summaryrefslogtreecommitdiffstats
path: root/uav_model.m
diff options
context:
space:
mode:
Diffstat (limited to 'uav_model.m')
-rw-r--r--uav_model.m178
1 files changed, 89 insertions, 89 deletions
diff --git a/uav_model.m b/uav_model.m
index 7b2bf9d..2ae4d96 100644
--- a/uav_model.m
+++ b/uav_model.m
@@ -31,25 +31,25 @@ alpha = [alpha_1; alpha_2; alpha_3; alpha_4];
% positive / negative with respect to the roll / pitch axis to which they
% are attached to. Reference table:
%
-% angle attached axis lift force direction
-% when angle is positive
-% ------- ------------- ----------------------
-% alpha_1 pos. x axis y direction
-% alpha_2 pos. y axis -x direction
-% alpha_3 neg. x axis y direction
-% alpha_4 neg. y axis -x direction
+% angle attached axis lift force direction
+% when angle is positive
+% ------- ------------- ----------------------
+% alpha_1 pos. x axis y direction
+% alpha_2 pos. y axis -x direction
+% alpha_3 neg. x axis y direction
+% alpha_4 neg. y axis -x direction
% Rotation matrix to change between frames of reference:
% multiplying by R moves from the inertial frame to the body frame
% to go from body frame to inertial frame use R transpose (R is SO(3))
R = [
- cos(theta) * cos(psi), cos(theta) * sin(psi), -sin(theta);
- (sin(phi) * sin(theta) * cos(psi) - cos(phi) * sin(psi)), ...
- (sin(phi) * sin(theta) * sin(psi) + cos(phi) * cos(psi)), ...
- sin(phi) * cos(theta);
- (cos(phi) * sin(theta) * cos(psi) + sin(phi) * sin(psi)), ...
- (cos(phi) * sin(theta) * sin(psi) - sin(phi) * cos(psi)), ...
- cos(phi) * cos(theta);
+ cos(theta) * cos(psi), cos(theta) * sin(psi), -sin(theta);
+ (sin(phi) * sin(theta) * cos(psi) - cos(phi) * sin(psi)), ...
+ (sin(phi) * sin(theta) * sin(psi) + cos(phi) * cos(psi)), ...
+ sin(phi) * cos(theta);
+ (cos(phi) * sin(theta) * cos(psi) + sin(phi) * sin(psi)), ...
+ (cos(phi) * sin(theta) * sin(psi) - sin(phi) * cos(psi)), ...
+ cos(phi) * cos(theta);
];
% Matrix to relate Euler angles to angular velocity in the body frame
@@ -79,7 +79,7 @@ nu = omega / pi * sqrt(k_T / (2 * a * rho));
% Aerodynamic force caused by flaps in body frame
F_flap = @(alpha, uvec_n) rho * S * nu^2 / 2 * (...
- (c_d * alpha^2 + c_0) * uvec_z + c_l * alpha * uvec_n);
+ (c_d * alpha^2 + c_0) * uvec_z + c_l * alpha * uvec_n);
F_1 = F_flap(alpha_1, uvec_y);
F_2 = F_flap(alpha_2, uvec_x);
@@ -94,12 +94,12 @@ tau_4 = cross((d * uvec_z - a/3 * uvec_y), F_4);
% Total force acting on the UAV in the body frame
F = R * (m * g * uvec_k) ... % gravity
- - k_T * omega^2 * uvec_z ... % thrust
- + F_1 + F_2 + F_3 + F_4; % flaps
+ - k_T * omega^2 * uvec_z ... % thrust
+ + F_1 + F_2 + F_3 + F_4; % flaps
% Total torque acting on the UAV in the body frame
tau = J_r * omega * R * cross(uvec_k, Omega) + ... % gyroscopic procession
- tau_1 + tau_2 + tau_3 + tau_4; % flaps
+ tau_1 + tau_2 + tau_3 + tau_4; % flaps
% State space form with state variable xi and input u
%
@@ -115,10 +115,10 @@ u = [alpha; omega];
% Right hand side of dynamics dxi = f(xi, u)
f = [
- Pdot;
- R' * F / m; % translational dynamics
- U * Omega;
- inv(J) * (tau - cross(Omega, J * Omega)); % rotational dynamics
+ Pdot;
+ R' * F / m; % translational dynamics
+ U * Omega;
+ inv(J) * (tau - cross(Omega, J * Omega)); % rotational dynamics
];
% ------------------------------------------------------------------------
@@ -126,10 +126,10 @@ f = [
% Equilibrium point
xi_eq = [
- params.linearization.Position;
- params.linearization.Velocity;
- params.linearization.Angles;
- params.linearization.AngularVelocities;
+ params.linearization.Position;
+ params.linearization.Velocity;
+ params.linearization.Angles;
+ params.linearization.AngularVelocities;
];
u_eq = params.linearization.Inputs;
@@ -139,31 +139,31 @@ B = subs(jacobian(f, u), [xi; u], [xi_eq; u_eq]);
% Insert values of parameters
phy = struct(...
- 'g', params.physics.Gravity, ...
- 'rho', params.physics.AirDensity ...
+ 'g', params.physics.Gravity, ...
+ 'rho', params.physics.AirDensity ...
);
A = subs(A, phy);
B = subs(B, phy);
mech = struct(...
- 'm', params.mechanical.Mass, ...
- 'a', params.mechanical.DuctRadius, ...
- 'b', params.mechanical.DuctHeight, ...
- 'd', params.mechanical.FlapZDistance, ...
- 'J_1', params.mechanical.InertiaTensor(1, 1), ...
- 'J_2', params.mechanical.InertiaTensor(2, 2), ...
