summaryrefslogtreecommitdiffstats
path: root/uav_model.m
blob: 0ec9a6775023d77a84f4acd96ce17477895c9ed8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
% Compute models for Ducted Fan VTOL micro-UAV for given set of parameters. 
%
% Copyright (C) 2024, Naoki Sean Pross, ETH Zürich.
% This work is distributed under a permissive license, see LICENSE.txt
%
% This function generates three models: 
% 
%  * A non-linear symbolic model (cannot be used directly).
%  * A linear model obtained by linearizing the the non linear model at an
%    operating point specified in the params struct argument. 
%  * A uncertain linear model built atop of the linear model using SIMULINK.
%    The uncertain model contains the performance and weighting transfer 
%    function given in the arguments perf and params, and is stored in the
%    SIMULINK file uav_model_uncertain.xls.
%
% [MODEL] = UAV_MODEL(PARAMS, PERF, UNCERT)
%
% Arguments:
%   PARAMS  Struct of design parameters and constants generated from uav_params
%   PERF    Struct with transfer functions that describe performance
%           requirements (used for uncertain model).
%   UNCERT  Struct with weighting transfer functions for the uncertainty
%           blocks (used for uncertain model).
%
% Return value:
%   MODEL   Struct with models
%
% See also UAV_PARAMS


function [model] = uav_model(params, perf, uncert)

model = struct();

% ------------------------------------------------------------------------
% Symbolic variables

% Constant scalar physical quantities and dimensions
syms m g rho a b d S k_T c_d c_0 c_l J_r real;
syms J_1 J_2 J_3 real;
J = diag([J_1, J_2, J_3]);

% Scalar position, rotation and velocities
syms x y z xdot ydot zdot real;
syms phi theta p q r real;
psi = sym('psi', 'real'); % shadow MATLAB's psi() function

% Vector position, rotation and velocities
P = [x; y; z];             % position vector (inertial frame)
Pdot = [xdot; ydot; zdot]; % velocity vector (intertial frame)
Theta = [phi; theta; psi]; % attitude vector: [roll pitch yaw] (body frame)
Omega = [p; q; r];         % angular rates (body frame)

% Inputs: flap angles and ducted fan speed
syms alpha_1 alpha_2 alpha_3 alpha_4 omega real;
alpha = [alpha_1; alpha_2; alpha_3; alpha_4];

% Flap angles are measured relative to the body-frame z-axis and considered
% positive / negative with respect to the roll / pitch axis to which they
% are attached to. Reference table:
%
%  angle   attached axis   lift force direction
%                           when angle is positive
%  -------   -------------   ----------------------
%  alpha_1   pos. x axis    y direction
%  alpha_2   pos. y axis   -x direction
%  alpha_3   neg. x axis    y direction
%  alpha_4   neg. y axis   -x direction

% Rotation matrix to change between frames of reference:
% multiplying by R moves from the inertial frame to the body frame
% to go from body frame to inertial frame use R transpose (R is SO(3))
R = [
  cos(theta) * cos(psi), cos(theta) * sin(psi), -sin(theta);
  (sin(phi) * sin(theta) * cos(psi) - cos(phi) * sin(psi)), ...
    (sin(phi) * sin(theta) * sin(psi) + cos(phi) * cos(psi)), ...
    sin(phi) * cos(theta);
  (cos(phi) * sin(theta) * cos(psi) + sin(phi) * sin(psi)), ...
    (cos(phi) * sin(theta) * sin(psi) - sin(phi) * cos(psi)), ...
    cos(phi) * cos(theta);
];

% Matrix to relate Euler angles to angular velocity in the body frame
% i.e. dTheta/dt = U * Omega. To get the angular velocity in intertial
% coordinates use (R * U).
U = [
  1, sin(phi) * tan(theta), cos(phi) * tan(theta);
  0, cos(phi), -sin(phi);
  0, sin(phi) / cos(theta), cos(phi) / cos(theta);
];

