summaryrefslogtreecommitdiffstats
path: root/uav_performance.m
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2024-05-14 17:54:05 +0200
committerNao Pross <np@0hm.ch>2024-05-14 17:54:32 +0200
commit956a5bab88ac0a505b16d131e600c6f1a1afdbac (patch)
tree482e613fa65bd7a2f188b6f0871c74ca90f7242b /uav_performance.m
parentImplement DK iteration (diff)
downloaduav-956a5bab88ac0a505b16d131e600c6f1a1afdbac.tar.gz
uav-956a5bab88ac0a505b16d131e600c6f1a1afdbac.zip
Fix DK iteration scales, add realistic values
also separate performance requirements from hinf and musyn
Diffstat (limited to 'uav_performance.m')
-rw-r--r--uav_performance.m123
1 files changed, 0 insertions, 123 deletions
diff --git a/uav_performance.m b/uav_performance.m
deleted file mode 100644
index 4857a34..0000000
--- a/uav_performance.m
+++ /dev/null
@@ -1,123 +0,0 @@
-% Generate transfer functions for loop shaping performance requirements
-% from parameters specified in uav_params.m
-%
-% Copyright (C) 2024, Naoki Sean Pross, ETH Zürich
-% This work is distributed under a permissive license, see LICENSE.txt
-%
-% Arguments:
-% PARAMS Struct of design parameters and constants generated by uav_params
-% PLOT When set to 'true' it plots the inverse magnitude of the
-% performance transfer function
-%
-% Return value:
-% PERF Struct performance transfer functions
-
-
-function [perf] = uav_performance(params, plot)
-
-% Laplace variable
-s = tf('s');
-
-alpha_max = params.actuators.ServoAbsMaxAngle;
-alpha_max_omega = params.actuators.ServoNominalAngularVelocity;
-
-T_xy = params.performance.HorizontalSettleTime;
-T_z = params.performance.VerticalSettleTime;
-
-omega_nxy = 5 / T_xy;
-omega_nz = 10 / T_z;
-
-% W_Palpha = 1 / (s^2 + 2 * alpha_max_omega * s + alpha_max_omega^2);
-% W_Palpha = (1 - W_Palpha / dcgain(W_Palpha)) * .8;
-% W_Pomega = (1 - 1 / (T_z / 5 * s + 1)) * .1;
-
-W_Palpha = make_weight(alpha_max_omega, 15, 1.1, 3);
-W_Pomega = make_weight(omega_nz, 50, 10);
-
-% zeta = 1; % Almost critically damped
-% W_Pxy = 1 / (s^2 + 2 * zeta * omega_nxy * s + omega_nxy^2);
-% W_Pxy = 1 * W_Pxy / dcgain(W_Pxy);
-% W_Pz = 1 / (s^2 + 2 * zeta * omega_nz * s + omega_nz^2);
-% W_Pz = 1 * W_Pz / dcgain(W_Pz);
-
-W_Pxy = make_weight(omega_nxy, 2, 5);
-W_Pz = make_weight(omega_nz, 1, 10);
-
-% Set a speed limit
-W_Pxydot = .2 * tf(1, 1);
-W_Pzdot = .2 * tf(1, 1);
-
-W_Pphitheta = .01 * tf(1, [.1, 1]);
-W_Ppsi = .01 * tf(1, 1); % don't care
-
-W_PTheta = tf(1, [.1, 1]) * eye(3);
-
-% Construct performance vector by combining xy and z
-W_PP = blkdiag(W_Pxy * eye(2), W_Pz);
-W_PPdot = blkdiag(W_Pxydot * eye(2), W_Pzdot);
-W_PTheta = blkdiag(W_Pphitheta * eye(2), W_Ppsi);
-
-perf = struct(...
- 'FlapAngle', W_Palpha * eye(4), ...
- 'Thrust', W_Pomega, ...
- 'Position', W_PP, ...
- 'Velocity', W_PPdot, ...
- 'Angles', W_PTheta);
-
-if plot
- % Bode plots of performance requirements
- figure; hold on;
-
- bodemag(W_Palpha);
- bodemag(W_Pomega);
- bodemag(W_Pxy);
- bodemag(W_Pz);
- bodemag(W_Pxydot);
- bodemag(W_Pzdot);
- bodemag(W_Pphitheta);
- bodemag(W_Ppsi);
-
- grid on;
- legend('$W_{P,\alpha}$', '$W_{P,\omega}$', ...
- '$W_{P,xy}$', '$W_{P,z}$', ...
- '$W_{P,\dot{x}\dot{y}}$', '$W_{P,\dot{z}}$', ...
- '$W_{P,\phi\theta}$', '$W_{P,\psi}$', ...
- 'interpreter', 'latex', 'fontSize', 8);
- title('Performance Requirements');
-
- % Step response of position requirements
- figure; hold on;
- step(W_Pxy); step(W_Pz);
- step(W_Pxydot); step(W_Pzdot);
- step(W_Palpha);
- step(W_Pomega);
- grid on;
- legend('$W_{P,xy}$', '$W_{P,z}$', ...
- '$W_{P,\dot{x}\dot{y}}$', '$W_{P,\dot{z}}$', ...
- '$W_{P,\alpha}$', '$W_{P,\omega}$', ...
- 'interpreter', 'latex', 'fontSize', 8);
- title('Step responses of performance requirements');
-end
-
-end
-
-% Make a n-order performance weight function
-%
-% Arguments:
-% OMEGA Cutting frequency (-3dB)
-% A Magnitude at DC, i.e. |Wp(0)|
-% M Magnitude at infinity, i.e. |Wp(inf)|
-% ORD Order
-function [Wp] = make_weight(omega, A, M, ord)
-
-if nargin > 3
- n = ord;
-else
- n = 1;
-end
-
-s = tf('s');
-Wp = (s / (M^(1/n)) + omega)^n / (s + omega * A^(1/n))^n;
-
-end
-% vim: ts=2 sw=2 et: