diff options
Diffstat (limited to 'src/armadillo/include/armadillo_bits/sym_helper.hpp')
-rw-r--r-- | src/armadillo/include/armadillo_bits/sym_helper.hpp | 485 |
1 files changed, 485 insertions, 0 deletions
diff --git a/src/armadillo/include/armadillo_bits/sym_helper.hpp b/src/armadillo/include/armadillo_bits/sym_helper.hpp new file mode 100644 index 0000000..00555c4 --- /dev/null +++ b/src/armadillo/include/armadillo_bits/sym_helper.hpp @@ -0,0 +1,485 @@ +// SPDX-License-Identifier: Apache-2.0 +// +// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au) +// Copyright 2008-2016 National ICT Australia (NICTA) +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ------------------------------------------------------------------------ + + +//! \addtogroup sym_helper +//! @{ + + +namespace sym_helper +{ + +// computationally inexpensive algorithm to guess whether a matrix is positive definite: +// (1) ensure the matrix is symmetric/hermitian (within a tolerance) +// (2) ensure the diagonal entries are real and greater than zero +// (3) ensure that the value with largest modulus is on the main diagonal +// (4) ensure rudimentary diagonal dominance: (real(A_ii) + real(A_jj)) > 2*abs(real(A_ij)) +// the above conditions are necessary, but not sufficient; +// doing it properly would be too computationally expensive for our purposes +// more info: +// http://mathworld.wolfram.com/PositiveDefiniteMatrix.html +// http://mathworld.wolfram.com/DiagonallyDominantMatrix.html + +template<typename eT> +inline +typename enable_if2<is_cx<eT>::no, bool>::result +guess_sympd_worker(const Mat<eT>& A) + { + arma_extra_debug_sigprint(); + + // NOTE: assuming A is square-sized + + const eT tol = eT(100) * std::numeric_limits<eT>::epsilon(); // allow some leeway + + const uword N = A.n_rows; + + const eT* A_mem = A.memptr(); + const eT* A_col = A_mem; + + eT max_diag = eT(0); + + for(uword j=0; j < N; ++j) + { + const eT A_jj = A_col[j]; + + if(A_jj <= eT(0)) { return false; } + + max_diag = (A_jj > max_diag) ? A_jj : max_diag; + + A_col += N; + } + + A_col = A_mem; + + const uword Nm1 = N-1; + const uword Np1 = N+1; + + for(uword j=0; j < Nm1; ++j) + { + const eT A_jj = A_col[j]; + + const uword jp1 = j+1; + const eT* A_ji_ptr = &(A_mem[j + jp1*N]); // &(A.at(j,jp1)); + const eT* A_ii_ptr = &(A_mem[jp1 + jp1*N]); + + for(uword i=jp1; i < N; ++i) + { + const eT A_ij = A_col[i]; + const eT A_ji = (*A_ji_ptr); + + const eT A_ij_abs = (std::abs)(A_ij); + const eT A_ji_abs = (std::abs)(A_ji); + + // if( (A_ij_abs >= max_diag) || (A_ji_abs >= max_diag) ) { return false; } + if(A_ij_abs >= max_diag) { return false; } + + const eT A_delta = (std::abs)(A_ij - A_ji); + const eT A_abs_max = (std::max)(A_ij_abs, A_ji_abs); + + if( (A_delta > tol) && (A_delta > (A_abs_max*tol)) ) { return false; } + + const eT A_ii = (*A_ii_ptr); + + if( (A_ij_abs + A_ij_abs) >= (A_ii + A_jj) ) { return false; } + + A_ji_ptr += N; + A_ii_ptr += Np1; + } + + A_col += N; + } + + return true; + } + + + +template<typename eT> +inline +typename enable_if2<is_cx<eT>::yes, bool>::result +guess_sympd_worker(const Mat<eT>& A) + { + arma_extra_debug_sigprint(); + + // NOTE: assuming A is square-sized + + typedef typename get_pod_type<eT>::result T; + + const T tol = T(100) * std::numeric_limits<T>::epsilon(); // allow some leeway + + const uword N = A.n_rows; + + const eT* A_mem = A.memptr(); + const eT* A_col = A_mem; + + T max_diag = T(0); + + for(uword j=0; j < N; ++j) + { + const eT& A_jj = A_col[j]; + const T A_jj_real = std::real(A_jj); + const T A_jj_imag = std::imag(A_jj); + + if( (A_jj_real <= T(0)) || (std::abs(A_jj_imag) > tol) ) { return false; } + + max_diag = (A_jj_real > max_diag) ? A_jj_real : max_diag; + + A_col += N; + } + + const T square_max_diag = max_diag * max_diag; + + if(arma_isfinite(square_max_diag) == false) { return false; } + + A_col = A_mem; + + const uword Nm1 = N-1; + const uword Np1 = N+1; + + for(uword j=0; j < Nm1; ++j) + { + const uword jp1 = j+1; + const eT* A_ji_ptr = &(A_mem[j + jp1*N]); // &(A.at(j,jp1)); + const eT* A_ii_ptr = &(A_mem[jp1 + jp1*N]); + + const T A_jj_real = std::real(A_col[j]); + + for(uword i=jp1; i < N; ++i) + { + const eT& A_ij = A_col[i]; + const T A_ij_real = std::real(A_ij); + const T A_ij_imag = std::imag(A_ij); + + // avoid using std::abs(), as that is time consuming due to division and std::sqrt() + const T square_A_ij_abs = (A_ij_real * A_ij_real) + (A_ij_imag * A_ij_imag); + + if(arma_isfinite(square_A_ij_abs) == false) { return false; } + + if(square_A_ij_abs >= square_max_diag) { return false; } + + const T A_ij_real_abs = (std::abs)(A_ij_real); + const T A_ij_imag_abs = (std::abs)(A_ij_imag); + + + const eT& A_ji = (*A_ji_ptr); + const T A_ji_real = std::real(A_ji); + const T A_ji_imag = std::imag(A_ji); + + const T A_ji_real_abs = (std::abs)(A_ji_real); + const T A_ji_imag_abs = (std::abs)(A_ji_imag); + + const T A_real_delta = (std::abs)(A_ij_real - A_ji_real); + const T A_real_abs_max = (std::max)(A_ij_real_abs, A_ji_real_abs); + + if( (A_real_delta > tol) && (A_real_delta > (A_real_abs_max*tol)) ) { return false; } + + + const T A_imag_delta = (std::abs)(A_ij_imag + A_ji_imag); // take into account complex conjugate + const T A_imag_abs_max = (std::max)(A_ij_imag_abs, A_ji_imag_abs); + + if( (A_imag_delta > tol) && (A_imag_delta > (A_imag_abs_max*tol)) ) { return false; } + + + const T A_ii_real = std::real(*A_ii_ptr); + + if( (A_ij_real_abs + A_ij_real_abs) >= (A_ii_real + A_jj_real) ) { return false; } + + A_ji_ptr += N; + A_ii_ptr += Np1; + } + + A_col += N; + } + + return true; + } + + + +template<typename eT> +inline +bool +guess_sympd(const Mat<eT>& A) + { + arma_extra_debug_sigprint(); + + // analyse matrices with size >= 4x4 + + if((A.n_rows != A.n_cols) || (A.n_rows < uword(4))) { return false; } + + return guess_sympd_worker(A); + } + + + +template<typename eT> +inline +bool +guess_sympd(const Mat<eT>& A, const uword min_n_rows) + { + arma_extra_debug_sigprint(); + + if((A.n_rows != A.n_cols) || (A.n_rows < min_n_rows)) { return false; } + + return guess_sympd_worker(A); + } + + + +// + + + +template<typename eT> +inline +typename enable_if2<is_cx<eT>::no, void>::result +analyse_matrix_worker(bool& is_approx_sym, bool& is_approx_sympd, const Mat<eT>& A) + { + arma_extra_debug_sigprint(); + + is_approx_sym = true; + is_approx_sympd = true; + + const eT tol = eT(100) * std::numeric_limits<eT>::epsilon(); // allow some leeway + + const uword N = A.n_rows; + + const eT* A_mem = A.memptr(); + const eT* A_col = A_mem; + + eT max_diag = eT(0); + + for(uword j=0; j < N; ++j) + { + const eT A_jj = A_col[j]; + + if(A_jj <= eT(0)) { is_approx_sympd = false; } + + max_diag = (A_jj > max_diag) ? A_jj : max_diag; + + A_col += N; + } + + A_col = A_mem; + + const uword Nm1 = N-1; + const uword Np1 = N+1; + + for(uword j=0; j < Nm1; ++j) + { + const eT A_jj = A_col[j]; + + const uword jp1 = j+1; + const eT* A_ji_ptr = &(A_mem[j + jp1*N]); // &(A.at(j,jp1)); + const eT* A_ii_ptr = &(A_mem[jp1 + jp1*N]); + + for(uword i=jp1; i < N; ++i) + { + const eT A_ij = A_col[i]; + const eT A_ji = (*A_ji_ptr); + + const eT A_ij_abs = (std::abs)(A_ij); + const eT A_ji_abs = (std::abs)(A_ji); + + const eT A_delta = (std::abs)(A_ij - A_ji); + const eT A_abs_max = (std::max)(A_ij_abs, A_ji_abs); + + if( (A_delta > tol) && (A_delta > (A_abs_max*tol)) ) { is_approx_sym = false; return; } + + if(is_approx_sympd) + { + // if( (A_ij_abs >= max_diag) || (A_ji_abs >= max_diag) ) { is_approx_sympd = false; } + if(A_ij_abs >= max_diag) { is_approx_sympd = false; } + + const eT A_ii = (*A_ii_ptr); + + if( (A_ij_abs + A_ij_abs) >= (A_ii + A_jj) ) { is_approx_sympd = false; } + } + + A_ji_ptr += N; + A_ii_ptr += Np1; + } + + A_col += N; + } + } + + + +template<typename eT> +inline +typename enable_if2<is_cx<eT>::yes, void>::result +analyse_matrix_worker(bool& is_approx_sym, bool& is_approx_sympd, const Mat<eT>& A) + { + arma_extra_debug_sigprint(); + + typedef typename get_pod_type<eT>::result T; + + is_approx_sym = true; + is_approx_sympd = true; + + const T tol = T(100) * std::numeric_limits<T>::epsilon(); // allow some leeway + + const uword N = A.n_rows; + + const eT* A_mem = A.memptr(); + const eT* A_col = A_mem; + + T max_diag = T(0); + + for(uword j=0; j < N; ++j) + { + const eT& A_jj = A_col[j]; + const T A_jj_real = std::real(A_jj); + const T A_jj_imag = std::imag(A_jj); + + if( (A_jj_real <= T(0)) || (std::abs(A_jj_imag) > tol) ) { is_approx_sympd = false; } + + max_diag = (A_jj_real > max_diag) ? A_jj_real : max_diag; + + A_col += N; + } + + const T square_max_diag = max_diag * max_diag; + + if(arma_isfinite(square_max_diag) == false) { is_approx_sympd = false; } + + A_col = A_mem; + + const uword Nm1 = N-1; + const uword Np1 = N+1; + + for(uword j=0; j < Nm1; ++j) + { + const uword jp1 = j+1; + const eT* A_ji_ptr = &(A_mem[j + jp1*N]); // &(A.at(j,jp1)); + const eT* A_ii_ptr = &(A_mem[jp1 + jp1*N]); + + const T A_jj_real = std::real(A_col[j]); + + for(uword i=jp1; i < N; ++i) + { + const eT& A_ij = A_col[i]; + const T A_ij_real = std::real(A_ij); + const T A_ij_imag = std::imag(A_ij); + + const T A_ij_real_abs = (std::abs)(A_ij_real); + const T A_ij_imag_abs = (std::abs)(A_ij_imag); + + const eT& A_ji = (*A_ji_ptr); + const T A_ji_real = std::real(A_ji); + const T A_ji_imag = std::imag(A_ji); + + const T A_ji_real_abs = (std::abs)(A_ji_real); + const T A_ji_imag_abs = (std::abs)(A_ji_imag); + + const T A_real_delta = (std::abs)(A_ij_real - A_ji_real); + const T A_real_abs_max = (std::max)(A_ij_real_abs, A_ji_real_abs); + + if( (A_real_delta > tol) && (A_real_delta > (A_real_abs_max*tol)) ) { is_approx_sym = false; return; } + + const T A_imag_delta = (std::abs)(A_ij_imag + A_ji_imag); // take into account complex conjugate + const T A_imag_abs_max = (std::max)(A_ij_imag_abs, A_ji_imag_abs); + + if( (A_imag_delta > tol) && (A_imag_delta > (A_imag_abs_max*tol)) ) { is_approx_sym = false; return; } + + if(is_approx_sympd) + { + // avoid using std::abs(), as that is time consuming due to division and std::sqrt() + const T square_A_ij_abs = (A_ij_real * A_ij_real) + (A_ij_imag * A_ij_imag); + + if(arma_isfinite(square_A_ij_abs) == false) + { + is_approx_sympd = false; + } + else + { + const T A_ii_real = std::real(*A_ii_ptr); + + if( (A_ij_real_abs + A_ij_real_abs) >= (A_ii_real + A_jj_real) ) { is_approx_sympd = false; } + + if(square_A_ij_abs >= square_max_diag) { is_approx_sympd = false; } + } + } + + A_ji_ptr += N; + A_ii_ptr += Np1; + } + + A_col += N; + } + } + + + +template<typename eT> +inline +void +analyse_matrix(bool& is_approx_sym, bool& is_approx_sympd, const Mat<eT>& A) + { + arma_extra_debug_sigprint(); + + if((A.n_rows != A.n_cols) || (A.n_rows < uword(4))) + { + is_approx_sym = false; + is_approx_sympd = false; + return; + } + + analyse_matrix_worker(is_approx_sym, is_approx_sympd, A); + + if(is_approx_sym == false) { is_approx_sympd = false; } + } + + + +template<typename eT> +inline +bool +check_diag_imag(const Mat<eT>& A) + { + arma_extra_debug_sigprint(); + + // NOTE: assuming matrix A is square-sized + + typedef typename get_pod_type<eT>::result T; + + const T tol = T(10000) * std::numeric_limits<T>::epsilon(); // allow some leeway + + const eT* colmem = A.memptr(); + + const uword N = A.n_rows; + + for(uword i=0; i<N; ++i) + { + const eT& A_ii = colmem[i]; + const T A_ii_imag = access::tmp_imag(A_ii); + + if(std::abs(A_ii_imag) > tol) { return false; } + + colmem += N; + } + + return true; + } + + + +} // end of namespace sym_helper + + +//! @} |