% name of unit vectors in inertial frame
uvec_i = [1; 0; 0];
uvec_j = [0; 1; 0];
uvec_k = [0; 0; 1];

% name of unit vectors in body frame
uvec_x = [1; 0; 0];
uvec_y = [0; 1; 0];
uvec_z = [0; 0; 1];

% ------------------------------------------------------------------------
% Nonlinear system dynamics

% Approximate air velocity field magnitude collinear to uvec_z
nu = omega / pi * sqrt(k_T  / (2 * a * rho));

% Aerodynamic force caused by flaps in body frame
F_flap = @(alpha, uvec_n) rho * S * nu^2 / 2 * (...
  (c_d * alpha^2 + c_0) * uvec_z + c_l * alpha * uvec_n);

F_1 = F_flap(alpha_1, uvec_y);
F_2 = F_flap(alpha_2, uvec_x);
F_3 = F_flap(alpha_3, uvec_y);
F_4 = F_flap(alpha_4, uvec_x);

% Torque caused by aerodynamics forces in body frame
tau_1 = cross((d * uvec_z + a/3 * uvec_x), F_1);
tau_2 = cross((d * uvec_z + a/3 * uvec_y), F_2);
tau_3 = cross((d * uvec_z - a/3 * uvec_x), F_3);
tau_4 = cross((d * uvec_z - a/3 * uvec_y), F_4);

% Total force acting on the UAV in the body frame
F = R * (m * g * uvec_k) ... % gravity
  - k_T * omega^2 * uvec_z ... % thrust
  + F_1 + F_2 + F_3 + F_4; % flaps

% Total torque acting on the UAV in the body frame
tau = J_r * omega * R * cross(uvec_k, Omega) + ... % gyroscopic procession
  tau_1 + tau_2 + tau_3 + tau_4; % flaps

% State space form with state variable xi and input u
%
% The 12-dimensional state is given by
%
%  - absolute position (inertial frame) in R^3
%  - absolute velocity (intertial frame) in R^3
%  - Euler angles (body frame) in SO(3)
%  - Angular rates (body frame) in R^3
%
xi = [P; Pdot; Theta; Omega];
u = [alpha; omega];

% Right hand side of dynamics dxi = f(xi, u)
f = [
  Pdot;
  R' * F / m; % translational dynamics
  U * Omega;
  inv(J) * (tau - cross(Omega, J * Omega)); % rotational dynamics
];

% Save function to compute the rotation matrix
model.FrameRot = @(pitch, roll, yaw) ...
  subs(R, [phi, theta, psi], [pitch, roll, yaw]);

% Save equations of non-linear model (algebraic)
model.nonlinear = struct(...
  'State', xi, ...
  'Inputs', u, ...
  'Dynamics', f ...
);

% ------------------------------------------------------------------------
% Linearization at equilibrium

% Equilibrium point
xi_eq = [
  params.linearization.Position;
  params.linearization.Velocity;
  params.linearization.Angles;
  params.linearization.AngularVelocities;
];
u_eq = params.linearization.Inputs;

% Construct linearized state dynamics
A = subs(jacobian(f, xi), [xi; u], [xi_eq; u_eq]);
B = subs(jacobian(f, u), [xi; u], [xi_eq; u_eq]);

% Insert values of parameters
phy = struct(...
  'g', params.physics.Gravity, ...
  'rho', params.physics.AirDensity ...
);
A = subs(A, phy);
B = subs(B, phy);

mech = struct(...
  'm', params.mechanical.Mass, ...
  'a', params.mechanical.DuctRadius, ...
  'b', params.mechanical.DuctHeight, ...
  'd', params.mechanical.FlapZDistance, ...
  'J_1', params.mechanical.InertiaTensor(1, 1), ...
  'J_2', params.mechanical.InertiaTensor(2, 2), ...
  'J_3', params.mechanical.InertiaTensor(3, 3), ...
  'J_r', params.mechanical.GyroscopicInertiaZ ...
);
A = subs(A, mech);
B = subs(B, mech);

aero = struct(...
  'k_T', params.aerodynamics.ThrustOmegaProp, ...
  'S',   params.aerodynamics.FlapArea, ...
  'c_d', params.aerodynamics.DragCoefficients(1), ...
  'c_0', params.aerodynamics.DragCoefficients(2), ...
  'c_l', params.aerodynamics.LiftCoefficient ...
);
A = subs(A, aero);
B = subs(B, aero);

% Evaluate constants like pi, etc and convert to double
A = double(vpa(A));
B = double(vpa(B));

% The state is fully observed via hardware and refined with sensor fusion
% algorithms
C = eye(size(A));
D = zeros(12, 5);

% Number of states, inputs and outputs
[nx, nu] = size(B);
[ny, ~] = size(C);

% Create state space object
T = params.measurements.SensorFusionDelay;
n = params.linearization.PadeApproxOrder;
sys = minreal(pade(ss(A, B, C, D, 'OutputDelay', T), n), [], false); % slient

% Save linearized dynamics (numerical)
model.linear = struct(...
  'Nx', nx, 'Nu', nu, 'Ny', ny, ... % number of states, inputs, and outputs
  'State', xi, 'Inputs', u, ... % state and input variables
  'StateEq', xi_eq, 'InputEq', u_eq, ... % where the system was linearized
  'StateSpace', sys ... % state space object
);

% ------------------------------------------------------------------------
% Check properties of linearized model

eigvals = eig(A);

% Check system controllability / stabilizability
Wc = ctrb(sys);
if rank(Wc) < nx
  fprintf(' - Linearized system has %d uncontrollable states!\n', ...
    (nx - rank(Wc)));

  % Is the system at least stabilizable?
  unstabilizable = 0;
  for i = 1:nx
    if real(eigvals(i)) >= 0
      % PBH test
      W = [(A - eigvals(i) * eye(size(A))), B];
      if rank(W) < nx
        % fprintf('  State %d is not stabilizable\n', i);
        unstabilizable = unstabilizable + 1;
      end
    end
  end
  if unstabilizable > 0
    fprintf(' - Linearized system has %d unstabilizable modes!\n', ...
      unstabilizable);
  else
    fprintf('   However, it is stabilizable.\n');
  end
end

% Check system observability / detectability
Wo = obsv(sys);
if rank(Wo) < nx
  fprintf(' - Linearized system has %d unobservable states!\n', ...
    (nx - rank(Wo)));
  % is the system at least detectable?
  undetectable = 0;
  for i = 1:nx
    if real(eigvals(i)) >= 0
      % PBH test
      W = [C; (A - eigvals(i) * eye(size(A)))];
      if rank(W) < nx
        undetectable = undetectable + 1;
      end
    end
  end
  if undetectable > 0
    fprintf(' - Linearized system has %d undetectable modes!\n', ...
      undetectable);
  else
    fprintf('   However, it is detectable.\n')
  end
end

% ------------------------------------------------------------------------
% Model actuators

% TODO: better model, this was tuned "by looking"
w = 4 * params.actuators.ServoNominalAngularVelocity;
zeta = .7;
G_servo = tf(w^2, [1, 2 * zeta * w, w^2]);
% figure; step(G_servo * pi / 3); grid on;
G_prop = tf(1,1);

model.actuators = struct('FlapServo', G_servo, 'ThrustPropeller', G_prop);

% ------------------------------------------------------------------------
% Add uncertainties using SIMULINK model

% Load simulink model with uncertainties and pass in parameters
h = load_system('uav_model_uncertain');
hws = get_param('uav_model_uncertain', 'modelworkspace');

hws.assignin('params', params);
hws.assignin('model', model);
hws.assignin('perf', perf);
hws.assignin('uncert', uncert);

% Get uncertain model
ulmod = linmod('uav_model_uncertain');
usys = ss(ulmod.a, ulmod.b, ulmod.c, ulmod.d);

% Specify uncertainty block structure for mussv command
blk_stab = [
  4, 0; % alpha uncert, diagonal
  1, 0; % omega uncert, diagonal
  12, 12; % state uncert, full
];

blk_perf = [
  blk_stab;
  10, 14;
];

% Save uncertain model
model.uncertain = struct(...
  'Simulink', ulmod, ...
  'BlockStructure', blk_stab, ...
  'BlockStructurePerf', blk_perf, ...
  'StateSpace', usys ...
);

% The uncertain system is partitioned into the following matrix
%
% [ z ]   [ A    B_w   B_u  ] [ v ]
% [ e ] = [ C_e  D_ew  D_eu ] [ w ]
% [ y ]   [ C_y  D_yw  D_yu ] [ u ]
%
% Struct below provides indices for inputs and outputs of partitioning.
% Check for correctness of these values by inspecting:
%
%   - model.uncertain.Simulink.InputName(model.uncertain.index.InputX)
%   - model.uncertain.Simulink.OutputName(model.uncertain.index.OutputX)
%
% Function make_idx(start, size) is defined below.
model.uncertain.index = struct(...
  'InputUncertain',    make_idx( 1, 17), ... % 'v' inputs
  'InputDisturbance',  make_idx(18,  7), ... % 'w' inputs for noise
  'InputReference',    make_idx(25,  3), ... % 'w' inputs for reference
  'InputExogenous',    make_idx(18, 10), ... % 'w' inputs (all of them)
  'InputNominal',      make_idx(28,  5), ... % 'u' inputs
  'OutputUncertain',   make_idx( 1, 17), ... % 'z' outputs
  'OutputError',       make_idx(18, 14), ... % 'e' outputs
  'OutputNominal',     make_idx(32, 12), ... % 'y' outputs
  'OutputPlots',       make_idx(44, 10)  ... % 'p' outputs for plots in closed loop
);

idx = model.uncertain.index;

% Number of inputs
model.uncertain.Nv = max(size(idx.InputUncertain));
model.uncertain.Nw = max(size(idx.InputExogenous));
model.uncertain.Nu = max(size(idx.InputNominal));

model.uncertain.Nr = max(size(idx.InputReference));
% size of noise is (Nw - Nr)

% Number of outputs
model.uncertain.Nz = max(size(idx.OutputUncertain));
model.uncertain.Ne = max(size(idx.OutputError));
model.uncertain.Ny = max(size(idx.OutputNominal));

% ------------------------------------------------------------------------
% Check properties of uncertain model

% % Check that (A, B_u, C_y) is stabilizable and detectable
% A = model.uncertain.StateSpace(...
%   model.uncertain.index.OutputUncertain, ...
%   model.uncertain.index.InputUncertain ...
% );
% 
% B_u = model.uncertain.StateSpace(...
%   model.uncertain.index.OutputUncertain, ...
%   model.uncertain.index.InputNominal ...
% );
%
% % TODO: do PBH test
% 
% % Check that D_eu and D_yw are full rank
% D_eu = model.uncertain.StateSpace(...
%   model.uncertain.index.OutputError, ...
%   model.uncertain.index.InputNominal ...
% );
% 
% D_yw = model.uncertain.StateSpace(...
%   model.uncertain.index.OutputNominal, ...
%   model.uncertain.index.InputDisturbance ...
% );

% if rank(D_eu) < min(size(D_eu))
%   fprintf('D_eu is not full rank!\n')
% end
% 
% if rank(D_yw) < min(size(D_yw))
%   fprintf('D_yw is not full rank!\n')
% end

end

function [indices] = make_idx(start, size)
  indices = [start:(start + size - 1)]';
end

% vim: ts=2 sw=2 et: