summaryrefslogtreecommitdiffstats
path: root/uav.m
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--uav.m229
1 files changed, 133 insertions, 96 deletions
diff --git a/uav.m b/uav.m
index d9198c4..059c944 100644
--- a/uav.m
+++ b/uav.m
@@ -10,11 +10,7 @@ clear; clc; close all; s = tf('s');
do_plots = true; % runs faster without
do_hinf = true; % midterm
-do_musyn = false; % endterm
-
-if do_hinf & do_musyn
- error('Cannot do both H-infinity and mu synthesis.')
-end
+do_musyn = true; % endterm
fprintf('Controller synthesis for ducted fan VTOL micro-UAV\n')
fprintf('Will do:\n')
@@ -40,24 +36,14 @@ params = uav_params();
%% ------------------------------------------------------------------------
% Define performance requirements
-if do_hinf
- fprintf('Generating performance requirements...\n')
- perf = uav_performance_hinf(params, do_plots);
-end
-if do_musyn
- fprintf('Generating performance requirements...\n')
- perf = uav_performance_musyn(params, do_plots);
-end
+fprintf('Generating performance requirements...\n')
+perf = uav_performance_musyn(params, do_plots);
%% ------------------------------------------------------------------------
% Define stability requirements
-% Note: for hinf it is needed to call uav_model, but hinf will not actually
-% make use of this struct
-if do_hinf | do_musyn
- fprintf('Generating stability requirements...\n')
- uncert = uav_uncertainty(params, do_plots);
-end
+fprintf('Generating stability requirements...\n')
+uncert = uav_uncertainty(params, do_plots);
%% ------------------------------------------------------------------------
% Create UAV model
@@ -81,38 +67,42 @@ if do_hinf
nmeas = model.uncertain.Ny;
nctrl = model.uncertain.Nu;
- hinfopt = hinfsynOptions('Display', 'on', 'Method', 'RIC', ...
+ hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
'AutoScale', 'off', 'RelTol', 1e-3);
[K_inf, ~, gamma, info] = hinfsyn(P_nom, nmeas, nctrl, hinfopt);
+ fprintf(' - H-infinity synthesis gamma: %g\n', gamma);
ctrl.hinf = struct('Name', '$\mathcal{H}_{\infty}$', 'K', K_inf);
if gamma >= 1
- fprintf('Failed to syntesize controller (closed loop is unstable).\n')
+ error('Failed to syntesize controller (closed loop is unstable).')
end
%% ------------------------------------------------------------------------
% Measure Performance of H-infinity design
- fprintf('Simulating closed loop...\n');
+ fprintf(' - Simulating closed loop...\n');
+ T = 60;
nsamples = 500;
do_noise = true;
- simout = uav_sim_step_hinf(params, model, ctrl.hinf, nsamples, do_plots, do_noise);
+ simout = uav_sim_step(params, model, ctrl.hinf, nsamples, T, do_plots, do_noise);
- fprintf('Writing simulation results...\n');
+ fprintf(' - Writing simulation results...\n');
cols = [
simout.StepX(:, simout.index.Position), ...
simout.StepX(:, simout.index.Velocity), ...
simout.StepX(:, simout.index.FlapAngles) * 180 / pi, ...
simout.StepX(:, simout.index.Angles) * 180 / pi];
- writematrix([simout.TimeXY', cols], 'fig/stepsim.dat', 'Delimiter', 'tab')
+ writematrix([simout.Time', cols], 'fig/stepsim.dat', 'Delimiter', 'tab')
end
%% ------------------------------------------------------------------------
% Perform mu-Analysis & DK iteration
if do_musyn
+ drawnow;
+
fprintf('Performing mu-synthesis controller design...\n')
% Get complete system (without debugging outputs for plots)
@@ -125,31 +115,29 @@ if do_musyn
% Options for H-infinity
nmeas = model.uncertain.Ny;
nctrl = model.uncertain.Nu;
- hinfopt = hinfsynOptions('Display', 'on', 'Method', 'RIC', ...
- 'AutoScale', 'on', 'RelTol', 1e-1);
+ hinfopt = hinfsynOptions('Display', 'off', 'Method', 'RIC', ...
