summaryrefslogtreecommitdiffstats
path: root/uav_sim_step_lqr.m
diff options
context:
space:
mode:
Diffstat (limited to 'uav_sim_step_lqr.m')
-rw-r--r--uav_sim_step_lqr.m211
1 files changed, 0 insertions, 211 deletions
diff --git a/uav_sim_step_lqr.m b/uav_sim_step_lqr.m
deleted file mode 100644
index e672d35..0000000
--- a/uav_sim_step_lqr.m
+++ /dev/null
@@ -1,211 +0,0 @@
-% Simulate a step responses of ducted-fan VTOL micro-UAV.
-%
-% Copyright (C) 2024, Naoki Sean Pross, ETH Zürich
-% This work is distributed under a permissive license, see LICENSE.txt
-
-function [simout] = uav_sim_step_lqr(params, model, ctrl, nsamp, do_plots)
-
-% TODO: Close loop
-
-% Create step inputs (normalized)
-noise = zeros(7, nsamp); % no noise
-ref_step = ones(1, nsamp); % 1d step function
-
-in_step_x = [ noise; ref_step; zeros(2, nsamp) ];
-in_step_y = [ noise; zeros(1, nsamp); ref_step; zeros(1, nsamp) ];
-in_step_z = [ noise; zeros(2, nsamp); ref_step ];
-
-% Simulation time
-n_settle_times = 10;
-T_final_horiz = n_settle_times * params.performance.HorizontalSettleTime;
-T_final_vert = n_settle_times * params.performance.VerticalSettleTime;
-
-t_xy = linspace(0, T_final_horiz, nsamp);
-t_z = linspace(0, T_final_vert, nsamp);
-
-% Simulate step responses
-out_step_x = lsim(P_nom_clp, in_step_x, t_xy);
-out_step_y = lsim(P_nom_clp, in_step_y, t_xy);
-out_step_z = lsim(P_nom_clp, in_step_z, t_z);
-
-if do_plots
- % Conversion factors
- to_deg = 180 / pi; % radians to degrees
- to_rpm = pi / 30; % rad / s to RPM
-
- % Figure for flaps and Euler angles
- figure;
- sgtitle(sprintf(...
- '\\bfseries Step Response of Flap and Euler Angles (%s)', ...
- ctrl.Name), 'Interpreter', 'latex');
-
- % Plot limits
- ref_value = params.performance.ReferencePosMaxDistance;
- alpha_max_deg = params.actuators.ServoAbsMaxAngle * to_deg;
- euler_lim_deg = 1.5; % params.performance.AngleMaxPitchRoll * to_deg;
- omega_max_rpm = (params.actuators.PropellerMaxAngularVelocity ...
- - params.linearization.Inputs(5)) * to_rpm;
- omega_min_rpm = -params.linearization.Inputs(5) * to_rpm;
-
- % Plot step response from x to alpha
- subplot(2, 3, 1);
- hold on;
- plot(t_xy, out_step_x(:, Ialpha(1)) * to_deg);
- plot(t_xy, out_step_x(:, Ialpha(2)) * to_deg);
- plot(t_xy, out_step_x(:, Ialpha(3)) * to_deg);
- plot(t_xy, out_step_x(:, Ialpha(4)) * to_deg);
- plot([0, T_final_horiz], [1, 1] * alpha_max_deg, 'r--');
- plot([0, T_final_horiz], [-1, -1] * alpha_max_deg, 'r--');
- grid on;
- xlim([0, T_final_horiz]);
- ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]);
- title('Horizontal $x$ to Flaps', 'Interpreter', 'latex');
- ylabel('Flap Angle (degrees)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ...
- 'Interpreter', 'latex');
-
- % Plot step response from y to alpha
- subplot(2, 3, 2); hold on;
- plot(t_xy, out_step_y(:, Ialpha(1)) * to_deg);
- plot(t_xy, out_step_y(:, Ialpha(2)) * to_deg);
- plot(t_xy, out_step_y(:, Ialpha(3)) * to_deg);
- plot(t_xy, out_step_y(:, Ialpha(4)) * to_deg);
- plot([0, T_final_horiz], [1, 1] * alpha_max_deg, 'r--');
- plot([0, T_final_horiz], [-1, -1] * alpha_max_deg, 'r--');
- grid on;
- xlim([0, T_final_horiz]);
- ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]);
- title('Horizontal $y$ to Flaps', 'Interpreter', 'latex');
- ylabel('Flap Angle (degrees)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ...
- 'Interpreter', 'latex');
-
- % Plot step response from z to alpha
- subplot(2, 3, 3); hold on;
- plot(t_z, out_step_z(:, Ialpha(1)) * to_deg);
- plot(t_z, out_step_z(:, Ialpha(2)) * to_deg);
- plot(t_z, out_step_z(:, Ialpha(3)) * to_deg);
- plot(t_z, out_step_z(:, Ialpha(4)) * to_deg);
- plot([0, T_final_vert], [1, 1] * alpha_max_deg, 'r--');
- plot([0, T_final_vert], [-1, -1] * alpha_max_deg, 'r--');
- grid on;
- xlim([0, T_final_vert]);
- ylim([-alpha_max_deg * 1.1, alpha_max_deg * 1.1]);
- title('Vertical $z$ to Flaps', 'Interpreter', 'latex');
- ylabel('Flap Angle (degrees)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$\alpha_1(t)$', '$\alpha_2(t)$', '$\alpha_3(t)$', '$\alpha_4(t)$', ...
