summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--uav.m214
-rw-r--r--uav_model.m147
-rw-r--r--uav_model_uncertain.slxbin56206 -> 62600 bytes
-rw-r--r--uav_model_uncertain_clp.slxbin163944 -> 67378 bytes
-rw-r--r--uav_params.m16
-rw-r--r--uav_performance_hinf.m47
-rw-r--r--uav_performance_musyn.m45
-rw-r--r--uav_sim_step.m16
-rw-r--r--uav_uncertainty.m18
9 files changed, 361 insertions, 142 deletions
diff --git a/uav.m b/uav.m
index 059c944..3a0da71 100644
--- a/uav.m
+++ b/uav.m
@@ -9,7 +9,7 @@
clear; clc; close all; s = tf('s');
do_plots = true; % runs faster without
-do_hinf = true; % midterm
+do_hinf = false; % midterm
do_musyn = true; % endterm
fprintf('Controller synthesis for ducted fan VTOL micro-UAV\n')
@@ -37,7 +37,8 @@ params = uav_params();
% Define performance requirements
fprintf('Generating performance requirements...\n')
-perf = uav_performance_musyn(params, do_plots);
+perf_hinf = uav_performance_hinf(params, do_plots);
+perf_musyn = uav_performance_musyn(params, do_plots);
%% ------------------------------------------------------------------------
% Define stability requirements
@@ -49,7 +50,7 @@ uncert = uav_uncertainty(params, do_plots);
% Create UAV model
fprintf('Generating system model...\n');
-model = uav_model(params, perf, uncert);
+model = uav_model(params, perf_musyn, uncert);
%% ------------------------------------------------------------------------
% Perform H-infinity design
@@ -71,7 +72,21 @@ if do_hinf
'AutoScale', 'off', 'RelTol', 1e-3);
[K_inf, ~, gamma, info] = hinfsyn(P_nom, nmeas, nctrl, hinfopt);
fprintf(' - H-infinity synthesis gamma: %g\n', gamma);
- ctrl.hinf = struct('Name', '$\mathcal{H}_{\infty}$', 'K', K_inf);
+
+ index = struct( ...
+ 'Ix', 1, 'Iy', 2, 'Iz', 3, ...
+ 'IPdot', (4:6)', ...
+ 'Iroll', 7, 'Ipitch', 8, 'Iyaw', 9, ...
+ 'ITheta', (10:12)', ...
+ 'Ialpha', (1:4)', ...
+ 'Iomega', 5 ...
+ );
+
+ ctrl.hinf = struct( ...
+ 'Name', '$\mathcal{H}_{\infty}$', ...
+ 'K', K_inf, ...
+ 'index', index ...
+ );
if gamma >= 1
error('Failed to syntesize controller (closed loop is unstable).')
@@ -80,11 +95,39 @@ if do_hinf
%% ------------------------------------------------------------------------
% Measure Performance of H-infinity design
- fprintf(' - Simulating closed loop...\n');
+ if do_plots
+ fprintf(' - Plotting resulting controller...\n');
+
+ % Plot transfer functions
+ figure; hold on;
+ bode(ctrl.hinf.K(index.Ialpha(1), index.Ix));
+ bode(ctrl.hinf.K(index.Ialpha(2), index.Ix));
+
+ bode(ctrl.hinf.K(index.Ialpha(1), index.Iy));
+ bode(ctrl.hinf.K(index.Ialpha(2), index.Iy));
+
+ bode(ctrl.hinf.K(index.Iomega, index.Ix));
+ bode(ctrl.hinf.K(index.Iomega, index.Iy));
+ bode(ctrl.hinf.K(index.Iomega, index.Iz));
+
+ title(sprintf('\\bfseries %s Controller', ctrl.hinf.Name), ...
+ 'interpreter', 'latex');
+ legend('$x \rightarrow \alpha_1$', ...
+ '$x \rightarrow \alpha_2$', ...
+ '$y \rightarrow \alpha_1$', ...
+ '$y \rightarrow \alpha_2$', ...
+ '$x \rightarrow \omega$', ...
+ '$y \rightarrow \omega$', ...
+ '$z \rightarrow \omega$', ...
+ 'interpreter', 'latex');
+ grid on;
+ end
+
+ fprintf('Simulating closed loop...\n');
- T = 60;
- nsamples = 500;
- do_noise = true;
+ T = 40;
+ nsamples = 800;
+ do_noise = false;
simout = uav_sim_step(params, model, ctrl.hinf, nsamples, T, do_plots, do_noise);
fprintf(' - Writing simulation results...\n');
@@ -116,10 +159,10 @@ if do_musyn
nmeas = model.uncertain.Ny;
nctrl = model.uncertain.Nu;
hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
- 'AutoScale', 'on', 'RelTol', 1e-3);
+ 'AutoScale', 'on', 'RelTol', 1e-2);
% Frequency raster resolution to fit D scales
- nsamples = 600;
+ nsamples = 300;
omega_max = 3;
omega_min = -3;
@@ -132,12 +175,28 @@ if do_musyn
% Maximum number of D-K iterations
niters = 5;
- fprintf(' - Will do at most %d iterations.\n', niters);
+ fprintf(' - Will do (max) %d iterations.\n', niters);
% Maximum degree of D-scales and error
- d_scales_max_degree = 3;
- d_scales_max_err_p = .4; % in percentage
- d_scales_improvement_p = .15; % in percentage
+ d_scales_max_degree = 10;
+ d_scales_max_err_p = .2; % in percentage
+ d_scales_improvement_p = .1; % in percentage, avoid diminishing returns
+
+ % hand tuned degrees, inf means will pick automatically best fit
+ % according to parameters given above
+ d_scales_degrees = {
+ 0, 0, inf, inf, inf; % alpha
+ 1, inf, inf, inf, inf; % omega
+ 2, inf, inf, inf, inf; % state
+ 0, 0, inf, inf, inf;
+ };
+
+ if size(d_scales_degrees, 2) < niters
+ error('');
+ end
+
+ scaled_plant_reduce_ord = 100;
+ scaled_plant_reduce_maxerr = 1e-3;
% for plotting later
mu_plot_legend = {};
@@ -148,9 +207,31 @@ if do_musyn
fprintf(' * Running D-K iteration %d / %d...\n', it, niters);
itstart = tic();
- % Find controller using H-infinity
+ % Scale plant and reduce order, fitting the D-scales adds a lot of near
+ % zero modes that cause the plant to become very numerically ill
+ % conditioned. Since the D-scales are an approximation anyways (i.e.
+ % there is not mathematical proof for the fitting step), we limit the
+ % order of the scaled system to prevent poor scaling issues.
P_scaled = minreal(D_left * P * inv(D_right), [], false);
[P_scaled, ~] = prescale(P_scaled, omega_range);
+ n = size(P_scaled.A, 1);
+
+ if n > scaled_plant_reduce_ord
+ R = reducespec(P_scaled, 'balanced'); % or ncf
+ R.Options.FreqIntervals = [omega_range{1}, omega_range{2}];
+ R.Options.Goal = 'absolute'; % better hinf norm
+ if do_plots
+ figure(102);
+ view(R);
+ drawnow;
+ end
+ P_scaled = getrom(R, MaxError=scaled_plant_reduce_maxerr);
+
+ fprintf(' Scaled plant was reduced from order %d to %d\n', ...
+ n, size(P_scaled.A, 1))
+ end
+
+ % Find controller using H-infinity
[K, ~, gamma, ~] = hinfsyn(P_scaled, nmeas, nctrl, hinfopt);
fprintf(' H-infinity synthesis gamma: %g\n', gamma);
@@ -241,36 +322,55 @@ if do_musyn
for j = 1:4
% for each in left and right
fprintf(' %s', D_names{j});
- best_fit_deg = inf;
- best_fit_err = inf;
- for deg = 0:d_scales_max_degree
- % Fit D-scale
- D_fit = fitmagfrd(D_frd{j}, deg);
- % D_fit = fitfrd(genphase(D_frd{j}), deg);
-
- % Check if it is a good fit
+
+ % tuned by hand?
+ if d_scales_degrees{j, it} < inf
+ % D_fit = fitmagfrd(D_frd{j}, d_scales_degrees{j, it});
+ D_fit = fitfrd(genphase(D_frd{j}), d_scales_degrees{j, it});
+
max_sv = max(max(sigma(D_fit, omega)));
fit_err = abs(D_max_sv{j} - max_sv);
-
- if fit_err < best_fit_err
- % Choose higher degree only if we improve by at least a specified
- % percentage over the previous best fit (or we are at the first
- % iteration). This is a heuristic to avoid adding too many states
- % to the controller as it depends on the order of the D-scales.
- if abs(best_fit_err - fit_err) / best_fit_err > d_scales_improvement_p || best_fit_err == inf
- best_fit_deg = deg;
- best_fit_err = fit_err;
- D_fitted{j} = D_fit;
+ D_fitted{j} = D_fit;
+
+ fprintf(' tuned degree %d, error %g (%g %%)\n', ...
+ d_scales_degrees{j, it}, fit_err, ...
+ 100 * fit_err / D_max_sv{j});
+
+ else
+ % find best degree
+ best_fit_deg = inf;
+ best_fit_err = inf;
+
+ for deg = 0:d_scales_max_degree
+ % Fit D-scale
+ % D_fit = fitmagfrd(D_frd{j}, deg);
+ D_fit = fitfrd(genphase(D_frd{j}), deg);
+
+ % Check if it is a good fit
+ max_sv = max(max(sigma(D_fit, omega)));
+ fit_err = abs(D_max_sv{j} - max_sv);
+
+ if fit_err < best_fit_err
+ % Choose higher degree only if we improve by at least a
+ % specified percentage over the previous best fit (or we are
+ % at the first iteration). This is a heuristic to prevent
+ % adding too many states to the controller as it depends on
+ % the order of the D-scales.
+ if abs(best_fit_err - fit_err) / best_fit_err > d_scales_improvement_p || best_fit_err == inf
+ best_fit_deg = deg;
+ best_fit_err = fit_err;
+ D_fitted{j} = D_fit;
+ end
end
+
+ if (fit_err / D_max_sv{j} < d_scales_max_err_p)
+ break;
+ end
+ fprintf('.');
end
-
- if (fit_err / D_max_sv{j} < d_scales_max_err_p)
- break;
- end
- fprintf('.');
+ fprintf(' degree %d, error %g (%g %%)\n', ...
+ best_fit_deg, best_fit_err, 100 * best_fit_err / D_max_sv{j});
end
- fprintf(' degree %d, error %g (%g %%)\n', ...
- best_fit_deg, best_fit_err, 100 * best_fit_err / D_max_sv{j});
end
% Construct full matrices
@@ -340,7 +440,7 @@ if do_musyn
fprintf(' - D-K iteration took %.1f seconds\n', dkend);
if mu_rp > 1 && mu_rs > 1
- error(' - Failed to synthesize robust controller that meets the desired performance.\n');
+ error(' - Failed to synthesize robust controller that meets the desired performance.');
end
%% Fit worst-case perturbation
@@ -364,11 +464,39 @@ if do_musyn
%% ------------------------------------------------------------------------
% Measure Performance of mu synthesis design
+ if do_plots
+ fprintf(' - Plotting resulting controller...\n');
+
+ % Plot transfer functions
+ figure; hold on;
+ bode(ctrl.musyn.K(index.Ialpha(1), index.Ix));
+ bode(ctrl.musyn.K(index.Ialpha(2), index.Ix));
+
+ bode(ctrl.musyn.K(index.Ialpha(1), index.Iy));
+ bode(ctrl.musyn.K(index.Ialpha(2), index.Iy));
+
+ bode(ctrl.musyn.K(index.Iomega, index.Ix));
+ bode(ctrl.musyn.K(index.Iomega, index.Iy));
+ bode(ctrl.musyn.K(index.Iomega, index.Iz));
+
+ title(sprintf('\\bfseries %s Controller', ctrl.musyn.Name), ...
+ 'interpreter', 'latex');
+ legend('$x \rightarrow \alpha_1$', ...
+ '$x \rightarrow \alpha_2$', ...
+ '$y \rightarrow \alpha_1$', ...
+ '$y \rightarrow \alpha_2$', ...
+ '$x \rightarrow \omega$', ...
+ '$y \rightarrow \omega$', ...
+ '$z \rightarrow \omega$', ...
+ 'interpreter', 'latex');
+ grid on;
+ end
+
fprintf('Simulating nominal closed loop...\n');
- T = 60;
+ T = 40;
nsamples = 5000;
- do_noise = true;
+ do_noise = false;
simout = uav_sim_step(params, model, ctrl.musyn, nsamples, T, do_plots, do_noise);
diff --git a/uav_model.m b/uav_model.m
index 1f8f751..fda2745 100644
--- a/uav_model.m
+++ b/uav_model.m
@@ -9,7 +9,8 @@
% principles (equations of motion).
%
% * A linear model obtained by linearizing the the non linear plant model at
-% an operating point specified in the params struct argument.
+% an operating point specified in the params struct argument. And adding
+% models for the actuators.
%
% * A uncertain linear model with reference trcking built atop of the linear
% model using SIMULINK. The uncertain model contains the performance and
@@ -219,9 +220,22 @@ B = double(vpa(B));
C = eye(size(A));
D = zeros(12, 5);
-% Number of states, inputs and outputs
-[nx, nu] = size(B);
-[ny, ~] = size(C);
+% ------------------------------------------------------------------------
+% Model actuators
+
+% TODO: better model?
+w = params.actuators.ServoNominalAngularVelocity;
+zeta = 1;
+G_servo = tf(w^2, [1, 2 * zeta * w, w^2]);
+
+w = 60;
+zeta = 1;
+G_prop = tf(w^2, [1, 2 * zeta * w, w^2]);
+
+model.actuators = struct( ...
+ 'FlapServo', G_servo, ...
+ 'ThrustPropeller', G_prop, ...
+ 'StateSpace', blkdiag(eye(4) * G_servo, G_prop));
% ------------------------------------------------------------------------
% Scale inputs and outputs of linearized model
@@ -247,21 +261,31 @@ D = D * inv(S_actuators);
% Create state space object
T = params.measurements.SensorFusionDelay;
n = params.linearization.PadeApproxOrder;
-sys = minreal(pade(ss(A, B, C, D, 'OutputDelay', T), n), [], false); % slient
+sys = pade(ss(A, B, C, D, 'OutputDelay', T), n);
+
+% Add actuators
+sys = sys * model.actuators.StateSpace;
+
+% Remove unnecessary states
+sys = minreal(sys, [], false); % slient
+
+% Number of states, inputs and outputs
+[nx, nu] = size(sys.B);
+[ny, ~] = size(sys.C);
% Save linearized dynamics (numerical)
model.linear = struct(...
'Nx', nx, 'Nu', nu, 'Ny', ny, ... % number of states, inputs, and outputs
'State', xi, 'Inputs', u, ... % state and input variables
'StateEq', xi_eq, 'InputEq', u_eq, ... % where the system was linearized
- 'StateSpace', sys, ... % state space object
+ 'StateSpace', sys, ... % state space objec
'InputScalingMatrix', S_actuators, 'OutputScalingMatrix', S_state ...
);
% ------------------------------------------------------------------------
% Check properties of linearized model
-eigvals = eig(A);
+eigvals = eig(sys.A);
% Check system controllability / stabilizability
Wc = ctrb(sys);
@@ -274,7 +298,7 @@ if rank(Wc) < nx
for i = 1:nx
if real(eigvals(i)) >= 0
% PBH test
- W = [(A - eigvals(i) * eye(size(A))), B];
+ W = [(sys.A - eigvals(i) * eye(nx)), sys.B];
if rank(W) < nx
% fprintf(' State %d is not stabilizable\n', i);
unstabilizable = unstabilizable + 1;
@@ -299,7 +323,7 @@ if rank(Wo) < nx
for i = 1:nx
if real(eigvals(i)) >= 0
% PBH test
- W = [C; (A - eigvals(i) * eye(size(A)))];
+ W = [sys.C; (sys.A - eigvals(i) * eye(nx))];
if rank(W) < nx
undetectable = undetectable + 1;
end
@@ -313,31 +337,37 @@ if rank(Wo) < nx
end
end
-% ------------------------------------------------------------------------
-% Compute absolute value of error caused by linearization around set point
+stable = 0;
+unstable = 0;
+for i = 1:nx
+ if real(eigvals(i)) < 0
+ stable = stable + 1;
+ else
+ unstable = unstable + 1;
+ end
+end
+fprintf(' - Linearized system has %d states:\n', nx);
+fprintf(' %d controllable modes, %d observable modes.\n', rank(Wc), rank(Wo));
+fprintf(' %d stable modes, %d unstable modes.\n', stable, unstable);
-% ------------------------------------------------------------------------
-% Model actuators
-
-% TODO: better model, this was tuned "by looking"
-w = 2 * params.actuators.ServoNominalAngularVelocity;
-zeta = .7;
-G_servo = tf(w^2, [1, 2 * zeta * w, w^2]);
+if rank(Wc) < 12
+ error('Uncertain model has less than 12 controllable modes');
+end
-w = 6e3;
-zeta = 1;
-G_prop = tf(w^2, [1, 2 * zeta * w, w^2]);
+% ------------------------------------------------------------------------
+% Compute absolute value of error caused by linearization around set point
-model.actuators = struct('FlapServo', G_servo, 'ThrustPropeller', G_prop);
+% TODO
% ------------------------------------------------------------------------
% Add uncertainties using SIMULINK model
% Load simulink model with uncertainties and pass in parameters
h = load_system('uav_model_uncertain');
-hws = get_param('uav_model_uncertain', 'modelworkspace');
+set_param('uav_model_uncertain', SimulationMode='Normal');
+hws = get_param('uav_model_uncertain', 'modelworkspace');
hws.assignin('params', params);
hws.assignin('model', model);
hws.assignin('perf', perf);
@@ -375,8 +405,8 @@ S_uncert_out = blkdiag(...
S_state(1:9, 1:9));
% Save uncertain model
-model.uncertain = struct(...
- 'Simulink', ulmod, ...
+model.uncertain = struct(...
+ ... % 'Simulink', ulmod, ...
'BlockStructure', blk_stab, ...
'BlockStructurePerf', blk_perf, ...
'StateSpace', usys ...
@@ -425,6 +455,73 @@ model.uncertain.Ny = max(size(idx.OutputNominal));
% ------------------------------------------------------------------------
% Check properties of uncertain model
+eigvals = eig(usys.A);
+nx = size(usys.A, 1);
+
+% Check system controllability / stabilizability
+Wc = ctrb(usys);
+if rank(Wc) < nx
+ fprintf(' - Uncertain system has %d uncontrollable states!\n', ...
+ (nx - rank(Wc)));
+
+ % Is the system at least stabilizable?
+ unstabilizable = 0;
+ for i = 1:nx
+ if real(eigvals(i)) >= 0
+ % PBH test
+ W = [(usys.A - eigvals(i) * eye(nx)), usys.B];
+ if rank(W) < nx
+ % fprintf(' State %d is not stabilizable\n', i);
+ unstabilizable = unstabilizable + 1;
+ end
+ end
+ end
+ if unstabilizable > 0
+ fprintf(' - Uncertain system has %d unstabilizable modes!\n', ...
+ unstabilizable);
+ else
+ fprintf(' However, it is stabilizable.\n');
+ end
+end
+
+% Check system observability / detectability
+Wo = obsv(usys);
+if rank(Wo) < nx
+ fprintf(' - Uncertain system has %d unobservable states!\n', ...
+ (nx - rank(Wo)));
+ % is the system at least detectable?
+ undetectable = 0;
+ for i = 1:nx
+ if real(eigvals(i)) >= 0
+ % PBH test
+ W = [usys.C; (usys.A - eigvals(i) * eye(nx))];
+ if rank(W) < nx
+ undetectable = undetectable + 1;
+ end
+ end
+ end
+ if undetectable > 0
+ fprintf(' - Uncertain system has %d undetectable modes!\n', ...
+ undetectable);
+ else
+ fprintf(' However, it is detectable.\n')
+ end
+end
+
+stable = 0;
+unstable = 0;
+for i = 1:nx
+ if real(eigvals(i)) < 0
+ stable = stable + 1;
+ else
+ unstable = unstable + 1;
+ end
+end
+
+fprintf(' - Uncertain system has %d states:\n', nx);
+fprintf(' %d controllable modes, %d observable modes.\n', rank(Wc), rank(Wo));
+fprintf(' %d stable modes, %d unstable modes.\n', stable, unstable);
+
% % Check that (A, B_u, C_y) is stabilizable and detectable
% A = model.uncertain.StateSpace(...
% model.uncertain.index.OutputUncertain, ...
diff --git a/uav_model_uncertain.slx b/uav_model_uncertain.slx
index d432718..fd94980 100644
--- a/uav_model_uncertain.slx
+++ b/uav_model_uncertain.slx
Binary files differ
diff --git a/uav_model_uncertain_clp.slx b/uav_model_uncertain_clp.slx
index 7bcf2d9..36be668 100644
--- a/uav_model_uncertain_clp.slx
+++ b/uav_model_uncertain_clp.slx
Binary files differ
diff --git a/uav_params.m b/uav_params.m
index e87e4fd..fdd519a 100644
--- a/uav_params.m
+++ b/uav_params.m
@@ -40,7 +40,7 @@ r_prop = 85e-3; % radius of propeller
J_prop = .5 * m_prop * r_prop^2;
params.mechanical = struct(...
- 'Mass', 3.0, ...
+ 'Mass', 3.5, ...
'DuctRadius', 46e-3, ...
'DuctHeight', 171e-3, ...
'FlapZDistance', 98e-3, ... % flap distance along z from center of mass
@@ -65,7 +65,7 @@ params.actuators = struct(...
% IMU runs in NDOF mode
params.measurements = struct(...
- 'SensorFusionDelay', 50e-3, ... % in s
+ 'SensorFusionDelay', 30e-3, ... % in s
'LIDARAccuracy', 10e-3, ... % in m
'LIDARMaxDistance', 40, ... % inm
'LIDARBandwidth', 100, ... % in Hz for z position
@@ -91,13 +91,13 @@ k_T = F_max / omega_max^2;
% https://scienceworld.wolfram.com/physics/LiftCoefficient.html
params.aerodynamics = struct(...
'ThrustOmegaProp', k_T, ... % in s^2 / (rad * N)
- 'ThrustOmegaPropUncertainty', .05, ... % in %
+ 'ThrustOmegaPropUncertainty', .01, ... % in %
'FlapArea', 23e-3 * 10e-3, ... % in m^2
- 'FlapAreaUncertainty', .01, ... % in %
- 'DragCoefficients', [1, .1], ... % TODO
+ 'FlapAreaUncertainty', .02, ... % in %
+ 'DragCoefficients', [0, 0], ... % TODO
'DragCoefficientsUncertainties', [.1, .1], ... % in %
'LiftCoefficient', 2 * pi, ... % TODO
- 'LiftCoefficientUncertainty', .1 ...% in %
+ 'LiftCoefficientUncertainty', .05 ...% in %
);
@@ -114,7 +114,7 @@ k = params.aerodynamics.ThrustOmegaProp;
omega_hover = sqrt(m * g / k);
params.linearization = struct(...
- 'PadeApproxOrder', 2, ...
+ 'PadeApproxOrder', 3, ...
'Position', [0; 0; -2], ... % in inertial frame, z points down
'Velocity', [0; 0; 0], ... % in inertial frame
'Angles', [0; 0; pi / 4], ... % in body frame
@@ -123,7 +123,7 @@ params.linearization = struct(...
);
% ------------------------------------------------------------------------
-% Performance requirements
+% Normalization (maximum values)
params.normalization = struct(...
'HPosition', 1, ... % m
diff --git a/uav_performance_hinf.m b/uav_performance_hinf.m
index 0a12b72..ba2fd3b 100644
--- a/uav_performance_hinf.m
+++ b/uav_performance_hinf.m
@@ -13,50 +13,41 @@
% PERF Struct performance transfer functions
-function [perf] = uav_performance(params, do_plots)
+function [perf] = uav_performance_hinf(params, do_plots)
% Laplace variable
s = tf('s');
-alpha_max = params.actuators.ServoAbsMaxAngle;
-alpha_max_omega = params.actuators.ServoNominalAngularVelocity;
+% Bandwitdhs
+bw_alpha = .7 * params.actuators.ServoNominalAngularVelocity;
+bw_omega = 8;
-T_xy = params.performance.HorizontalSettleTime;
-T_z = params.performance.VerticalSettleTime;
+bw_xy = .1;
+bw_z = .4;
-omega_nxy = 5 / T_xy;
-omega_nz = 10 / T_z;
+bw_xydot = .5;
+bw_zdot = .1;
-% W_Palpha = 1 / (s^2 + 2 * alpha_max_omega * s + alpha_max_omega^2);
-% W_Palpha = (1 - W_Palpha / dcgain(W_Palpha)) * .8;
-% W_Pomega = (1 - 1 / (T_z / 5 * s + 1)) * .1;
+bw_phitheta = bw_xy;
+bw_psi = .08;
-W_Palpha = make_weight(alpha_max_omega, 15, 1.1, 3);
-W_Pomega = make_weight(omega_nz, 50, 10);
+% Inverse performance functions
+W_Palpha = .25 / (s / bw_alpha + 1);
+W_Pomega = .1 / (s / bw_omega + 1);
-% zeta = 1; % Almost critically damped
-% W_Pxy = 1 / (s^2 + 2 * zeta * omega_nxy * s + omega_nxy^2);
-% W_Pxy = 1 * W_Pxy / dcgain(W_Pxy);
-% W_Pz = 1 / (s^2 + 2 * zeta * omega_nz * s + omega_nz^2);
-% W_Pz = 1 * W_Pz / dcgain(W_Pz);
+W_Pxy = 5 * bw_xy^2 / (s^2 + 2 * .9 * bw_xy * s + bw_xy^2);
+W_Pz = bw_z^2 / (s^2 + 2 * 1 * bw_z * s + bw_z^2);
-W_Pxy = make_weight(omega_nxy, 2, 5);
-W_Pz = make_weight(omega_nz, 1, 10);
-
-% Set a speed limit
-W_Pxydot = .2 * tf(1, 1);
-W_Pzdot = .2 * tf(1, 1);
+W_Pxydot = tf(.1); % .2 / (s / bw_xydot + 1);
+W_Pzdot = tf(.1); % .5 / (s / bw_zdot + 1);
-W_Pphitheta = .01 * tf(1, [.1, 1]);
-W_Ppsi = .01 * tf(1, 1); % don't care
-
-W_PTheta = tf(1, [.1, 1]) * eye(3);
+W_Pphitheta = .01 / (s / bw_phitheta + 1);
+W_Ppsi = tf(.1); % .1 / (s / bw_psi + 1);
% Construct performance vector by combining xy and z
W_PP = blkdiag(W_Pxy * eye(2), W_Pz);
W_PPdot = blkdiag(W_Pxydot * eye(2), W_Pzdot);
W_PTheta = blkdiag(W_Pphitheta * eye(2), W_Ppsi);
-
perf = struct(...
'FlapAngle', W_Palpha * eye(4), ...
'Thrust', W_Pomega, ...
diff --git a/uav_performance_musyn.m b/uav_performance_musyn.m
index aba2160..57237fa 100644
--- a/uav_performance_musyn.m
+++ b/uav_performance_musyn.m
@@ -19,30 +19,30 @@ function [perf] = uav_performance_musyn(params, do_plots)
s = tf('s');
% Bandwitdhs
-bw_alpha = params.actuators.ServoNominalAngularVelocity;
-bw_omega = 10;
+bw_alpha = .7 * params.actuators.ServoNominalAngularVelocity;
+bw_omega = 8;
-bw_xy = .05;
-bw_z = .05;
+bw_xy = .1;
+bw_z = .4;
bw_xydot = .5;
bw_zdot = .1;
-bw_phitheta = .1;
+bw_phitheta = bw_xy;
bw_psi = .08;
% Inverse performance functions
-W_Palpha = .2 / (s / bw_alpha + 1);
-W_Pomega = .2 / (s / bw_omega + 1);
+W_Palpha = .25 / (s / bw_alpha + 1);
+W_Pomega = .1 / (s / bw_omega + 1);
-W_Pxy = 8 * bw_xy^2 / (s^2 + 2 * 1 * bw_xy * s + bw_xy^2);
-W_Pz = 1 * bw_z^2 / (s^2 + 2 * 1 * bw_z * s + bw_z^2);
+W_Pxy = 2 * bw_xy^2 / (s^2 + 2 * .9 * bw_xy * s + bw_xy^2);
+W_Pz = bw_z^2 / (s^2 + 2 * 1 * bw_z * s + bw_z^2);
-W_Pxydot = .2 / (s / bw_xydot + 1);
-W_Pzdot = .5 / (s / bw_zdot + 1);
+W_Pxydot = tf(.1); % .2 / (s / bw_xydot + 1);
+W_Pzdot = tf(.1); % .5 / (s / bw_zdot + 1);
-W_Pphitheta = 1 / (s / bw_phitheta + 1);
-W_Ppsi = .1 / (s / bw_psi + 1);
+W_Pphitheta = .01 / (s / bw_phitheta + 1);
+W_Ppsi = tf(.1); % .1 / (s / bw_psi + 1);
% Construct performance vector by combining xy and z
W_PP = blkdiag(W_Pxy * eye(2), W_Pz);
@@ -60,14 +60,14 @@ if do_plots
% Bode plots of performance requirements
figure; hold on;
- bodemag(W_Palpha);
- bodemag(W_Pomega);
- bodemag(W_Pxy);
- bodemag(W_Pz);
- bodemag(W_Pxydot);
- bodemag(W_Pzdot);
- bodemag(W_Pphitheta);
- bodemag(W_Ppsi);
+ bodemag(1/W_Palpha);
+ bodemag(1/W_Pomega);
+ bodemag(1/W_Pxy);
+ bodemag(1/W_Pz);
+ bodemag(1/W_Pxydot);
+ bodemag(1/W_Pzdot);
+ bodemag(1/W_Pphitheta);
+ bodemag(1/W_Ppsi);
grid on;
legend('$W_{P,\alpha}$', '$W_{P,\omega}$', ...
@@ -75,7 +75,8 @@ if do_plots
'$W_{P,\dot{x}\dot{y}}$', '$W_{P,\dot{z}}$', ...
'$W_{P,\phi\theta}$', '$W_{P,\psi}$', ...
'interpreter', 'latex', 'fontSize', 8);
- title('Performance Requirements');
+ title('\bfseries Inverse Performance Requirements', ...
+ 'interpreter', 'latex');
% Step response of position requirements
figure; hold on;
diff --git a/uav_sim_step.m b/uav_sim_step.m
index 973a928..82c05e9 100644
--- a/uav_sim_step.m
+++ b/uav_sim_step.m
@@ -22,6 +22,16 @@ P_nom_clp = minreal(usys_clp(...
model.uncertain.index.OutputPlots], ...
model.uncertain.index.InputExogenous), [], false);
+% Check that closed loop is actually stable
+eigvals = eig(P_nom_clp.A);
+nx = size(P_nom_clp.A, 1);
+
+for i = 1:nx
+ if real(eigvals(i)) >= 0
+ error('Closed loop is not stable!');
+ end
+end
+
% Indices for exogenous inputs
Iwwind = (1:3)';
Iwalpha = (4:7)';
@@ -236,10 +246,10 @@ if do_plots
hold on;
step(P_nom_clp(Iomega, Ir(3)) * to_rpm, T);
- plot([0, T], [1, 1] * omega_min_rpm, 'r--');
- plot([0, T], [1, 1] * omega_max_rpm, 'r--');
+ % plot([0, T], [1, 1] * omega_min_rpm, 'r--');
+ % plot([0, T], [1, 1] * omega_max_rpm, 'r--');
grid on;
- ylim([omega_min_rpm - 1, omega_max_rpm + 1]);
+ % ylim([omega_min_rpm - 1, omega_max_rpm + 1]);
title('Vertical $z$ to Thruster $\omega$', 'Interpreter', 'latex');
ylabel('Angular Velocity (RPM)', 'Interpreter', 'latex');
xlabel('Time (seconds)', 'Interpreter', 'latex');
diff --git a/uav_uncertainty.m b/uav_uncertainty.m
index b664cee..53cd975 100644
--- a/uav_uncertainty.m
+++ b/uav_uncertainty.m
@@ -28,20 +28,12 @@ eps_d = params.aerodynamics.DragCoefficientsUncertainties(1);
eps_omega = max(.5 * eps_T, eps_r);
eps_alpha = max(eps_l + eps_S + 2 * eps_omega, eps_S + eps_d + eps_omega);
-% TODO: set proper constraints
-% band pass parameters for W_malpha
-% wh = 20; % high freq
-% wl = .1; % low freq
+b = 10;
+G_highpass = make_weight(b, 1, .1);
-% W_malpha = eps_alpha * (s / wl) / ((s / wh + 1) * (s / wl + 1));
-% W_momega = eps_omega * 10 / (s + 10);
-% W_mState = .01 * 10 / (s + 10);
-
-b = 1e3;
-
-W_malpha = make_weight(b, 1 / eps_alpha, 1e-2);
-W_momega = tf(0);
-W_mState = 1 - 1 / (s / 50 + 1);
+W_malpha = eps_alpha * G_highpass;
+W_momega = eps_omega * G_highpass;
+W_mState = .1 * G_highpass;
uncert = struct(...
'FlapAngle', W_malpha * eye(4), ...