+ 'AutoScale', 'on', 'RelTol', 1e-3);
% Frequency raster resolution to fit D scales
- nsamples = 800;
- omega = logspace(-1, 3, nsamples);
+ nsamples = 600;
+ omega_max = 3;
+ omega_min = -3;
+
+ omega = logspace(omega_min, omega_max, nsamples);
+ omega_range = {10^omega_min, 10^omega_max};
- % Initial values for D-K iteration
+ % Initial values for D-K iteration are identity matrices
D_left = tf(eye(model.uncertain.Nz + model.uncertain.Ne + model.uncertain.Ny));
D_right = tf(eye(model.uncertain.Nv + model.uncertain.Nw + model.uncertain.Nu));
- % degrees for approximations for D-scales, tuned by hand
- fit_degrees = [
- 1, 1, 1, 1, 1, 1; % alpha
- 1, 1, 1, 1, 1, 1; % omega
- 1, 1, 1, 1, 1, 1; % state
- 6, 1, 4, 2, 2, 1; % perf
- ];
+ % Maximum number of D-K iterations
+ niters = 5;
+ fprintf(' - Will do at most %d iterations.\n', niters);
- % Number of D-K iterations
- niters = size(fit_degrees, 2);
-
- % Maximum degree of D-scales
- d_scales_max_err = .01;% in percentage
- d_scales_max_degree = 8;
+ % Maximum degree of D-scales and error
+ d_scales_max_degree = 3;
+ d_scales_max_err_p = .4; % in percentage
+ d_scales_improvement_p = .15; % in percentage
% for plotting later
mu_plot_legend = {};
@@ -157,21 +145,26 @@ if do_musyn
% Start DK-iteration
dkstart = tic;
for it = 1:niters
- fprintf(' - Running D-K iteration %d / %d...\n', it, niters);
+ fprintf(' * Running D-K iteration %d / %d...\n', it, niters);
itstart = tic();
% Find controller using H-infinity
- [K, ~, gamma, ~] = hinfsyn(D_left * P * D_right, nmeas, nctrl, hinfopt);
+ P_scaled = minreal(D_left * P * inv(D_right), [], false);
+ [P_scaled, ~] = prescale(P_scaled, omega_range);
+ [K, ~, gamma, ~] = hinfsyn(P_scaled, nmeas, nctrl, hinfopt);
+
fprintf(' H-infinity synthesis gamma: %g\n', gamma);
if gamma == inf
- fprintf(' Failed to synethesize H-infinity controller\n');
- break;
+ error('Failed to synethesize H-infinity controller');
end
% Calculate frequency response of closed loop
- N = minreal(lft(P, K), [], false); % slient
+ N = minreal(lft(P, K), [], false);
M = minreal(N(idx.OutputUncertain, idx.InputUncertain), [], false);
+ [N, ~] = prescale(N, omega_range);
+ [M, ~] = prescale(M, omega_range);
+
N_frd = frd(N, omega);
M_frd = frd(M, omega);
@@ -187,13 +180,13 @@ if do_musyn
fprintf(' SSV for Performance: %g, for Stability: %g\n', mu_rp, mu_rs);
if do_plots
- fprintf(' Plotting mu\n');
+ fprintf(' Plotting SSV mu\n');
figure(100); hold on;
bodemag(mu_bounds_rp(1,1));
mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{P,%d}$', it)};
- bodemag(mu_bounds_rs(1,1), '-.');
+ bodemag(mu_bounds_rs(1,1), 'k:');
mu_plot_legend = {mu_plot_legend{:}, sprintf('$\\mu_{S,%d}$', it)};
title('\bfseries $\mu_\Delta(\omega)$ for both Stability and Performance', ...
@@ -206,109 +199,123 @@ if do_musyn
% Are we done yet?
if mu_rp < 1
fprintf(' - Found robust controller that meets performance.\n');
- break
+ break;
+ end
+
+ if mu_rs < 1
+ fprintf(' Found robust controller that is stable.\n')
+ ctrl.musyn = struct('Name', '$\mu$-Synthesis', 'K', K, ...
+ 'mu_rp', mu_rp, 'mu_rs', mu_rs);
end
% Fit D-scales
- % There are three complex, square, full block uncertainties and
- % a non-square full complex block for performance
- [D_left_samples, D_right_samples] = mussvunwrap(mu_info_rp);
+ [D_left_frd, D_right_frd] = mussvunwrap(mu_info_rp);
fprintf(' Fitting D-scales\n');
- i_alpha = 1;
- i_omega = model.uncertain.BlockStructure(1, 1) + 1; % after first block
- i_state = model.uncertain.BlockStructure(2, 1) + 1; % after second block
- i_perf = model.uncertain.BlockStructurePerf(3, 1) + 1; % after third block
-
- D_samples = {
- D_left_samples(i_alpha, i_alpha);
- D_left_samples(i_omega, i_omega);
- D_left_samples(i_state, i_state);
- D_left_samples(i_perf, i_perf);
+ % There are three complex, square, full block uncertainties and
+ % a non-square full complex block for performance
+ i_alpha = [1, 1];
+ i_omega = model.uncertain.BlockStructure(1, :) + 1; % after first block
+ i_state = sum(model.uncertain.BlockStructure(1:2, :)) + 1; % after second block
+ i_perf = sum(model.uncertain.BlockStructurePerf(1:3, :)) + 1; % after third block
+
+ D_frd = {
+ D_left_frd(i_alpha(1), i_alpha(1));
+ D_left_frd(i_omega(1), i_omega(1));
+ D_left_frd(i_state(1), i_state(1));
+ D_left_frd(i_perf(1), i_perf(1));
};
D_max_sv = {
- max(max(sigma(D_samples{1})));
- max(max(sigma(D_samples{2})));
- max(max(sigma(D_samples{3})));
- max(max(sigma(D_samples{4})));
+ max(max(sigma(D_frd{1, 1})));
+ max(max(sigma(D_frd{2, 1})));
+ max(max(sigma(D_frd{3, 1})));
+ max(max(sigma(D_frd{4, 1})));
};
D_names = {'alpha', 'omega', 'state', 'perf'};
D_fitted = {};
+ % for each block
for j = 1:4
+ % for each in left and right
fprintf(' %s', D_names{j});
-
best_fit_deg = inf;
best_fit_err = inf;
-
- for deg = fit_degrees(j, it):d_scales_max_degree
+ for deg = 0:d_scales_max_degree
% Fit D-scale
- % D_fit = fitmagfrd(D_samples{j}, deg);
- D_fit = fitfrd(genphase(D_samples{j}), deg);
+ D_fit = fitmagfrd(D_frd{j}, deg);
+ % D_fit = fitfrd(genphase(D_frd{j}), deg);
% Check if it is a good fit
max_sv = max(max(sigma(D_fit, omega)));
fit_err = abs(D_max_sv{j} - max_sv);
if fit_err < best_fit_err
- best_fit_deg = deg;
- best_fit_err = fit_err;
- D_fitted{j} = D_fit;
+ % Choose higher degree only if we improve by at least a specified
+ % percentage over the previous best fit (or we are at the first
+ % iteration). This is a heuristic to avoid adding too many states
+ % to the controller as it depends on the order of the D-scales.
+ if abs(best_fit_err - fit_err) / best_fit_err > d_scales_improvement_p || best_fit_err == inf
+ best_fit_deg = deg;
+ best_fit_err = fit_err;
+ D_fitted{j} = D_fit;
+ end
end
- if fit_err / D_max_sv{j} < d_scales_max_err
+ if (fit_err / D_max_sv{j} < d_scales_max_err_p)
break;
end
fprintf('.');
end
- fprintf(' degree %d, error %g\n', best_fit_deg, best_fit_err);
+ fprintf(' degree %d, error %g (%g %%)\n', ...
+ best_fit_deg, best_fit_err, 100 * best_fit_err / D_max_sv{j});
end
% Construct full matrices
- D_right = blkdiag(D_fitted{1} * eye(4), ...
- D_fitted{2} * eye(1), ...
- D_fitted{3} * eye(12), ...
- D_fitted{4} * eye(10), ...
- eye(5));
-
D_left = blkdiag(D_fitted{1} * eye(4), ...
D_fitted{2} * eye(1), ...
D_fitted{3} * eye(12), ...
D_fitted{4} * eye(14), ...
eye(12));
+ D_right = blkdiag(D_fitted{1} * eye(4), ...
+ D_fitted{2} * eye(1), ...
+ D_fitted{3} * eye(12), ...
+ D_fitted{4} * eye(10), ...
+ eye(5));
+
% Compute peak of singular values for to estimate how good is the
% approximation of the D-scales
- sv_left_samples = sigma(D_left_samples);
- max_sv_left_samples = max(max(sv_left_samples));
+ sv_left_frd = sigma(D_left_frd);
+ max_sv_left_frd = max(max(sv_left_frd));
sv_left = sigma(D_left, omega);
max_sv_left = max(max(sv_left));
- fprintf(' Max SVD of D: %g, Dhat: %g\n', max_sv_left_samples, max_sv_left);
- fprintf(' D scales fit abs. error: %g\n', abs(max_sv_left_samples - max_sv_left));
+ fprintf(' Max SVD of D: %g, Dhat: %g\n', max_sv_left_frd, max_sv_left);
+ fprintf(' D scales fit rel. error: %g %%\n', ...
+ 100 * abs(max_sv_left_frd - max_sv_left) / max_sv_left_frd);
% Plot fitted D-scales
if do_plots
fprintf(' Plotting D-scales');
f = figure(101); clf(f); hold on;
- bodemag(D_samples{1}, omega, 'r-');
+ bodemag(D_frd{1}, omega, 'r-');
bodemag(D_fitted{1}, omega, 'b');
fprintf('.');
- bodemag(D_samples{2}, omega, 'r--');
+ bodemag(D_frd{2}, omega, 'r--');
bodemag(D_fitted{2}, omega, 'b--');
fprintf('.');
- bodemag(D_samples{3}, omega, 'c-');
+ bodemag(D_frd{3}, omega, 'c-');
bodemag(D_fitted{3}, omega, 'm-');
fprintf('.');
- bodemag(D_samples{4}, omega, 'c--');
+ bodemag(D_frd{4}, omega, 'c--');
bodemag(D_fitted{4}, omega, 'm--');
fprintf('.');
@@ -332,9 +339,39 @@ if do_musyn
dkend = toc(dkstart);
fprintf(' - D-K iteration took %.1f seconds\n', dkend);
- if mu_rp > 1
- fprintf(' - Failed to synthesize robust controller that meets the desired performance.\n');
- else
- ctrl.musyn = struct('K', K, 'mu', mu_rp);
+ if mu_rp > 1 && mu_rs > 1
+ error(' - Failed to synthesize robust controller that meets the desired performance.\n');
+ end
+
+ %% Fit worst-case perturbation
+ fprintf(' - Computing worst case perturbation.\n')
+
+ % Find peak of mu
+ [mu_upper_bound_rp, ~] = frdata(mu_bounds_rp(1,1));
+ max_mu_rp_idx = find(mu_rp == mu_upper_bound_rp, 1);
+ Delta = mussvunwrap(mu_info_rp);
+ % TODO: finish here
+
+ % Save controller
+ ctrl.musyn = struct('Name', '$\mu$-Synthesis', ...
+ 'K', K, 'Delta', Delta, ...
+ 'mu_rp', mu_rp, 'mu_rs', mu_rs);
+
+ if mu_rp >= 1
+ fprintf(' - Synthetized robust stable controller does not meet the desired performance.\n');
end
+
+%% ------------------------------------------------------------------------
+% Measure Performance of mu synthesis design
+
+ fprintf('Simulating nominal closed loop...\n');
+
+ T = 60;
+ nsamples = 5000;
+ do_noise = true;
+
+ simout = uav_sim_step(params, model, ctrl.musyn, nsamples, T, do_plots, do_noise);
+
+ fprintf('Simulating worst-case closed loop...\n');
+
end