- 'J_3', params.mechanical.InertiaTensor(3, 3), ...
- 'J_r', params.mechanical.GyroscopicInertiaZ ...
+ 'm', params.mechanical.Mass, ...
+ 'a', params.mechanical.DuctRadius, ...
+ 'b', params.mechanical.DuctHeight, ...
+ 'd', params.mechanical.FlapZDistance, ...
+ 'J_1', params.mechanical.InertiaTensor(1, 1), ...
+ 'J_2', params.mechanical.InertiaTensor(2, 2), ...
+ 'J_3', params.mechanical.InertiaTensor(3, 3), ...
+ 'J_r', params.mechanical.GyroscopicInertiaZ ...
);
A = subs(A, mech);
B = subs(B, mech);
aero = struct(...
- 'k_T', params.aerodynamics.ThrustOmegaProp, ...
- 'S', params.aerodynamics.FlapArea, ...
- 'c_d', params.aerodynamics.DragCoefficients(1), ...
- 'c_0', params.aerodynamics.DragCoefficients(2), ...
- 'c_l', params.aerodynamics.LiftCoefficient ...
+ 'k_T', params.aerodynamics.ThrustOmegaProp, ...
+ 'S', params.aerodynamics.FlapArea, ...
+ 'c_d', params.aerodynamics.DragCoefficients(1), ...
+ 'c_0', params.aerodynamics.DragCoefficients(2), ...
+ 'c_l', params.aerodynamics.LiftCoefficient ...
);
A = subs(A, aero);
B = subs(B, aero);
@@ -196,51 +196,51 @@ eigvals = eig(A);
% Check system controllability / stabilizability
Wc = ctrb(sys);
if rank(Wc) < nx
- fprintf('Linearized system has %d uncontrollable states!\n', ...
- (nx - rank(Wc)));
-
- % Is the system at least stabilizable?
- unstabilizable = 0;
- for i = 1:nx
- if real(eigvals(i)) >= 0
- % PBH test
- W = [(A - eigvals(i) * eye(size(A))), B];
- if rank(W) < nx
- % fprintf(' State %d is not stabilizable\n', i);
- unstabilizable = unstabilizable + 1;
- end
- end
- end
- if unstabilizable > 0
- fprintf('Linearized system has %d unstabilizable modes!\n', ...
- unstabilizable);
- else
- fprintf('However, it is stabilizable.\n');
- end
+ fprintf('Linearized system has %d uncontrollable states!\n', ...
+ (nx - rank(Wc)));
+
+ % Is the system at least stabilizable?
+ unstabilizable = 0;
+ for i = 1:nx
+ if real(eigvals(i)) >= 0
+ % PBH test
+ W = [(A - eigvals(i) * eye(size(A))), B];
+ if rank(W) < nx
+ % fprintf(' State %d is not stabilizable\n', i);
+ unstabilizable = unstabilizable + 1;
+ end
+ end
+ end
+ if unstabilizable > 0
+ fprintf('Linearized system has %d unstabilizable modes!\n', ...
+ unstabilizable);
+ else
+ fprintf('However, it is stabilizable.\n');
+ end
end
% Check system observability / detectability
Wo = obsv(sys);
if rank(Wo) < nx
- fprintf('Linearized system has %d unobservable state!\n', ...
- (nx - rank(Wo)));
- % is the system at least detectable?
- undetectable = 0
- for i = 1:nx
- if real(eigvals(i)) >= 0
- % PBH test
- W = [C; (A - eigvals(i) * eye(size(A)))];
- if rank(W) < nx
- undetectable = undetectable + 1;
- end
- end
- end
- if undetectable > 0
- fprintf('Linearized system has %d undetectable modes!\n', ...
- undetectable);
- else
- fprintf('However, it is detectable.')
- end
+ fprintf('Linearized system has %d unobservable state!\n', ...
+ (nx - rank(Wo)));
+ % is the system at least detectable?
+ undetectable = 0
+ for i = 1:nx
+ if real(eigvals(i)) >= 0
+ % PBH test
+ W = [C; (A - eigvals(i) * eye(size(A)))];
+ if rank(W) < nx
+ undetectable = undetectable + 1;
+ end
+ end
+ end
+ if undetectable > 0
+ fprintf('Linearized system has %d undetectable modes!\n', ...
+ undetectable);
+ else
+ fprintf('However, it is detectable.')
+ end
end
% ------------------------------------------------------------------------
@@ -250,21 +250,21 @@ model = struct();
% Function to compute the rotation matrix
model.FrameRot = @(pitch, roll, yaw) ...
- subs(R, [phi, theta, psi], [pitch, roll, yaw]);
+ subs(R, [phi, theta, psi], [pitch, roll, yaw]);
% Equations of non-linear model (algebraic)
model.nonlinear = struct(...
- 'State', xi, ...
- 'Inputs', u, ...
- 'Dynamics', f ...
+ 'State', xi, ...
+ 'Inputs', u, ...
+ 'Dynamics', f ...
);
% Linearized dynamics (numerical)
model.linear = struct(...
- 'Nx', nx, 'Nu', nu, 'Ny', ny, ... % number of states, inputs, and outputs
- 'State', xi, 'Inputs', u, ... % state and input variables
- 'StateEq', xi_eq, 'InputEq', u_eq, ... % where the system was linearized
- 'StateSpace', sys ... % state space object
+ 'Nx', nx, 'Nu', nu, 'Ny', ny, ... % number of states, inputs, and outputs
+ 'State', xi, 'Inputs', u, ... % state and input variables
+ 'StateEq', xi_eq, 'InputEq', u_eq, ... % where the system was linearized
+ 'StateSpace', sys ... % state space object
);
end