- 'Interpreter', 'latex');
-
- % Plot step response from x to Theta
- subplot(2, 3, 4); hold on;
- plot(t_xy, out_step_x(:, ITheta(1)) * to_deg);
- plot(t_xy, out_step_x(:, ITheta(2)) * to_deg);
- plot(t_xy, out_step_x(:, ITheta(3)) * to_deg);
- grid on;
- xlim([0, T_final_horiz]);
- ylim([-euler_lim_deg, euler_lim_deg]);
- title('Horizontal $x$ to Euler Angles', 'Interpreter', 'latex');
- ylabel('Euler Angle (degrees)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ...
- 'Interpreter', 'latex');
-
- % Plot step response from y to Theta
- subplot(2, 3, 5); hold on;
- plot(t_xy, out_step_y(:, ITheta(1)) * to_deg);
- plot(t_xy, out_step_y(:, ITheta(2)) * to_deg);
- plot(t_xy, out_step_y(:, ITheta(3)) * to_deg);
- grid on;
- xlim([0, T_final_horiz]);
- ylim([-euler_lim_deg, euler_lim_deg]);
- title('Horizontal $y$ to Euler Angles', 'Interpreter', 'latex');
- ylabel('Euler Angle (degrees)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ...
- 'Interpreter', 'latex');
-
- % Plot step response from z to Theta
- subplot(2, 3, 6); hold on;
- plot(t_z, out_step_z(:, ITheta(1)) * to_deg);
- plot(t_z, out_step_z(:, ITheta(2)) * to_deg);
- plot(t_z, out_step_z(:, ITheta(3)) * to_deg);
- grid on;
- xlim([0, T_final_vert]);
- ylim([-euler_lim_deg, euler_lim_deg]);
- title('Vertical $z$ to Euler Angles', 'Interpreter', 'latex');
- ylabel('Euler Angle (degrees)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$\phi(t)$ Roll ', '$\theta(t)$ Pitch ', '$\psi(t)$ Yaw ', ...
- 'Interpreter', 'latex');
-
- % Plot step response from z to omega
- figure;
- sgtitle(sprintf(...
- '\\bfseries Step Response to Propeller (%s)', ...
- ctrl.Name), 'Interpreter', 'latex');
-
- hold on;
- step(P_nom_clp(Iomega, Ir(3)) * to_rpm, T_final_vert);
- plot([0, T_final_vert], [1, 1] * omega_min_rpm, 'r--');
- plot([0, T_final_vert], [1, 1] * omega_max_rpm, 'r--');
- grid on;
- ylim([omega_min_rpm - 1, omega_max_rpm + 1]);
- title('Vertical $z$ to Thruster $\omega$', 'Interpreter', 'latex');
- ylabel('Angular Velocity (RPM)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$\omega(t)$', 'Interpreter', 'latex');
-
- % Figure for position and velocity
- figure;
- sgtitle(sprintf(...
- '\\bfseries Step Response of Position and Speed (%s)', ...
- ctrl.Name), 'Interpreter', 'latex');
-
- % Plot step response from horizontal reference to horizontal position
- subplot(2, 2, 1); hold on;
- plot(t_xy, out_step_x(:, IP(1)));
- plot(t_xy, out_step_y(:, IP(2)));
- % plot([0, T_final_horiz], [1, 1] * ref_value, 'r:');
- % plot(t_xy, out_step_xydes, 'r--');
- grid on;
- title('Horizontal Position Error', 'Interpreter', 'latex');
- ylabel('Error (meters)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$x(t)$', '$y(t)$', 'Interpreter', 'latex');
-
- % Plot step response horizontal reference to horizontal speed
- subplot(2, 2, 2); hold on;
- plot(t_xy, out_step_x(:, IPdot(1)));
- plot(t_xy, out_step_y(:, IPdot(2)));
- grid on;
- title('Horizontal Velocity', 'Interpreter', 'latex');
- ylabel('Velocity (m / s)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$\dot{x}(t)$', '$\dot{y}(t)$', 'Interpreter', 'latex');
-
- % Plot step response from vertical reference to vertical position
- subplot(2, 2, 3); hold on;
- plot(t_z, out_step_z(:, IP(3)));
- % plot([0, T_final_vert], [1, 1] * ref_value, 'r:');
- % plot(t_z, out_step_zdes, 'r--');
- grid on;
- title('Vertical Position Error', 'Interpreter', 'latex');
- ylabel('Error (meters)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$z(t)$', 'Interpreter', 'latex');
-
- % Plot step response vertical reference to vertical speed
- subplot(2, 2, 4); hold on;
- plot(t_z, out_step_z(:, IPdot(3)));
- grid on;
- title('Vertical Velocity', 'Interpreter', 'latex');
- ylabel('Velocity (m / s)', 'Interpreter', 'latex');
- xlabel('Time (seconds)', 'Interpreter', 'latex');
- legend('$\dot{z}(t)$', 'Interpreter', 'latex');
-end
-
-end
-% vim:ts=2 sw=2 et: