summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/sym_helper.hpp
blob: 00555c49e5d72b47635e60b565b089c26e5c62b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
// SPDX-License-Identifier: Apache-2.0
// 
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------


//! \addtogroup sym_helper
//! @{


namespace sym_helper
{

// computationally inexpensive algorithm to guess whether a matrix is positive definite:
// (1) ensure the matrix is symmetric/hermitian (within a tolerance)
// (2) ensure the diagonal entries are real and greater than zero
// (3) ensure that the value with largest modulus is on the main diagonal
// (4) ensure rudimentary diagonal dominance: (real(A_ii) + real(A_jj)) > 2*abs(real(A_ij))
// the above conditions are necessary, but not sufficient;
// doing it properly would be too computationally expensive for our purposes
// more info:
// http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
// http://mathworld.wolfram.com/DiagonallyDominantMatrix.html
  
template<typename eT>
inline
typename enable_if2<is_cx<eT>::no, bool>::result
guess_sympd_worker(const Mat<eT>& A)
  {
  arma_extra_debug_sigprint();
  
  // NOTE: assuming A is square-sized
  
  const eT tol = eT(100) * std::numeric_limits<eT>::epsilon();  // allow some leeway
  
  const uword N = A.n_rows;
  
  const eT* A_mem = A.memptr();
  const eT* A_col = A_mem;
  
  eT max_diag = eT(0);
  
  for(uword j=0; j < N; ++j)
    {
    const eT A_jj = A_col[j];
    
    if(A_jj <= eT(0))  { return false; }
    
    max_diag = (A_jj > max_diag) ? A_jj : max_diag;
    
    A_col += N;
    }
  
  A_col = A_mem;
  
  const uword Nm1 = N-1;
  const uword Np1 = N+1;
  
  for(uword j=0; j < Nm1; ++j)
    {
    const eT A_jj = A_col[j];
    
    const uword jp1      = j+1;
    const eT*   A_ji_ptr = &(A_mem[j   + jp1*N]);  // &(A.at(j,jp1));
    const eT*   A_ii_ptr = &(A_mem[jp1 + jp1*N]);
    
    for(uword i=jp1; i < N; ++i)
      {
      const eT A_ij = A_col[i];
      const eT A_ji = (*A_ji_ptr);
      
      const eT A_ij_abs = (std::abs)(A_ij);
      const eT A_ji_abs = (std::abs)(A_ji);
      
      // if( (A_ij_abs >= max_diag) || (A_ji_abs >= max_diag) )  { return false; }
      if(A_ij_abs >= max_diag)  { return false; }
      
      const eT A_delta   = (std::abs)(A_ij - A_ji);
      const eT A_abs_max = (std::max)(A_ij_abs, A_ji_abs);
      
      if( (A_delta > tol) && (A_delta > (A_abs_max*tol)) )  { return false; }
      
      const eT A_ii = (*A_ii_ptr);
      
      if( (A_ij_abs + A_ij_abs) >= (A_ii + A_jj) )  { return false; }
      
      A_ji_ptr += N;
      A_ii_ptr += Np1;
      }
    
    A_col += N;
    }
  
  return true;
  }



template<typename eT>
inline
typename enable_if2<is_cx<eT>::yes, bool>::result
guess_sympd_worker(const Mat<eT>& A)
  {
  arma_extra_debug_sigprint();
  
  // NOTE: assuming A is square-sized
  
  typedef typename get_pod_type<eT>::result T;
  
  const T tol = T(100) * std::numeric_limits<T>::epsilon();  // allow some leeway
  
  const uword N = A.n_rows;
  
  const eT* A_mem = A.memptr();
  const eT* A_col = A_mem;
  
  T max_diag = T(0);
  
  for(uword j=0; j < N; ++j)
    {
    const eT& A_jj      = A_col[j];
    const  T  A_jj_real = std::real(A_jj);
    const  T  A_jj_imag = std::imag(A_jj);
    
    if( (A_jj_real <= T(0)) || (std::abs(A_jj_imag) > tol) )  { return false; }
    
    max_diag = (A_jj_real > max_diag) ? A_jj_real : max_diag;
    
    A_col += N;
    }
  
  const T square_max_diag = max_diag * max_diag;
  
  if(arma_isfinite(square_max_diag) == false)  { return false; }
  
  A_col = A_mem;
  
  const uword Nm1 = N-1;
  const uword Np1 = N+1;
  
  for(uword j=0; j < Nm1; ++j)
    {
    const uword jp1       = j+1;
    const eT*   A_ji_ptr = &(A_mem[j   + jp1*N]);  // &(A.at(j,jp1));
    const eT*   A_ii_ptr = &(A_mem[jp1 + jp1*N]);
    
    const T A_jj_real = std::real(A_col[j]);
    
    for(uword i=jp1; i < N; ++i)
      {
      const eT& A_ij      = A_col[i];
      const  T  A_ij_real = std::real(A_ij);
      const  T  A_ij_imag = std::imag(A_ij);
      
      // avoid using std::abs(), as that is time consuming due to division and std::sqrt()
      const T square_A_ij_abs = (A_ij_real * A_ij_real) + (A_ij_imag * A_ij_imag);
      
      if(arma_isfinite(square_A_ij_abs) == false)  { return false; }
      
      if(square_A_ij_abs >= square_max_diag)  { return false; }
      
      const T A_ij_real_abs = (std::abs)(A_ij_real);
      const T A_ij_imag_abs = (std::abs)(A_ij_imag);
      
      
      const eT& A_ji      = (*A_ji_ptr);
      const  T  A_ji_real = std::real(A_ji);
      const  T  A_ji_imag = std::imag(A_ji);
      
      const T A_ji_real_abs = (std::abs)(A_ji_real);
      const T A_ji_imag_abs = (std::abs)(A_ji_imag);
      
      const T A_real_delta   = (std::abs)(A_ij_real - A_ji_real);
      const T A_real_abs_max = (std::max)(A_ij_real_abs, A_ji_real_abs);
      
      if( (A_real_delta > tol) && (A_real_delta > (A_real_abs_max*tol)) )  { return false; }
      
      
      const T A_imag_delta   = (std::abs)(A_ij_imag + A_ji_imag);  // take into account complex conjugate
      const T A_imag_abs_max = (std::max)(A_ij_imag_abs, A_ji_imag_abs);
      
      if( (A_imag_delta > tol) && (A_imag_delta > (A_imag_abs_max*tol)) )  { return false; }
      
      
      const T A_ii_real = std::real(*A_ii_ptr);
      
      if( (A_ij_real_abs + A_ij_real_abs) >= (A_ii_real + A_jj_real) )  { return false; }
      
      A_ji_ptr += N;
      A_ii_ptr += Np1;
      }
    
    A_col += N;
    }
  
  return true;
  }



template<typename eT>
inline
bool
guess_sympd(const Mat<eT>& A)
  {
  arma_extra_debug_sigprint();
  
  // analyse matrices with size >= 4x4
  
  if((A.n_rows != A.n_cols) || (A.n_rows < uword(4)))  { return false; }
  
  return guess_sympd_worker(A);
  }



template<typename eT>
inline
bool
guess_sympd(const Mat<eT>& A, const uword min_n_rows)
  {
  arma_extra_debug_sigprint();
  
  if((A.n_rows != A.n_cols) || (A.n_rows < min_n_rows))  { return false; }
  
  return guess_sympd_worker(A);
  }



//



template<typename eT>
inline
typename enable_if2<is_cx<eT>::no, void>::result
analyse_matrix_worker(bool& is_approx_sym, bool& is_approx_sympd, const Mat<eT>& A)
  {
  arma_extra_debug_sigprint();
  
  is_approx_sym   = true;
  is_approx_sympd = true;
  
  const eT tol = eT(100) * std::numeric_limits<eT>::epsilon();  // allow some leeway
  
  const uword N = A.n_rows;
  
  const eT* A_mem = A.memptr();
  const eT* A_col = A_mem;
  
  eT max_diag = eT(0);
  
  for(uword j=0; j < N; ++j)
    {
    const eT A_jj = A_col[j];
    
    if(A_jj <= eT(0))  { is_approx_sympd = false; }
    
    max_diag = (A_jj > max_diag) ? A_jj : max_diag;
    
    A_col += N;
    }
  
  A_col = A_mem;
  
  const uword Nm1 = N-1;
  const uword Np1 = N+1;
  
  for(uword j=0; j < Nm1; ++j)
    {
    const eT A_jj = A_col[j];
    
    const uword jp1      = j+1;
    const eT*   A_ji_ptr = &(A_mem[j   + jp1*N]);  // &(A.at(j,jp1));
    const eT*   A_ii_ptr = &(A_mem[jp1 + jp1*N]);
    
    for(uword i=jp1; i < N; ++i)
      {
      const eT A_ij = A_col[i];
      const eT A_ji = (*A_ji_ptr);
      
      const eT A_ij_abs = (std::abs)(A_ij);
      const eT A_ji_abs = (std::abs)(A_ji);
      
      const eT A_delta   = (std::abs)(A_ij - A_ji);
      const eT A_abs_max = (std::max)(A_ij_abs, A_ji_abs);
      
      if( (A_delta > tol) && (A_delta > (A_abs_max*tol)) )  { is_approx_sym = false; return; }
      
      if(is_approx_sympd)
        {
        // if( (A_ij_abs >= max_diag) || (A_ji_abs >= max_diag) )  { is_approx_sympd = false; }
        if(A_ij_abs >= max_diag)  { is_approx_sympd = false; }
        
        const eT A_ii = (*A_ii_ptr);
          
        if( (A_ij_abs + A_ij_abs) >= (A_ii + A_jj) )  { is_approx_sympd = false; }
        }
      
      A_ji_ptr += N;
      A_ii_ptr += Np1;
      }
    
    A_col += N;
    }
  }



template<typename eT>
inline
typename enable_if2<is_cx<eT>::yes, void>::result
analyse_matrix_worker(bool& is_approx_sym, bool& is_approx_sympd, const Mat<eT>& A)
  {
  arma_extra_debug_sigprint();
  
  typedef typename get_pod_type<eT>::result T;
  
  is_approx_sym   = true;
  is_approx_sympd = true;
  
  const T tol = T(100) * std::numeric_limits<T>::epsilon();  // allow some leeway
  
  const uword N = A.n_rows;
  
  const eT* A_mem = A.memptr();
  const eT* A_col = A_mem;
  
  T max_diag = T(0);
  
  for(uword j=0; j < N; ++j)
    {
    const eT& A_jj      = A_col[j];
    const  T  A_jj_real = std::real(A_jj);
    const  T  A_jj_imag = std::imag(A_jj);
    
    if( (A_jj_real <= T(0)) || (std::abs(A_jj_imag) > tol) )  { is_approx_sympd = false; }
    
    max_diag = (A_jj_real > max_diag) ? A_jj_real : max_diag;
    
    A_col += N;
    }
  
  const T square_max_diag = max_diag * max_diag;
  
  if(arma_isfinite(square_max_diag) == false)  { is_approx_sympd = false; }
  
  A_col = A_mem;
  
  const uword Nm1 = N-1;
  const uword Np1 = N+1;
  
  for(uword j=0; j < Nm1; ++j)
    {
    const uword jp1       = j+1;
    const eT*   A_ji_ptr = &(A_mem[j   + jp1*N]);  // &(A.at(j,jp1));
    const eT*   A_ii_ptr = &(A_mem[jp1 + jp1*N]);
    
    const T A_jj_real = std::real(A_col[j]);
    
    for(uword i=jp1; i < N; ++i)
      {
      const eT& A_ij      = A_col[i];
      const  T  A_ij_real = std::real(A_ij);
      const  T  A_ij_imag = std::imag(A_ij);
      
      const T A_ij_real_abs = (std::abs)(A_ij_real);
      const T A_ij_imag_abs = (std::abs)(A_ij_imag);
      
      const eT& A_ji      = (*A_ji_ptr);
      const  T  A_ji_real = std::real(A_ji);
      const  T  A_ji_imag = std::imag(A_ji);
      
      const T A_ji_real_abs = (std::abs)(A_ji_real);
      const T A_ji_imag_abs = (std::abs)(A_ji_imag);
      
      const T A_real_delta   = (std::abs)(A_ij_real - A_ji_real);
      const T A_real_abs_max = (std::max)(A_ij_real_abs, A_ji_real_abs);
      
      if( (A_real_delta > tol) && (A_real_delta > (A_real_abs_max*tol)) )  { is_approx_sym = false; return; }

      const T A_imag_delta   = (std::abs)(A_ij_imag + A_ji_imag);  // take into account complex conjugate
      const T A_imag_abs_max = (std::max)(A_ij_imag_abs, A_ji_imag_abs);
      
      if( (A_imag_delta > tol) && (A_imag_delta > (A_imag_abs_max*tol)) )  { is_approx_sym = false; return; }
      
      if(is_approx_sympd)
        {
        // avoid using std::abs(), as that is time consuming due to division and std::sqrt()
        const T square_A_ij_abs = (A_ij_real * A_ij_real) + (A_ij_imag * A_ij_imag);
        
        if(arma_isfinite(square_A_ij_abs) == false)
          {
          is_approx_sympd = false;
          }
        else
          {
          const T  A_ii_real = std::real(*A_ii_ptr);
          
          if( (A_ij_real_abs + A_ij_real_abs) >= (A_ii_real + A_jj_real) )  { is_approx_sympd = false; }
          
          if(square_A_ij_abs >= square_max_diag)  { is_approx_sympd = false; }
          }
        }
      
      A_ji_ptr += N;
      A_ii_ptr += Np1;
      }
    
    A_col += N;
    }
  }



template<typename eT>
inline
void
analyse_matrix(bool& is_approx_sym, bool& is_approx_sympd, const Mat<eT>& A)
  {
  arma_extra_debug_sigprint();
  
  if((A.n_rows != A.n_cols) || (A.n_rows < uword(4)))
    {
    is_approx_sym   = false;
    is_approx_sympd = false;
    return;
    }
  
  analyse_matrix_worker(is_approx_sym, is_approx_sympd, A);
  
  if(is_approx_sym == false)  { is_approx_sympd = false; }
  }



template<typename eT>
inline
bool
check_diag_imag(const Mat<eT>& A)
  {
  arma_extra_debug_sigprint();
  
  // NOTE: assuming matrix A is square-sized
  
  typedef typename get_pod_type<eT>::result T;
  
  const T tol = T(10000) * std::numeric_limits<T>::epsilon();  // allow some leeway
  
  const eT* colmem = A.memptr();
  
  const uword N = A.n_rows;
  
  for(uword i=0; i<N; ++i)
    {
    const eT& A_ii      = colmem[i];
    const  T  A_ii_imag = access::tmp_imag(A_ii);
    
    if(std::abs(A_ii_imag) > tol)  { return false; }
    
    colmem += N;
    }
  
  return true;
  }



}  // end of namespace sym_helper


//! @}