 insertions, 63 deletions
diff --git a/uav.m b/uav.m
index 275481b..d9198c4 100644
--- a/uav.m
+++ b/uav.m
@@ -52,7 +52,7 @@ end
%% ------------------------------------------------------------------------
% Define stability requirements
-% Note: for hinf it is needed to call uav_mode, but hinf will not actually
+% Note: for hinf it is needed to call uav_model, but hinf will not actually
% make use of this struct
if do_hinf | do_musyn
fprintf('Generating stability requirements...\n')
@@ -125,12 +125,12 @@ if do_musyn
% Options for H-infinity
nmeas = model.uncertain.Ny;
nctrl = model.uncertain.Nu;
- hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
- 'AutoScale', 'on', 'RelTol', 1e-2);
+ hinfopt = hinfsynOptions('Display', 'on', 'Method', 'RIC', ...
+ 'AutoScale', 'on', 'RelTol', 1e-1);
% Frequency raster resolution to fit D scales
- nsamples = 500;
- omega = logspace(-5, 5, nsamples);
+ nsamples = 800;
+ omega = logspace(-1, 3, nsamples);
% Initial values for D-K iteration
D_left = tf(eye(model.uncertain.Nz + model.uncertain.Ne + model.uncertain.Ny));
@@ -138,15 +138,19 @@ if do_musyn
% degrees for approximations for D-scales, tuned by hand
fit_degrees = [
- 1, 1; % alpha
- 6, 1; % omega
- 1, 1; % state
- 7, 1; % perf
+ 1, 1, 1, 1, 1, 1; % alpha
+ 1, 1, 1, 1, 1, 1; % omega
+ 1, 1, 1, 1, 1, 1; % state
+ 6, 1, 4, 2, 2, 1; % perf
];
% Number of D-K iterations
niters = size(fit_degrees, 2);
+ % Maximum degree of D-scales
+ d_scales_max_err = .01;% in percentage
+ d_scales_max_degree = 8;
+
% for plotting later
mu_plot_legend = {};
@@ -166,18 +170,32 @@ if do_musyn
% Calculate frequency response of closed loop
N = minreal(lft(P, K), [], false); % slient
+ M = minreal(N(idx.OutputUncertain, idx.InputUncertain), [], false);
+
N_frd = frd(N, omega);
+ M_frd = frd(M, omega);
% Calculate upper bound D scaling
- [mu_bounds, mu_info] = mussv(N_frd, model.uncertain.BlockStructurePerf, 'sU');
- mu_rp = norm(mu_bounds(1,1), inf, 1e-6);
- fprintf(' Mu value for RP: %g\n', mu_rp)
+ fprintf(' Computing Performance SSV... ')
+ [mu_bounds_rp, mu_info_rp] = mussv(N_frd, model.uncertain.BlockStructurePerf, 'U');
+ fprintf(' Computing Stability SSV... ')
+ [mu_bounds_rs, mu_info_rs] = mussv(M_frd, model.uncertain.BlockStructure, 'U');
+
+ mu_rp = norm(mu_bounds_rp(1,1), inf, 1e-6);
+ mu_rs = norm(mu_bounds_rs(1,1), inf, 1e-6);
+
+ fprintf(' SSV for Performance: %g, for Stability: %g\n', mu_rp, mu_rs);
if do_plots
fprintf(' Plotting mu\n');
figure(100); hold on;
- bodemag(mu_bounds(1,1));
- mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{%d}$', it)};
+
+ bodemag(mu_bounds_rp(1,1));
+ mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{P,%d}$', it)};
+
+ bodemag(mu_bounds_rs(1,1), '-.');
+ mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{S,%d}$', it)};
+
title('\bfseries $\mu_\Delta(\omega)$ for both Stability and Performance', ...
'interpreter', 'latex');
legend(mu_plot_legend, 'interpreter', 'latex');
@@ -194,51 +212,72 @@ if do_musyn
% Fit D-scales
% There are three complex, square, full block uncertainties and
% a non-square full complex block for performance
- [D_left_samples, D_right_samples] = mussvunwrap(mu_info);
-
- fprintf(' Fitting D-scales');
-
- % D scale for alpha uncertainty (first block)
- i = 1;
- D_left_samples_alpha = D_left_samples(i, i);
- D_alpha = fitmagfrd(D_left_samples_alpha, fit_degrees(1, it));
- % D_alpha = fitfrd(genphase(D_left_samples_alpha), fit_degrees(1, it));
- fprintf('.');
-
- % D scale for omega uncertainty (second block)
- i = model.uncertain.BlockStructure(1, 1) + 1; % after first block
- D_left_samples_omega = frd(D_left_samples(i, i));
- D_omega = fitmagfrd(D_left_samples_omega, fit_degrees(2, it));
- % D_omega = fitfrd(genphase(D_left_samples_omega), fit_degrees(2, it));
- fprintf('.');
-
- % D scale for state uncertainty (third block)
- i = model.uncertain.BlockStructure(2, 1) + 1; % after second block
- D_left_samples_state = D_left_samples(i, i);
- D_state = fitmagfrd(D_left_samples_state, fit_degrees(3, it));
- % D_state = fitfrd(genphase(D_left_samples_state), fit_degrees(3, it));
- fprintf('.');
-
- % D scale for performance (non-square)
- i = model.uncertain.BlockStructurePerf(3, 1); % after third block
- D_left_samples_perf = D_left_samples(i, i);
- D_perf = fitmagfrd(D_left_samples_perf, fit_degrees(4, it));
- % D_perf = fitfrd(genphase(D_left_samples_perf), fit_degrees(4, it));
- fprintf('.');
-
- fprintf('\n');
+ [D_left_samples, D_right_samples] = mussvunwrap(mu_info_rp);
+
+ fprintf(' Fitting D-scales\n');
+
+ i_alpha = 1;
+ i_omega = model.uncertain.BlockStructure(1, 1) + 1; % after first block
+ i_state = model.uncertain.BlockStructure(2, 1) + 1; % after second block
+ i_perf = model.uncertain.BlockStructurePerf(3, 1) + 1; % after third block
+
+ D_samples = {
+ D_left_samples(i_alpha, i_alpha);
+ D_left_samples(i_omega, i_omega);
+ D_left_samples(i_state, i_state);
+ D_left_samples(i_perf, i_perf);
+ };
+
+ D_max_sv = {
+ max(max(sigma(D_samples{1})));
+ max(max(sigma(D_samples{2})));
+ max(max(sigma(D_samples{3})));
+ max(max(sigma(D_samples{4})));
+ };
+
+ D_names = {'alpha', 'omega', 'state', 'perf'};
+ D_fitted = {};
+
+ for j = 1:4
+ fprintf(' %s', D_names{j});
+
+ best_fit_deg = inf;
+ best_fit_err = inf;
+
+ for deg = fit_degrees(j, it):d_scales_max_degree
+ % Fit D-scale
+ % D_fit = fitmagfrd(D_samples{j}, deg);
+ D_fit = fitfrd(genphase(D_samples{j}), deg);
+
+ % Check if it is a good fit
+ max_sv = max(max(sigma(D_fit, omega)));
+ fit_err = abs(D_max_sv{j} - max_sv);
+
+ if fit_err < best_fit_err
+ best_fit_deg = deg;
+ best_fit_err = fit_err;
+ D_fitted{j} = D_fit;
+ end
+
+ if fit_err / D_max_sv{j} < d_scales_max_err
+ break;
+ end
+ fprintf('.');
+ end
+ fprintf(' degree %d, error %g\n', best_fit_deg, best_fit_err);
+ end
% Construct full matrices
- D_right = blkdiag(D_alpha * eye(4), ...
- D_omega * eye(1), ...
- D_state * eye(12), ...
- D_perf * eye(10), ...
+ D_right = blkdiag(D_fitted{1} * eye(4), ...
+ D_fitted{2} * eye(1), ...
+ D_fitted{3} * eye(12), ...
+ D_fitted{4} * eye(10), ...
eye(5));
- D_left = blkdiag(D_alpha * eye(4), ...
- D_omega * eye(1), ...
- D_state * eye(12), ...
- D_perf * eye(14), ...
+ D_left = blkdiag(D_fitted{1} * eye(4), ...
+ D_fitted{2} * eye(1), ...
+ D_fitted{3} * eye(12), ...
+ D_fitted{4} * eye(14), ...
eye(12));
% Compute peak of singular values for to estimate how good is the
@@ -257,20 +296,20 @@ if do_musyn
fprintf(' Plotting D-scales');
f = figure(101); clf(f); hold on;
- bodemag(D_left_samples_alpha, omega, 'r-');
- bodemag(D_alpha, omega, 'b');
+ bodemag(D_samples{1}, omega, 'r-');
+ bodemag(D_fitted{1}, omega, 'b');
fprintf('.');
- bodemag(D_left_samples_omega, omega, 'r--');
- bodemag(D_omega, omega, 'b--');
+ bodemag(D_samples{2}, omega, 'r--');
+ bodemag(D_fitted{2}, omega, 'b--');
fprintf('.');
- bodemag(D_left_samples_state, omega, 'c-');
- bodemag(D_state, omega, 'm-');
+ bodemag(D_samples{3}, omega, 'c-');
+ bodemag(D_fitted{3}, omega, 'm-');
fprintf('.');
- bodemag(D_left_samples_perf, omega, 'c--');
- bodemag(D_perf, omega, 'm--');
+ bodemag(D_samples{4}, omega, 'c--');
+ bodemag(D_fitted{4}, omega, 'm--');
fprintf('.');
fprintf('\n');