aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-09-09 16:25:47 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-09-09 16:25:47 +0200
commit15b6405261f267d24c509ed8f356d4eaffda1794 (patch)
tree08c97c373d39b0fe331498a6465d09ef925026bb
parenttypo (diff)
downloadSeminarMatrizen-15b6405261f267d24c509ed8f356d4eaffda1794.tar.gz
SeminarMatrizen-15b6405261f267d24c509ed8f356d4eaffda1794.zip
Kapitel 7
-rw-r--r--buch/chapters/10-vektorenmatrizen/ringe.tex2
-rw-r--r--buch/chapters/40-eigenwerte/eigenwerte.tex2
-rw-r--r--buch/chapters/40-eigenwerte/grundlagen.tex2
-rw-r--r--buch/chapters/60-gruppen/chapter.tex26
-rw-r--r--buch/chapters/60-gruppen/images/Makefile8
-rw-r--r--buch/chapters/60-gruppen/images/c60.jpgbin0 -> 142174 bytes
-rw-r--r--buch/chapters/60-gruppen/images/nichtkomm.pdfbin0 -> 157193 bytes
-rw-r--r--buch/chapters/60-gruppen/images/nichtkomm.tex68
-rw-r--r--buch/chapters/60-gruppen/images/rodriguez.jpgbin0 -> 168776 bytes
-rw-r--r--buch/chapters/60-gruppen/images/rodriguez.pdfbin0 -> 181775 bytes
-rw-r--r--buch/chapters/60-gruppen/images/rodriguez.tex45
-rw-r--r--buch/chapters/60-gruppen/lie-algebren.tex289
-rw-r--r--buch/chapters/60-gruppen/lie-gruppen.tex287
-rw-r--r--buch/chapters/60-gruppen/symmetrien.tex104
-rw-r--r--buch/papers/mceliece/funktionsweise.tex2
-rwxr-xr-xbuch/papers/multiplikation/einlteung.tex2
-rw-r--r--buch/papers/munkres/teil3.tex2
-rw-r--r--buch/papers/spannung/teil1.tex4
-rw-r--r--buch/papers/uebersicht.tex16
-rw-r--r--buch/papers/verkehr/section1.tex2
-rw-r--r--vorlesungen/slides/7/kommutator.tex6
21 files changed, 615 insertions, 252 deletions
diff --git a/buch/chapters/10-vektorenmatrizen/ringe.tex b/buch/chapters/10-vektorenmatrizen/ringe.tex
index 1149e29..433f1e9 100644
--- a/buch/chapters/10-vektorenmatrizen/ringe.tex
+++ b/buch/chapters/10-vektorenmatrizen/ringe.tex
@@ -57,7 +57,7 @@ in denen die Multiplikation nicht kommutativ ist, die Multiplikation
kein neutrales Element hat oder beides.
\begin{definition}
-\index{Ring mit Eins}%
+\index{Ring!mit Eins}%
Ein Ring $R$ heisst ein {\em Ring mit Eins}, wenn die Multiplikation ein
neutrales Element hat.
\index{Ring mit Eins}%
diff --git a/buch/chapters/40-eigenwerte/eigenwerte.tex b/buch/chapters/40-eigenwerte/eigenwerte.tex
index 563b58a..1af91f8 100644
--- a/buch/chapters/40-eigenwerte/eigenwerte.tex
+++ b/buch/chapters/40-eigenwerte/eigenwerte.tex
@@ -19,7 +19,7 @@ Eigenschaften der Matrix $A$ abzuleiten.
\label{buch:eigenwerte:def:spektrum}
Ein Vektor $v\in V$ heisst {\em Eigenvektor} von $A$ zum {\em Eigenwert}
\index{Eigenwert}%
-\index{Eigenvekor}%
+\index{Eigenvektor}%
$\lambda\in\Bbbk$, wenn $v\ne 0$ und $Av=\lambda v$ gilt.
Die Menge
\[
diff --git a/buch/chapters/40-eigenwerte/grundlagen.tex b/buch/chapters/40-eigenwerte/grundlagen.tex
index 08f2105..b41da1d 100644
--- a/buch/chapters/40-eigenwerte/grundlagen.tex
+++ b/buch/chapters/40-eigenwerte/grundlagen.tex
@@ -387,7 +387,7 @@ $A^k=0$.
\begin{beispiel}
Obere (oder untere) Dreiecksmatrizen mit Nullen auf der Diagonalen
sind nilpotent.
-\index{Dreicksmatrix}%
+\index{Dreiecksmatrix}%
Wir rechnen dies wie folgt nach.
Die Matrix $A$ mit Einträgen $a_{i\!j}$
\[
diff --git a/buch/chapters/60-gruppen/chapter.tex b/buch/chapters/60-gruppen/chapter.tex
index 3b1abc1..872a241 100644
--- a/buch/chapters/60-gruppen/chapter.tex
+++ b/buch/chapters/60-gruppen/chapter.tex
@@ -9,22 +9,40 @@
\rhead{}
Matrizen können dazu verwendet werden, Symmetrien von geometrischen oder
physikalischen Systemen zu beschreiben.
+\index{Symmetrie}%
+\index{physikalisches System}%
Neben diskreten Symmetrien wie zum Beispiel Spiegelungen gehören dazu
+\index{diskrete Symmetrie}%
+\index{Symmetrie!diskret}%
+\index{Spiegelung}%
auch kontinuierliche Symmetrien wie Translationen oder Invarianz einer
-phyisikalischen Grösse über die Zeit.
+\index{kontinuierliche Symmetrie}%
+\index{Symmetrie!kontinuierlich}%
+\index{Translation}%
+physikalischen Grösse über die Zeit.
Solche Symmetrien müssen durch Matrizen beschrieben werden können,
die auf stetige oder sogar differenzierbare Art von der Zeit abhängen.
Die Menge der Matrizen, die zur Beschreibung solcher Symmetrien benutzt
werden, muss also eine zusätzliche Struktur haben, die ermöglicht,
sinnvoll über Stetigkeit und Differenzierbarkeit bei Matrizen
+\index{Stetigkeit}%
+\index{Differenzierbarkeit}%
zu sprechen.
Die Menge der Matrizen bilden zunächst eine Gruppe,
-die zusätzliche differenziarbare Struktur macht daraus
+die zusätzliche differenzierbare Struktur macht daraus
eine sogenannte Lie-Gruppe.
-Die Ableitungen nach einem Parameter liegen in der sogenannten
-Lie-Algebra, einer Matrizen-Algebra mit dem antisymmetrischen
+\index{Lie-Gruppe}%
+Die Ableitungen nach einem Parameter sind nicht mehr Gruppenelemente,
+wie man nach allem, was man in der Analysis-Grundvorlesung
+gelernt hat, vielleicht erwarten würde.
+Sie liegen in der sogenannten Lie-Algebra,
+einer Matrizen-Algebra mit dem antisymmetrischen
+\index{Lie-Algebra}%
+\index{antisymmetrisch}%
Lie-Klammer-Produkt $[A,B]=AB-BA$, auch Kommutator genannt.
+\index{Lie-Klammer}%
+\index{Kommutator}%
Lie-Gruppe und Lie-Algebra sind eng miteinander verknüpft,
so eng, dass sich die meisten Eigenschaften der Gruppe aus den Eigenschaften
der Lie-Gruppe aus der Lie-Algebra ableiten lassen.
diff --git a/buch/chapters/60-gruppen/images/Makefile b/buch/chapters/60-gruppen/images/Makefile
index 3ed39e5..294ecfa 100644
--- a/buch/chapters/60-gruppen/images/Makefile
+++ b/buch/chapters/60-gruppen/images/Makefile
@@ -3,7 +3,8 @@
#
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-all: phasenraum.pdf kartenkreis.pdf karten.pdf sl2.pdf scherungen.pdf
+all: phasenraum.pdf kartenkreis.pdf karten.pdf sl2.pdf scherungen.pdf \
+ rodriguez.pdf nichtkomm.pdf
phasenraum.pdf: phasenraum.tex
pdflatex phasenraum.tex
@@ -23,3 +24,8 @@ sl2.pdf: sl2.tex
scherungen.pdf: scherungen.tex
pdflatex scherungen.tex
+rodriguez.pdf: rodriguez.tex rodriguez.jpg
+ pdflatex rodriguez.tex
+
+nichtkomm.pdf: nichtkomm.tex c60.jpg
+ pdflatex nichtkomm.tex
diff --git a/buch/chapters/60-gruppen/images/c60.jpg b/buch/chapters/60-gruppen/images/c60.jpg
new file mode 100644
index 0000000..2bc77e7
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/c60.jpg
Binary files differ
diff --git a/buch/chapters/60-gruppen/images/nichtkomm.pdf b/buch/chapters/60-gruppen/images/nichtkomm.pdf
new file mode 100644
index 0000000..8b66ea3
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/nichtkomm.pdf
Binary files differ
diff --git a/buch/chapters/60-gruppen/images/nichtkomm.tex b/buch/chapters/60-gruppen/images/nichtkomm.tex
new file mode 100644
index 0000000..53cf87a
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/nichtkomm.tex
@@ -0,0 +1,68 @@
+%
+% nichtkomm.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{times}
+\usepackage{amsmath}
+\usepackage{txfonts}
+\usepackage[utf8]{inputenc}
+\usepackage{graphics}
+\usetikzlibrary{arrows,intersections,math}
+\usepackage{ifthen}
+\begin{document}
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\newboolean{showgrid}
+\setboolean{showgrid}{false}
+\def\breite{7}
+\def\hoehe{4}
+
+\begin{tikzpicture}[>=latex,thick]
+
+% Povray Bild
+\node at (0,0) {\includegraphics[width=14cm]{c60.jpg}};
+
+% Gitter
+\ifthenelse{\boolean{showgrid}}{
+\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe);
+\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe);
+\draw (-\breite,-\hoehe) grid (\breite, \hoehe);
+\fill (0,0) circle[radius=0.05];
+}{}
+
+\coordinate (A) at (-0.3,3);
+\coordinate (B) at (-1.1,2);
+\coordinate (C) at (-2.1,-1.2);
+\draw[->,color=red,line width=1.4pt]
+ (A)
+ to[out=-143,in=60]
+ (B)
+ to[out=-120,in=80]
+ (C);
+%\fill[color=red] (B) circle[radius=0.08];
+\node[color=red] at (-1.2,1.5) [above left] {$R_{x_1,\alpha}$};
+\coordinate (D) at (0.3,3.2);
+\coordinate (E) at (1.8,2.8);
+\coordinate (F) at (5.2,-0.3);
+\draw[->,color=blue,line width=1.4pt]
+ (D)
+ to[out=-10,in=157]
+ (E)
+ to[out=-23,in=120]
+ (F);
+%\fill[color=blue] (E) circle[radius=0.08];
+\node[color=blue] at (2.4,2.4) [above right] {$R_{x_2,\beta}$};
+\draw[->,color=darkgreen,line width=1.4pt]
+ (0.7,-3.1) to[out=1,in=-160] (3.9,-2.6);
+\node[color=darkgreen] at (2.5,-3.4) {$R_{x_3,\gamma}$};
+
+\node at (6.4,-2.9) {$x_1$};
+\node at (-0.2,3.8) {$x_3$};
+
+\end{tikzpicture}
+
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/images/rodriguez.jpg b/buch/chapters/60-gruppen/images/rodriguez.jpg
new file mode 100644
index 0000000..5c49700
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/rodriguez.jpg
Binary files differ
diff --git a/buch/chapters/60-gruppen/images/rodriguez.pdf b/buch/chapters/60-gruppen/images/rodriguez.pdf
new file mode 100644
index 0000000..d947fe1
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/rodriguez.pdf
Binary files differ
diff --git a/buch/chapters/60-gruppen/images/rodriguez.tex b/buch/chapters/60-gruppen/images/rodriguez.tex
new file mode 100644
index 0000000..8544739
--- /dev/null
+++ b/buch/chapters/60-gruppen/images/rodriguez.tex
@@ -0,0 +1,45 @@
+%
+% 3dimagetemplate.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{times}
+\usepackage{amsmath}
+\usepackage{txfonts}
+\usepackage[utf8]{inputenc}
+\usepackage{graphics}
+\usetikzlibrary{arrows,intersections,math}
+\usepackage{ifthen}
+\begin{document}
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\newboolean{showgrid}
+\setboolean{showgrid}{false}
+\def\breite{7}
+\def\hoehe{4}
+
+\begin{tikzpicture}[>=latex,thick]
+
+% Povray Bild
+\node at (0,0) {\includegraphics[width=10cm]{rodriguez.jpg}};
+
+% Gitter
+\ifthenelse{\boolean{showgrid}}{
+\draw[step=0.1,line width=0.1pt] (-\breite,-\hoehe) grid (\breite, \hoehe);
+\draw[step=0.5,line width=0.4pt] (-\breite,-\hoehe) grid (\breite, \hoehe);
+\draw (-\breite,-\hoehe) grid (\breite, \hoehe);
+\fill (0,0) circle[radius=0.05];
+}{}
+
+\node[color=blue] at (0.6,3.0) {$\vec{k}\mathstrut$};
+\node[color=red] at (1.8,-1.0) [below right] {$\vec{x}\mathstrut$};
+\node[color=darkgreen] at (-4.5,1.0) [below left]
+ {$\vec{x}\times\vec{k}\mathstrut$};
+\node[color=yellow] at (1.9,-0.5) [right] {$\vec{x}-(\vec{x}\cdot\vec{k})\vec{k}$};
+
+\end{tikzpicture}
+
+\end{document}
+
diff --git a/buch/chapters/60-gruppen/lie-algebren.tex b/buch/chapters/60-gruppen/lie-algebren.tex
index cee8510..0f6429f 100644
--- a/buch/chapters/60-gruppen/lie-algebren.tex
+++ b/buch/chapters/60-gruppen/lie-algebren.tex
@@ -8,7 +8,7 @@
\rhead{Lie-Algebren}
Im vorangegangenen Abschnitt wurde gezeigt, dass alle beschriebenen
Matrizengruppen als Untermannigfaltigkeiten im $n^2$-dimensionalen
-Vektorraum $M_n(\mathbb{R}9$ betrachtet werden können.
+Vektorraum $M_n(\mathbb{R})$ betrachtet werden können.
Die Gruppen haben damit nicht nur die algebraische Struktur einer
Matrixgruppe, sie haben auch die geometrische Struktur einer
Mannigfaltigkeit.
@@ -27,6 +27,7 @@ Insbesondere werden wir sehen, wie die Gruppen $\operatorname{SO}(3)$
und $\operatorname{SU}(2)$ die gleich Lie-Algebra haben und dass die
Lie-Algebra von $\operatorname{SO}(3)$ mit dem Vektorprodukt in $\mathbb{R}^3$
übereinstimmt.
+\index{Vektorprodukt}%
%
% Die Lie-Algebra einer Matrizengruppe
@@ -78,12 +79,12 @@ I+(B+A)t + \biggl(\frac{B^2}{2!}+BA+\frac{A^2}{2!}\biggr)t^2 +\dots
\intertext{%
Die beiden Kurven $e^{At}e^{Bt}$ und $e^{Bt}e^{At}$ haben zwar den gleichen
Tangentialvektor für $t=0$, sie unterscheiden
-sich aber untereinander, und sie unterscheiden sich von der
-Einparameteruntergruppe von $A+B$}
+sich aber für $t>0$ und sie unterscheiden sich von der
+Einparameteruntergruppe}
e^{(A+B)t}
&=
I + (A+B)t + \frac{t^2}{2}(A^2 + AB + BA + B^2) + \ldots
-\intertext{Für die Unterschiede finden wir}
+\intertext{von $A+B$. Für die Unterschiede finden wir}
e^{At}e^{Bt} - e^{(A+B)t}
&=
\biggl(AB-\frac{AB+BA}2\biggr)t^2
@@ -110,15 +111,19 @@ e^{At}e^{Bt}-e^{Bt}e^{At}
=
\phantom{-}[A,B]t^2+\ldots
\end{align*}
-wobei mit $[A,B]=AB-BA$ abgekürzt wird.
+wobei $[A,B]=AB-BA$ abgekürzt wird.
\begin{definition}
\label{buch:gruppen:def:kommutator}
-Der Kommutator zweier Matrizen $A,B\in M_n(\mathbb{R})$ ist die Matrix
+Der {\em Kommutator} zweier Matrizen $A,B\in M_n(\mathbb{R})$ ist die Matrix
$[A,B]=AB-BA$.
+\index{Kommutator}%
+\index{Lie-Klammer}%
\end{definition}
Der Kommutator ist bilinear und antisymmetrisch, da
+\index{bilinear}%
+\index{antisymmetrisch}%
\begin{align*}
[\lambda A+\mu B,C]
&=
@@ -139,11 +144,13 @@ AB-BA = -(BA-AB) = -[B,A].
Aus der letzten Bedingung folgt insbesodnere $[A,A]=0$
Der Kommutator $[A,B]$ misst in niedrigster Ordnung den Unterschied
-zwischen den $e^{At}$ und $e^{Bt}$.
+zwischen den
+$ e^{At} e^{Bt} $
+und
+$ e^{Bt} e^{At} $.
Der Kommutator der Tangentialvektoren $A$ und $B$ bildet also die
Nichtkommutativität der Matrizen $e^{At}$ und $e^{Bt}$ ab.
-
\subsubsection{Die Jacobi-Identität}
Der Kommutator hat die folgende zusätzliche algebraische Eigenschaft:
\begin{align*}
@@ -182,6 +189,7 @@ Identität.
\label{buch:gruppen:def:jacobi}
Ein bilineares Produkt $[\;,\;]\colon V\times V\to V$ auf dem Vektorraum
erfüllt die {\em Jacobi-Identität}, wenn
+\index{Jacobi-Identität}%
\[
[u,[v,w]] + [v,[w,u]] + [w,[u,v]]=0
\]
@@ -199,23 +207,26 @@ Ein Vektorraum $V$ mit einem bilinearen, Produkt
\]
welches zusätzlich die Jacobi-Identität~\ref{buch:gruppen:def:jacobi}
erfüllt, heisst eine {\em Lie-Algebra}.
+\index{Lie-Algebra}%
\end{definition}
Die Lie-Algebra einer Lie-Gruppe $G$ wird mit $LG$ bezeichnet.
$LG$ besteht aus den Tangentialvektoren im Punkt $I$.
-Die Exponentialabbildung $\exp\colon LG\to G:A\mapsto e^A$
+Die {\em Exponentialabbildung} $\exp\colon LG\to G:A\mapsto e^A$
+\index{Exponentialabbildung}%
ist eine differenzierbare Abbildung von $LG$ in die Gruppe $G$.
Insbesondere kann die Inverse der Exponentialabbildung als eine
Karte in einer Umgebung von $I$ verwendet werden.
Für die Lie-Algebren der Matrizengruppen, die früher definiert worden
-sind, verwenden wir die als Notationskonvention, dass der Name der
+sind, verwenden wir die Notationskonvention, dass der Name der
Lie-Algebra der mit kleinen Buchstaben geschrieben Name der Lie-Gruppe ist.
Die Lie-Algebra von $\operatorname{SO}(n)$ ist also
-$L\operatorname{SO}(n) = \operatorname{os}(n)$,
+$L\operatorname{SO}(n) = \operatorname{so}(n)$,
+\index{so(n)@$\operatorname{so}(n)$}%
die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ ist
$L\operatorname{SL}_n(\mathbb{R})=\operatorname{sl}_n(\mathbb{R})$.
-
+\index{sln(r)@$\operatorname{sl}_n(\mathbb{R})$}%
%
% Die Lie-Algebra von SO(3)
@@ -229,34 +240,126 @@ Solche Matrizen haben die Form
\Omega
=
\begin{pmatrix}
- 0 & \omega_3&-\omega_2\\
--\omega_3& 0 & \omega_1\\
- \omega_2&-\omega_1& 0
+ 0 &-\omega_3& \omega_2\\
+ \omega_3& 0 &-\omega_1\\
+-\omega_2& \omega_1& 0
\end{pmatrix}
\]
+Die antisymmetrischen Matrizen
+\[
+\omega_{23}
+=
+\begin{pmatrix} 0&0&0\\0&0&-1\\0&1&0\end{pmatrix},
+\quad
+\omega_{31}
+=
+\begin{pmatrix} 0&0&1\\0&0&0\\-1&0&0\end{pmatrix},
+\quad
+\omega_{12}
+=
+\begin{pmatrix} 0&1&0\\-1&0&0\\0&0&0\end{pmatrix}
+\]
+bilden eine Basis für $\operatorname{so}(3)$, man kann
+\[
+\Omega
+=
+\omega_1\omega_{23}
++
+\omega_2\omega_{31}
++
+\omega_3\omega_{12}
+\]
+schreiben.
Der Vektorraum $\operatorname{so}(3)$ ist also dreidimensional.
-Die Wirkung von $I+t\Omega$ auf einem Vektor $x$ ist
+Die Kommutatoren der Basisvektoren sind
+\begin{equation}
+\setlength\arraycolsep{4pt}
+\begin{aligned}
+[\omega_{23},\omega_{31}]
+&=
+\begin{pmatrix}
+0&-1&0\\
+1&0&0\\
+0&0&0
+\end{pmatrix}
+=
+\omega_{12},
+%\\
+&
+[\omega_{31},\omega_{12}]
+&=
+\begin{pmatrix}
+0&0&0\\
+0&0&-1\\
+0&1&0
+\end{pmatrix}
+=
+\omega_{23},
+%\\
+&
+[\omega_{12},\omega_{23}]
+&=
+\begin{pmatrix}
+0&0&1\\
+0&0&0\\
+-1&0&0
+\end{pmatrix}
+=
+\omega_{31},
+\end{aligned}
+\label{buch:gruppen:eqn:so3-kommutatoren}
+\end{equation}
+wie man durch direkte Rechnung bestätigt.
+Diese Regeln stimmen mit den Vektorprodukten der Standardbasisvektoren
+in $\mathbb{R}^3$ überein.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/nichtkomm.pdf}
+\caption{Der Kommutator zweier Drehungen um die $x_1$ und $x_2$
+Achse ist eine Drehung um die $x_3$-Achse.
+\label{buch:lie:fig:kommutator}}
+\end{figure}
+Abbildung~\ref{buch:lie:fig:kommutator} illustriert, wie der
+Kommutator die Nichtkommutativität der Gruppe $\operatorname{SO}(3)$
+wiedergibt.
+Die Matrix $\omega_{23}$ erzeugt eine Drehung $R_{x_1,\alpha}$
+um die $x_1$-Achse,
+die Matrix $\omega_{31}$ eine Drehung $R_{x_2,\beta}$ um die $x_2$ Achse.
+Der Kommutator $[\omega_{23},\omega_{31}]=\omega_{12}$ beschreibt in
+niedrigster Ordnung den Unterschied, der entsteht, wenn man die
+beiden Drehungen in verschiedenen Reihenfolgen ausführt.
+Dies ist eine Drehung $R_{x_3,\gamma}$ um die $x_3$-Achse.
+
+Aus der Rodriguez-Formel~\ref{buch:lie:eqn:rodrigues} wissen wir
+bereits, dass die Ableitung der Drehung das Vektorprodukt
+$\vec{\omega}\times\vec{x}$ ist.
+Dieses kann jedoch auch als
+$\Omega\vec{x} = \vec{omega}\times\vec{x}$
+ausgedrückt werden.
+
+Die Wirkung von $I+t\Omega$ auf einem Vektor $\vec{x}$ ist
\[
(I+t\Omega)
\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
=
\begin{pmatrix}
- 1 & t\omega_3&-t\omega_2\\
--t\omega_3& 1 & t\omega_1\\
- t\omega_2&-t\omega_1& 1
+ 1 &-t\omega_3& t\omega_2\\
+ t\omega_3& 1 &-t\omega_1\\
+-t\omega_2& t\omega_1& 1
\end{pmatrix}
\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}
=
\begin{pmatrix}
-x_1-t(-\omega_3x_2+\omega_2x_3)\\
-x_2-t( \omega_3x_1-\omega_1x_3)\\
-x_3-t(-\omega_2x_1+\omega_1x_2)
+x_1+t(-\omega_3x_2+\omega_2x_3)\\
+x_2+t( \omega_3x_1-\omega_1x_3)\\
+x_3+t(-\omega_2x_1+\omega_1x_2)
\end{pmatrix}
=
-x- t\begin{pmatrix}\omega_1\\\omega_2\\\omega_3\end{pmatrix}\times x
+\vec{x}+ t\begin{pmatrix}\omega_1\\\omega_2\\\omega_3\end{pmatrix}\times x
=
-x+ tx\times \omega.
+\vec{x}+ t\vec{\omega}\times \vec{x}.
\]
Die Matrix $\Omega$ ist als die infinitesimale Version einer Drehung
um die Achse $\omega$.
@@ -271,9 +374,9 @@ mit Hilfe der Abbildung
\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}
\mapsto
\begin{pmatrix}
- 0 & v_3&-v_1\\
--v_3& 0 & v_2\\
- v_1&-v_2& 0
+ 0 &-v_3& v_2\\
+ v_3& 0 &-v_1\\
+-v_2& v_1& 0
\end{pmatrix}.
\]
Der Kommutator von zwei so aus Vektoren $\vec u$ und $\vec v$
@@ -285,56 +388,56 @@ UV-VU
\\
&=
\begin{pmatrix}
- 0 & u_3&-u_1\\
--u_3& 0 & u_2\\
- u_1&-u_2& 0
+ 0 &-u_3& u_2\\
+ u_3& 0 &-u_1\\
+-u_2& u_1& 0
\end{pmatrix}
\begin{pmatrix}
- 0 & v_3&-v_1\\
--v_3& 0 & v_2\\
- v_1&-v_2& 0
+ 0 &-v_3& v_2\\
+ v_3& 0 &-v_1\\
+-v_2& v_1& 0
\end{pmatrix}
-
\begin{pmatrix}
- 0 & v_3&-v_1\\
--v_3& 0 & v_2\\
- v_1&-v_2& 0
+ 0 &-v_3& v_2\\
+ v_3& 0 &-v_1\\
+-v_2& v_1& 0
\end{pmatrix}
\begin{pmatrix}
- 0 & u_3&-u_1\\
--u_3& 0 & u_2\\
- u_1&-u_2& 0
+ 0 &-u_3& u_2\\
+ u_3& 0 &-u_1\\
+-u_2& u_1& 0
\end{pmatrix}
\\
&=
\begin{pmatrix}
-u_3v_3+u_1v_1 - u_3v_3 - u_1v_1
- & u_1v_2 - u_2v_1
- & u_3v_2 - u_2v_3
-\\
-u_2v_1 - u_1v_2
- & -u_3v_3-u_2v_2 + u_3v_3+u_2v_2
+-u_3v_3-u_2v_2 + u_3v_3 + u_2v_2
+ & u_2v_1 - u_1v_2
& u_3v_1 - u_1v_3
\\
-u_2v_3 - u_3v_2
- & u_1v_3 - u_3v_1
- &-u_1v_1-u_2v_2 u_1v_1+u_2v_2
+u_1v_2 - u_2v_1
+ & -u_3v_3-u_1v_1 + u_3v_3+u_1v_1
+ & u_3v_2 - u_2v_3
+\\
+u_1v_3 - u_3v_1
+ & u_2v_3 - u_3v_2
+ &-u_2v_2-u_1v_1+ u_2v_2+u_1v_1
\end{pmatrix}
\\
&=
\begin{pmatrix}
0
- & u_1v_2 - u_2v_1
- &-(u_2v_3-u_3v_2)
+ &-(u_1v_2 - u_2v_1)
+ &u_3v_1-u_1v_3
\\
--( u_1v_2 - u_2v_1)
+u_1v_2 - u_2v_1
& 0
- & u_3v_1 - u_1v_3
+ &-(u_2v_3 - u_3v_2)
\\
-u_2v_3 - u_3v_2
- &-( u_3v_1 - u_1v_3)
+-(u_3v_1 - u_1v_3)
+ & u_3v_2 - u_2v_3
& 0
-\end{pmatrix}
+\end{pmatrix}.
\end{align*}
Die Matrix $[U,V]$ gehört zum Vektor $\vec u\times\vec v$.
Damit können wir aus der Jacobi-Identität jetzt folgern, dass
@@ -349,10 +452,10 @@ Damit können wir aus der Jacobi-Identität jetzt folgern, dass
für drei beliebige Vektoren $\vec u$, $\vec v$ und $\vec w$ ist.
Dies bedeutet, dass der dreidimensionale Vektorraum $\mathbb R^3$
mit dem Vektorprodukt zu einer Lie-Algebra wird.
-In der Tat verwenden einige Bücher statt der vertrauten Notation
+In der Tat verwenden einige Lehrbücher statt der vertrauten Notation
$\vec u\times \vec v$ für das Vektorprodukt die aus der Theorie der
Lie-Algebren entlehnte Notation $[\vec u,\vec v]$, zum Beispiel
-das Lehrbuch der Theoretischen Physik \cite{skript:landaulifschitz1}
+auch das Lehrbuch der Theoretischen Physik \cite{skript:landaulifschitz1}
von Landau und Lifschitz.
Die Lie-Algebren sind vollständig klassifiziert worden, es gibt
@@ -361,56 +464,6 @@ Unser dreidimensionaler Raum ist also auch in dieser Hinsicht speziell:
es ist der kleinste Vektorraum, in dem eine nichttriviale Lie-Algebra-Struktur
möglich ist.
-Die antisymmetrischen Matrizen
-\[
-\omega_{23}
-=
-\begin{pmatrix} 0&1&0\\-1&0&0\\0&0&0\end{pmatrix}
-\quad
-\omega_{31}
-=
-\begin{pmatrix} 0&0&-1\\0&0&0\\1&0&0\end{pmatrix}
-\quad
-\omega_{12}
-=
-\begin{pmatrix} 0&0&0\\0&0&1\\0&-1&0\end{pmatrix}
-\]
-haben die Kommutatoren
-\begin{equation}
-\begin{aligned}
-[\omega_{23},\omega_{31}]
-&=
-\begin{pmatrix}
-0&0&0\\
-0&0&1\\
-0&-1&0
-\end{pmatrix}
-=
-\omega_{12}
-\\
-[\omega_{31},\omega_{12}]
-&=
-\begin{pmatrix}
-0&1&0\\
--1&0&0\\
-0&0&0
-\end{pmatrix}
-=
-\omega_{23}
-\\
-[\omega_{12},\omega_{23}]
-&=
-\begin{pmatrix}
-0&0&-1\\
-0&0&0\\
-1&0&0
-\end{pmatrix}
-=
-\omega_{31}
-\end{aligned}
-\label{buch:gruppen:eqn:so3-kommutatoren}
-\end{equation}
-
\subsection{Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$}
Die Lie-Algebra von $\operatorname{SL}_n(\mathbb{R})$ besteht aus den
spurlosen Matrizen in $M_n(\mathbb{R})$.
@@ -448,13 +501,16 @@ A\in M_n(\mathbb{C}
AA^*=I
\}
\]
+\index{unitäre Gruppe}%
+\index{Gruppe, unitär}%
+\index{U(n)@$\operatorname{U}(n)$}%
heisst die unitäre Gruppe, sie besteht aus den Matrizen, die
das sesquilineare Standardskalarprodukt auf dem komplexen
Vektorraum $\mathbb{C}^n$ invariant lassen.
Sei eine $\gamma(t)$ ein differenzierbare Kurve in $\operatorname{U}(n)$
derart, dass $\gamma(0)=I$.
Die Ableitung der Identität $AA^*=I$ führt dann auf
-\begin{align*}
+\begin{equation*}
0
=
\frac{d}{dt}
@@ -469,14 +525,17 @@ Die Ableitung der Identität $AA^*=I$ führt dann auf
+
\dot{\gamma}(0)^*
\quad\Rightarrow\quad
-\dot{\gamma}(0)&=-\dot{\gamma}(0)^*.
-A&=-A^*
-\end{align*}
+\dot{\gamma}(0)=-\dot{\gamma}(0)^*
+\quad\Rightarrow\quad
+A=-A^*
+\end{equation*}
Die Lie-Algebra $\operatorname{u}(n)$ besteht daher aus den antihermiteschen
Matrizen.
+\index{u(n)@$\operatorname{u}(n)$}%
Wir sollten noch verifizieren, dass der Kommutator zweier antihermiteschen
Matrizen wieder anithermitesch ist:
+\index{antihermitesch}%
\begin{align*}
[A,B]^*
&=
@@ -489,7 +548,7 @@ BA - AB
-[B,A].
\end{align*}
-Eine antihermitesche Matrix erfüllt $a_{ij}=-\overline{a}_{ji}$,
+Eine antihermitesche Matrix erfüllt $a_{i\!j}=-\overline{a}_{ji}$,
für die Diagonalelemente folgt daher $a_{ii} = -\overline{a}_{ii}$
oder $\overline{a}_{ii}=-a_{ii}$.
Der Realteil von $a_{ii}$ ist
@@ -510,6 +569,7 @@ imaginär.
\subsection{Die Lie-Algebra von $\operatorname{SU}(2)$}
Die Lie-Algebra $\operatorname{su}(n)$ besteht aus den
spurlosen antihermiteschen Matrizen.
+\index{su(n)@$\operatorname{su}(n)$}%
Sie erfüllen daher die folgenden Bedingungen:
\[
A=\begin{pmatrix}a&b\\c&d\end{pmatrix}
@@ -557,6 +617,7 @@ iu\underbrace{\begin{pmatrix}0&-i\\i&0\end{pmatrix}}_{\displaystyle=\sigma_2}
is\underbrace{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}_{\displaystyle=\sigma_3}
\end{align*}
Diese Matrizen heissen die {\em Pauli-Matrizen}, sie haben die Kommutatoren
+\index{Pauli-Matriizen}%
\begin{align*}
[\sigma_1,\sigma_2]
&=
@@ -623,7 +684,7 @@ Die Matrizen $-\frac12i\sigma_j$ haben die Kommutatorprodukte
=
-{\textstyle\frac14}\cdot 2i\sigma_2
=
--{\textstyle\frac12}i\sigma_2
+-{\textstyle\frac12}i\sigma_2.
\end{align*}
Die lineare Abbildung, die
\begin{align*}
@@ -631,7 +692,7 @@ Die lineare Abbildung, die
\omega_{31}&\mapsto -{\textstyle\frac12}i\sigma_2\\
\omega_{12}&\mapsto -{\textstyle\frac12}i\sigma_3
\end{align*}
-abbildet ist daher ein Isomorphismus der Lie-Algebra $\operatorname{so}(3)$
+abbildet, ist daher ein Isomorphismus der Lie-Algebra $\operatorname{so}(3)$
auf die Lie-Algebra $\operatorname{su}(2)$.
Die Lie-Gruppen $\operatorname{SO}(3)$ und $\operatorname{SU}(2)$
haben also die gleiche Lie-Algebra.
diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex
index e92c254..860f27d 100644
--- a/buch/chapters/60-gruppen/lie-gruppen.tex
+++ b/buch/chapters/60-gruppen/lie-gruppen.tex
@@ -16,11 +16,13 @@ Die Gruppe
\]
besteht aus den Matrizen, deren Determinante nicht $0$ ist.
Da die Menge der Matrizen mit $\det A=0$ eine abgeschlossene Menge
-in $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$ ist, ist
+in $M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$ ist, ist
$\operatorname{GL}_n(\mathbb{R})$ eine offene Teilmenge in $\mathbb{R}^{n^2}$,
sie besitzt also automatisch die Struktur einer $n^2$-Mannigfaltigkeit.
-Dies gilt jedoch auch für alle anderen Matrizengruppen, die in diesem
-Abschnitt genauer untersucht werden sollen.
+Doch auch alle anderen Matrizengruppen,
+die in diesem Abschnitt genauer untersucht werden sollen,
+stellens ich als Untermannigfaltigkeiten von
+$\operatorname{GL}_n(\mathbb{R})$ heraus.
\subsection{Mannigfaltigkeitsstruktur der Matrizengruppen
\label{buch:subsection:mannigfaltigkeitsstruktur-der-matrizengruppen}}
@@ -74,8 +76,9 @@ Die Abbildung $l_{g_1^{-1}g_2}$ ist aber nur die Multiplikation mit
einer Matrix, also eine lineare Abbildung, so dass der Kartenwechsel
nichts anderes ist als die Darstellung der Matrix der Linksmultiplikation
$l_{g_1^{-1}g_2}$ im Koordinatensystem der Karte $U_e$ ist.
-Differenzierbarkeit der Kartenwechsel ist damit sichergestellt,
-die Matrizengruppen sind automatisch differenzierbare Mannigfaltigkeiten.
+Differenzierbarkeit der Kartenwechsel ist damit sichergestellt.
+Somit sind
+die Matrizengruppen automatisch differenzierbare Mannigfaltigkeiten.
Die Konstruktion aller Karten aus einer einzigen Karte für eine
Umgebung des neutralen Elements zeigt auch, dass es für die Matrizengruppen
@@ -115,7 +118,7 @@ enthalten.
Diffferenzierbare Kurven $\gamma(t)$ in $\operatorname{GL}_n(\mathbb{R})$
haben daher in jedem Punkt Tangentialvektoren, die als Matrizen in
$M_n(\mathbb{R})$ betrachtet werden können.
-Wenn $\gamma(t)$ die Matrixelemente $\gamma_{ij}(t)$ hat, dann ist der
+Wenn $\gamma(t)$ die Matrixelemente $\gamma_{i\!j}(t)$ hat, dann ist der
Tangentialvektor im Punkt $\gamma(t)$ durch
\[
\frac{d}{dt}
@@ -152,7 +155,8 @@ Eine solche Kurve muss die Differentialgleichung
erfüllen, wobei $A\in M_n(\mathbb{R})$ der gegebene Tangentialvektor
in $e=I$ ist.
-Die Matrixexponentialfunktion
+Die {\em Matrixexponentialfunktion}
+\index{Matrixexponentialfunktion}%
\[
e^{At}
=
@@ -184,7 +188,7 @@ $\operatorname{SO}(2)\subset \operatorname{GL}_2(\mathbb{R})$}
Drehungen der Ebene können in einer orthonormierten Basis durch
Matrizen der Form
\[
-D_{\alpha}
+R_{\alpha}
=
\begin{pmatrix}
\cos\alpha&-\sin\alpha\\
@@ -196,36 +200,39 @@ Wir bezeichnen die Menge der Drehmatrizen in der Ebene mit
$\operatorname{SO}(2)\subset\operatorname{GL}_2(\mathbb{R})$.
Die Abbildung
\[
-D_{\bullet}
+R_{\bullet}
\colon
\mathbb{R}\to \operatorname{SO}(2)
:
-\alpha \mapsto D_{\alpha}
+\alpha \mapsto R_{\alpha}
\]
hat die Eigenschaften
-\begin{align*}
-D_{\alpha+\beta}&= D_{\alpha}D_{\beta}
+\begin{equation}
+\begin{aligned}
+R_{\alpha+\beta}&= R_{\alpha}R_{\beta}
\\
-D_0&=I
+R_0&=I
\\
-D_{2k\pi}&=I\qquad \forall k\in\mathbb{Z}.
-\end{align*}
-Daraus folgt zum Beispiel, dass $D_{\bullet}$ eine $2\pi$-periodische
+R_{2k\pi}&=I\qquad \forall k\in\mathbb{Z}.
+\end{aligned}
+\label{buch:lie:so2matrizen}
+\end{equation}
+Daraus folgt zum Beispiel, dass $R_{\bullet}$ eine $2\pi$-periodische
Funktion ist.
-$D_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf
+$R_{\bullet}$ bildet die Menge der Winkel $[0,2\pi)$ bijektiv auf
die Menge der Drehmatrizen in der Ebene ab.
Für jedes Intervall $(a,b)\subset\mathbb{R}$ mit Länge
-$b-a < 2\pi$ ist die Abbildung $\alpha\mapsto D_{\alpha}$ umkehrbar,
+$b-a < 2\pi$ ist die Abbildung $\alpha\mapsto R_{\alpha}$ umkehrbar,
die Umkehrung kann als Karte verwendet werden.
Zwei verschiedene Karten $\alpha_1\colon U_1\to\mathbb{R}$ und
$\alpha_2\colon U_2\to\mathbb{R}$ bilden die Elemente $g\in U_1\cap U_2$
in Winkel $\alpha_1(g)$ und $\alpha_2(g)$ ab, für die
-$D_{\alpha_1(g)}=D_{\alpha_2(g)}$ gilt.
+$R_{\alpha_1(g)}=R_{\alpha_2(g)}$ gilt.
Dies ist gleichbedeutend damit, dass $\alpha_1(g)=\alpha_2(g)+2\pi k$
mit $k\in \mathbb{Z}$.
In einem Intervall in $U_1\cap U_2$ muss $k$ konstant sein.
-Die Kartenwechselabblidung ist also nur die Addition eines Vielfachen
+Die Kartenwechselabbildung ist also nur die Addition eines Vielfachen
von $2\pi$, mit der identischen Abbildung als Ableitung.
Diese Karten führen also auf besonders einfache Kartenwechselabbildungen.
@@ -239,22 +246,27 @@ Die Zahlen der Form $e^{i\alpha}$ haben den Betrag $1$ und die Abbildung
f\colon \mathbb{R}\to \mathbb{C}:\alpha \mapsto e^{i\alpha}
\]
hat die Eigenschaften
-\begin{align*}
+\begin{equation}
+\begin{aligned}
f(\alpha+\beta) &= f(\alpha)f(\beta)
\\
f(0)&=1
\\
f(2\pi k)&=1\qquad\forall k\in\mathbb{Z},
-\end{align*}
-die zu den Eigenschaften der Abbildung $\alpha\mapsto D_{\alpha}$
+\end{aligned}
+\label{buch:lie:so2komplex}
+\end{equation}
+die zu den Eigenschaften
+\eqref{buch:lie:so2matrizen} der Abbildung $\alpha\mapsto R_{\alpha}$
analog sind.
Jede komplexe Zahl $z$ vom Betrag $1$ kann geschrieben werden in der Form
-$z=e^{i\alpha}$, die Abbildung $f$ ist also eine Parametrisierung des
+$z=e^{i\alpha}$.
+Die Abbildung $f$ ist also eine Parametrisierung des
Einheitskreises in der Ebene.
Wir bezeichen $S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ die komplexen Zahlen vom
Betrag $1$.
-$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für jede Zahl
+$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für alle Zahlen
$z,w\in S^1$ gilt
$|z^{-1}|=1$ und $|zw|=1$ und damit $z^{-1}\in S^1$ und $zw\in S^1$.
@@ -266,32 +278,32 @@ Damit kann man jetzt die Abbildung
\colon
S^1\to \operatorname{SO}(2)
:
-z\mapsto D_{\alpha(z)}
+z\mapsto R_{\alpha(z)}
\]
konstruieren.
-Da $D_{\alpha}$ $2\pi$-periodisch ist, geben um Vielfache
+Da $R_{\alpha}$ $2\pi$-periodisch ist, geben um Vielfache
von $2\pi$ verschiedene Wahlen von $\alpha(z)$ die gleiche
-Matrix $D_{\alpha(z)}$, die Abbildung $\varphi$ ist daher
+Matrix $R_{\alpha(z)}$, die Abbildung $\varphi$ ist daher
wohldefiniert.
$\varphi$ erfüllt ausserdem die Bedingungen
\begin{align*}
\varphi(z_1z_2)
&=
-D_{\alpha(z_1z_2)}
+R_{\alpha(z_1z_2)}
=
-D_{\alpha(z_1)+\alpha(z_2)}
+R_{\alpha(z_1)+\alpha(z_2)}
=
-D_{\alpha(z_1)}D_{\alpha(z_2)}
+R_{\alpha(z_1)}R_{\alpha(z_2)}
=
-\varphi(z_1)\varphi(z_2)
+\varphi(z_1)\varphi(z_2),
\\
\varphi(1)
&=
-D_{\alpha(1)}
+R_{\alpha(1)}
=
-D_0
+R_0
=
-I
+I.
\end{align*}
Die Abbildung $\varphi$ ist ein Homomorphismus der Gruppe $S^1$
in die Gruppe $\operatorname{SO}(2)$.
@@ -301,7 +313,7 @@ in der komplexen Ebene identifiziert werden.
\subsubsection{Tangentialvektoren von $\operatorname{SO}(2)$}
Da die Gruppe $\operatorname{SO}(2)$ eine eindimensionale Gruppe
ist, kann jede Kurve $\gamma(t)$ durch den Drehwinkel $\alpha(t)$
-mit $\gamma(t) = D_{\alpha(t)}$ beschrieben werden.
+mit $\gamma(t) = R_{\alpha(t)}$ beschrieben werden.
Die Ableitung in $M_2(\mathbb{R})$ ist
\begin{align*}
\frac{d}{dt} \gamma(t)
@@ -334,24 +346,27 @@ Die Ableitung in $M_2(\mathbb{R})$ ist
\cdot
\dot{\alpha}(t)
=
-D_{\alpha(t)}J\cdot\dot{\alpha}(t).
+R_{\alpha(t)}J\cdot\dot{\alpha}(t).
\end{align*}
-Alle Tangentialvektoren von $\operatorname{SO}(2)$ im Punkt $D_\alpha$
-entstehen aus $J$ durch Drehung mit der Matrix $D_\alpha$ und Skalierung
-mit $\dot{\alpha}(t)$.
+Alle Tangentialvektoren von $\operatorname{SO}(2)$ im Punkt $R_\alpha$
+entstehen aus $J$ durch Drehung mit der Matrix $R_\alpha$ und Skalierung
+mit der Winkelgeschwindigkeit $\dot{\alpha}(t)$.
+\index{Winkelgeschwindigkeit}%
%
% Isometrien von R^n
%
\subsection{Isometrien von $\mathbb{R}^n$
\label{buch:gruppen:isometrien}}
+Isometrien von $\mathbb{R}^n$ führen automatisch auf eine interessante
+Lie-Gruppe.
\subsubsection{Skalarprodukt}
Lineare Abbildungen des Raumes $\mathbb{R}^n$ können durch
$n\times n$-Matrizen beschrieben werden.
Die Matrizen, die das Standardskalarprodukt $\mathbb{R}^n$ erhalten,
bilden eine Gruppe, die in diesem Abschnitt genauer untersucht werden soll.
-Eine Matrix $A\in M_{n}(\mathbb{R})$ ändert das Skalarprodukt, wenn
+Eine Matrix $A\in M_{n}(\mathbb{R})$ ändert das Skalarprodukt nicht, wenn
für jedes beliebige Paar $x,y$ von Vektoren gilt
$\langle Ax,Ay\rangle = \langle x,y\rangle$.
Das Standardskalarprodukt kann mit dem Matrixprodukt ausgedrückt werden:
@@ -372,17 +387,20 @@ Mit dem Skalarprodukt kann man auch die Matrixelemente einer Matrix
einer Abbildung $f$ in der Standardbasis bestimmen.
Das Skalarprodukt $\langle e_i, v\rangle$ ist die Länge der Projektion
des Vektors $v$ auf die Richtung $e_i$.
-Die Komponenten von $Ae_j$ sind daher $a_{ij}=\langle e_i,f(e_j)\rangle$.
-Die Matrix $A$ der Abbildung $f$ hat also die Matrixelemente
-$a_{ij}=e_i^tAe_j$.
+Die Komponenten von $Ae_j$ sind daher $a_{i\!j}=\langle e_i,f(e_j)\rangle$.
+Die Matrix $A$ der Abbildung $f$ hat folglich die Matrixelemente
+$a_{i\!j}=e_i^tAe_j$.
\subsubsection{Die orthogonale Gruppe $\operatorname{O}(n)$}
Die Matrixelemente von $A^tA$ sind
-$\langle A^tAe_i, e_j\rangle =\langle e_i,e_j\rangle = \delta_{ij}$
-sind diejenigen der Einheitsmatrix,
-die Matrix $A$ erfüllt $AA^t=I$ oder $A^{-1}=A^t$.
+$\langle A^tAe_i, e_j\rangle =\langle e_i,e_j\rangle = \delta_{i\!j}$
+also die der Einheitsmatrix.
+Die Matrix $A$ erfüllt $AA^t=I$ oder $A^{-1}=A^t$.
Dies sind die {\em orthogonalen} Matrizen.
-Die Menge $\operatorname{O}(n)$ der isometrischen Abbildungen besteht
+\index{orthogonale Matrix}%
+Die Menge $\operatorname{O}(n)$ der isometrischen Abbildungen
+\index{O(n)@$\operatorname{O}(n)$}%
+von $\mathbb{R}^n$ besteht
daher aus den Matrizen
\[
\operatorname{O}(n)
@@ -401,7 +419,7 @@ n^2 - \frac{n(n+1)}{2}
=
\frac{n(n-1)}2.
\]
-Im Spezialfall $n=2$ ist die Gruppe $O(2)$ eindimensional.
+Im Spezialfall $n=2$ ist die Gruppe $\operatorname{O}(2)$ eindimensional.
\subsubsection{Tangentialvektoren}
Die orthogonalen Matrizen bilden eine abgeschlossene Untermannigfaltigkeit
@@ -440,16 +458,17 @@ A^t&=-A
\]
Die Tangentialvektoren von $\operatorname{O}(n)$ sind also genau
die antisymmetrischen Matrizen.
+\index{antisymmetrisch}%
Für $n=2$ sind alle antisymmetrischen Matrizen Vielfache der Matrix
$J$, wie in Abschnitt~\ref{buch:gruppen:drehungen2d}
gezeigt wurde.
-Für jedes Paar $i<j$ ist die Matrix $A_{ij}$ mit den Matrixelementen
-$(A_{ij})_{ij}=-1$ und $(A_{ij})_{ji}=1$
+Für jedes Paar $i<j$ ist die Matrix $A_{i\!j}$ mit den Matrixelementen
+$(A_{i\!j})_{i\!j}=-1$ und $(A_{i\!j})_{ji}=1$
antisymmetrisch.
Für $n=2$ ist $A_{12}=J$.
-Die $n(n-1)/2$ Matrizen $A_{ij}$ bilden eine Basis des
+Die $n(n-1)/2$ Matrizen $A_{i\!j}$ bilden eine Basis des
$n(n-1)/2$-dimensionale Tangentialraumes von $\operatorname{O}(n)$.
Tangentialvektoren in einem anderen Punkt $g\in\operatorname{O}(n)$
@@ -464,6 +483,7 @@ Wegen $\det (AA^t)=\det A\det A^t = (\det A)^2=1$ kann die Determinante
einer orthogonalen Matrix nur $\pm 1$ sein.
Orientierungserhaltende Isometrien haben Determinante $1$.
+\begin{definition}
Die Gruppe
\[
\operatorname{SO}(n)
@@ -471,7 +491,13 @@ Die Gruppe
\{A\in\operatorname{O}(n)\;|\; \det A=1\}
\]
heisst die {\em spezielle orthogonale Gruppe}.
-Die Dimension der Gruppe $\operatorname{O}(n)$ ist $n(n-1)/2$.
+\index{spezielle orthogonale Gruppe}%
+\index{orthogonale Gruppe, speziell}%
+\index{Gruppe, spezielle orthogonale}%
+\index{SO(n)@$\operatorname{SO}(n)$}%
+\end{definition}
+
+%Die Dimension der Gruppe $\operatorname{SO}(n)$ ist $n(n-1)/2$.
\subsubsection{Die Gruppe $\operatorname{SO}(3)$}
Die Gruppe $\operatorname{SO}(3)$ der Drehungen des dreidimensionalen
@@ -485,7 +511,7 @@ Der Drehwinkel ist der dritte Parameter.
Drehungen mit kleinen Drehwinkeln können zusammengesetzt werden
aus den Matrizen
\begin{align*}
-D_{x,\alpha}
+R_{x,\alpha}
&=
\begin{pmatrix}
1&0&0\\
@@ -493,7 +519,7 @@ D_{x,\alpha}
0&\sin\alpha& \cos\alpha
\end{pmatrix},
&
-D_{y,\beta}
+R_{y,\beta}
&=
\begin{pmatrix}
\cos\beta&0&\sin\beta\\
@@ -501,7 +527,7 @@ D_{y,\beta}
-\sin\beta&0&\cos\beta
\end{pmatrix},
&
-D_{z,\gamma}
+R_{z,\gamma}
&=
\begin{pmatrix}
\cos\gamma&-\sin\gamma&0\\
@@ -524,16 +550,73 @@ Auch die Winkel $\alpha$, $\beta$ und $\gamma$ können als die
drei Koordinaten der Mannigkfaltigkeit $\operatorname{SO}(3)$
angesehen werden.
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/rodriguez.pdf}
+\caption{Herleitung der Rodrigues-Formel~\eqref{buch:lie:eqn:rodrigues}
+für die Beschreibung einer
+Drehung mit Drehachse $\vec{k}$.
+\label{buch:lie:fig:rodrigues}}
+\end{figure}
+Die Drehung des Vektors $\vec{x}$ um die Achse mit Richtung $\vec{k}$,
+$|\vec{k}|=1$, kann man mit dem Vektorprodukt und dem Skalarprodukt
+beschreiben.
+Die Vektoren $\vec{x}-(\vec{x}\cdot\vec{k})\vec{k}$, $-\vec{x}\times\vec{k}$
+und $\vec{k}$ bilden ein Rechtssystem im Punkt $\vec{x}$, dessen zweite
+Achse tangential an die Bahn von $\vec{x}$ unter der Drehung ist.
+
+Die Komponente $(\vec{k}\cdot\vec{x})\vec{k}$ parallel zu $\vec{k}$
+ändert sich bei der Drehung nicht.
+In der Ebene mit der orthogonalen Basis aus den Vektoren
+$\vec{x}-(\vec{x}\cdot\vec{k})\vec{k}$ und $-\vec{x}\times\vec{k}$
+kann man die Drehung $R_\alpha$ um den Winkel $\alpha$ mit den
+trigonometrischen Funktionen beschreiben
+(siehe Abbildung~\ref{buch:lie:fig:rodrigues}):
+\begin{align}
+\vec{x}
+\mapsto
+R_\alpha\vec{x}
+&=
+(\vec{x}-(\vec{x}\cdot\vec{k})\vec{k})
+\cos\alpha
+-
+\vec{x}\times\vec{k}
+\sin\alpha
++
+(\vec{k}\cdot\vec{x})\vec{k}
+\notag
+\\
+&=
+\vec{x}\cos\alpha
++
+(1-\cos\alpha)(\vec{x}\cdot\vec{k})\vec{k}
++
+\vec{k}\times\vec{x}\sin\alpha.
+\label{buch:lie:eqn:rodrigues}
+\end{align}
+Dies ist bekannt als die {\em Formel von Rodrigues}
+\index{Formel von Rodrigues}%
+\index{Rodrigues-Formel}%
+Wir halten noch fest, dass die Ableitung an der Stelle $\alpha=0$
+der Tangentialvektor
+\begin{equation}
+\frac{d}{d\alpha}R_\alpha\vec{x}\,\bigg|_{\alpha=0}
+=
+\vec{k}\times\vec{x}
+\label{buch:lie:eqn:so3tangentialvektor}
+\end{equation}
+ist.
+
%
% Spezielle lineare Gruppe
%
\subsection{Volumenerhaltende Abbildungen und
die Gruppe $\operatorname{SL}_n(\mathbb{R})$
\label{buch:gruppen:sl}}
-Die Elemente der Gruppe $SO(n)$ erhalten Längen, Winkel und die
+Die Elemente der Gruppe $\operatorname{SO}(n)$ erhalten Längen, Winkel und die
Orientierung, also auch das Volumen.
Es gibt aber volumenerhaltende Abbildungen, die Längen oder Winkel
-nicht notwendigerweise erhalten.
+nicht notwendigerweise erhalten, zum Beispiel Scherungen.
Matrizen $A\in M_n(\mathbb{R})$, die das Volumen erhalten,
haben die Determinante $\det A=1$.
Wegen $\det(AB)=\det A\det B$ ist das Produkt zweier Matrizen mit
@@ -541,6 +624,7 @@ Determinante $1$ wieder eine solche, sie bilden daher eine Gruppe.
\begin{definition}
Die volumenerhaltenden Abbildungen bilden die Gruppe
+\index{volumenerhaltend}%
\[
\operatorname{SL}_n(\mathbb{R})
=
@@ -551,6 +635,9 @@ A\in M_n(\mathbb{R})
\}
\]
sie heisst die {\em spezielle lineare Gruppe}.
+\index{spezielle lineare Gruppe}%
+\index{Gruppe, spezielle lineare}%
+\index{SLn(R)@$\operatorname{SL}_n(\mathbb{R})$}%
\end{definition}
Wir wollen jetzt die Tangentialvektoren von $\operatorname{SL}_n(\mathbb{R})$
@@ -576,6 +663,10 @@ c(t)&d(t)
\frac{d}{dt}
\det A(t)\bigg|_{t=0}
&=
+\frac{d}{dt}\bigl(a(t)d(t)-b(t)c(t)\bigr)\bigg|_{t=0}
+\\
+&&&&
+&=
\dot{a}(0) d(0)+a(0)\dot{d}(0)
-
\dot{b}(0) c(0)-b(0)\dot{c}(0)
@@ -592,7 +683,7 @@ Dies gilt nicht nur im Falle $n=2$, sondern ganz allgemein für beliebige
$n\times n$-Matrizen.
\begin{satz}
-Ist $A(t)$ eine differenzierbare Kurve in $\operatorname{SL}_n(\mathbb{B})$
+Ist $A(t)$ eine differenzierbare Kurve in $\operatorname{SL}_n(\mathbb{R})$
mit $A(0)=I$, dann ist $\operatorname{Spur}\dot{A}(0)=0$.
\end{satz}
@@ -626,8 +717,8 @@ jenes für $i=1$, somit ist die Ableitung von $\det A(t)$
\frac{d}{dt}\det A_{11}(t).
\label{buch:gruppen:eqn:detspur}
\end{equation}
-Die Beziehung \eqref{buch:gruppen:eqn:detspur} kann für einen Beweis mit
-vollständiger Induktion verwendet werden.
+Die Beziehung \eqref{buch:gruppen:eqn:detspur} kann wie folgt
+für einen Beweis mit vollständiger Induktion verwendet werden.
Die Induktionsverankerung für $n=1$ besagt, dass $\det A(t)=a_{11}(t)$
genau dann konstant $=1$ ist, wenn $\dot{a}_{11}(0)=\operatorname{Spur}A(0)$
@@ -668,6 +759,19 @@ A=\begin{pmatrix}a&b\\c&d\end{pmatrix}
A=\begin{pmatrix}a&b\\c&-a\end{pmatrix}.
\]
Der Tangentialraum ist also dreidimensional.
+\begin{figure}
+\centering
+\includegraphics{chapters/60-gruppen/images/sl2.pdf}
+\caption{Tangentialvektoren und die davon erzeugen Einparameteruntergruppen
+für die Lie-Gruppe $\operatorname{SL}_2(\mathbb{R})$ der flächenerhaltenden
+linearen Abbildungen von $\mathbb{R}^2$.
+In allen drei Fällen wird das blaue Quadrat mit den Ecken in den
+Standardbasisvektoren von einer Matrix der Einparameteruntergruppe zu
+zum roten Viereck verzerrt, der Flächeninhalt bleibt aber erhalten.
+In den beiden Fällen $B$ und $C$ stellen die grünen Kurven die Bahnen
+der Bilder der Standardbasisvektoren dar.
+\label{buch:gruppen:fig:sl2}}
+\end{figure}%
Als Basis könnte man die folgenden Vektoren verwenden:
\begin{align*}
A
@@ -714,8 +818,10 @@ I\cosh t + C \sinh t
\end{align*}
wobei in der Auswertung der Potenzreihe für $e^{Ct}$ verwendet wurde,
dass $C^2=I$.
+Die von $A$, $B$ und $C$ erzeugten Einparameteruntergruppen sind in
+Abbildung~\ref{buch:gruppen:fig:sl2} visualisiert.
-Die Matrizen $e^{At}$ Streckungen der einen Koordinatenachse und
+Die Matrizen $e^{At}$ sind Streckungen der einen Koordinatenachse und
Stauchungen der anderen derart, dass das Volumen erhalten bleibt.
Die Matrizen $e^{Bt}$ sind Drehmatrizen, die Längen und Winkel und
damit erst recht den Flächeninhalt erhalten.
@@ -764,25 +870,26 @@ Dies ist die gegenüber $e^{At}$ um $45^\circ$ verdrehte Situation,
auch diese Matrizen sind flächenerhaltend.
\begin{figure}
\centering
-\includegraphics{chapters/60-gruppen/images/sl2.pdf}
-\caption{Tangentialvektoren und die davon erzeugen Einparameteruntergruppen
-für die Lie-Gruppe $\operatorname{SL}_2(\mathbb{R})$ der flächenerhaltenden
-linearen Abbildungen von $\mathbb{R}^2$.
-In allen drei Fällen wird ein blauer Rhombus mit den Ecken in den
-Standardbasisvektoren von einer Matrix der Einparameteruntergruppe zu
-zum roten Viereck verzerrt, der Flächeninhalt bleibt aber erhalten.
-In den beiden Fällen $B$ und $C$ stellen die grünen Kurven die Bahnen
-der Bilder der Standardbasisvektoren dar.
-\label{buch:gruppen:fig:sl2}}
-\end{figure}%
-\begin{figure}
-\centering
\includegraphics{chapters/60-gruppen/images/scherungen.pdf}
-\caption{Weitere Matrizen mit Spur $0$ und ihre Wirkung
-Die inken beiden Beispiele $M$ und $N$ sind nilpotente Matrizen,
-die zugehörigen Einparameter-Untergruppen beschreiben Schwerungen.
+\caption{Weitere Matrizen mit Spur $0$ und ihre Wirkung.
+Die linken beiden Beispiele $M$ und $N$ sind nilpotente Matrizen,
+die zugehörigen Einparameteruntergruppen beschreiben Scherungen.
\label{buch:gruppen:fig:scherungen}}
\end{figure}
+
+Die Gruppe $\operatorname{SL}_2(\mathbb{R})$ hat aber auch die
+Tangentialvektoren
+\begin{align*}
+M&=\begin{pmatrix}0&1\\0&0\end{pmatrix}=\frac12(B+C)
+&&\text{und}&
+N&=\begin{pmatrix}0&0\\1&0\end{pmatrix}=\frac12(-B+C),
+\intertext{die die Scherungen}
+e^{Mt}&= \begin{pmatrix}1&0\\t&0\end{pmatrix}
+&&
+e^{NT}&=\begin{pmatrix}1&t\\0&1\end{pmatrix}
+\end{align*}
+als Einparameteruntergruppen haben.
+Diese sind in Abbildung~\ref{buch:gruppen:fig:scherungen} dargestellt.
\end{beispiel}
%
@@ -802,9 +909,20 @@ a,b,c,d\in\mathbb{C},\det(A)=1, AA^*=I
\right\}
\]
heisst die {\em spezielle unitäre Gruppe}.
+\index{spezielle unitäre Gruppe}%
+\index{unitäre Gruppe, speziell}%
+\index{Gruppe, speziell unitäre}%
+\index{SU(n)@$\operatorname{SU}(n)$}%
Wegen $\det(AB)=\det(A)\det(B)=1$ und $(AB)^*AB=B^*A^*AB=B^*B=I$ ist
$\operatorname{SU}(2)$ eine Untergruppe von $\operatorname{GL}_2(\mathbb{C})$.
-Die Bedingungen $\det A=1$ und $AA^*=I$ schränken die möglichen Werte
+Die Bedingungen
+\begin{equation}
+\det A=1
+\qquad\text{und}\qquad
+AA^*=I
+\label{buch:lie:eqn:su2bed}
+\end{equation}
+schränken die möglichen Werte
von $a$ und $b$ weiter ein.
Aus
\[
@@ -815,7 +933,7 @@ A^*
\overline{b}&\overline{d}
\end{pmatrix}
\]
-und den Bedingungen führen die Gleichungen
+und den Bedingungen~\eqref{buch:lie:eqn:su2bed} folgen die Gleichungen
\[
\begin{aligned}
a\overline{a}+b\overline{b}&=1
@@ -831,7 +949,7 @@ c\overline{a}+d\overline{b}&=0
\\
c\overline{c}+d\overline{d}&=1&&\Rightarrow&|c|^2+|d|^2&=1
\\
-ad-bc&=1
+ad-bc&=1.
\end{aligned}
\]
Aus der zweiten Gleichung kann man ableiten, dass es eine Zahl $t\in\mathbb{C}$
@@ -846,7 +964,7 @@ t(|a|^2+|b|^2)
=
t,
\]
-also muss die Matrix $A$ die Form haben
+also muss die Matrix $A$ die Form
\[
A
=
@@ -854,10 +972,11 @@ A
a&b\\
-\overline{b}&\overline{a}
\end{pmatrix}
-\qquad\text{mit}\quad |a|^2+|b|^2=1.
+\qquad\text{mit}\quad |a|^2+|b|^2=1
\]
+haben.
Schreibt man $a=a_1+ia_2$ und $b=b_1+ib_2$ mit rellen $a_i$ und $b_i$,
-dann besteht $SU(2)$ aus den Matrizen der Form
+dann besteht $\operatorname{SU}(2)$ aus den Matrizen der Form
\[
A=
\begin{pmatrix}
diff --git a/buch/chapters/60-gruppen/symmetrien.tex b/buch/chapters/60-gruppen/symmetrien.tex
index aee3b41..252fdca 100644
--- a/buch/chapters/60-gruppen/symmetrien.tex
+++ b/buch/chapters/60-gruppen/symmetrien.tex
@@ -15,7 +15,7 @@ bedeutet.
Spiegelsymmetrische Objekte zeichnen sich zum Beispiel dadurch aus,
dass Messungen von Strecken die gleichen Werte ergeben wie die Messungen
der entsprechenden gespiegelten Strecken (siehe auch
-Abbildung~\ref{buch:lie:bild:castlehoward}, was die Herkunft des
+Abbildung~\ref{buch:lie:bild:castlehoward}), was die Herkunft des
Begriffs verständlich macht.
\begin{figure}
\centering
@@ -31,8 +31,8 @@ In der Physik wird dem Begriff der Symmetrie daher auch eine erweiterte
Bedeutung gegeben.
Jede Transformation eines Systems, welche bestimmte Grössen nicht
verändert, wird als Symmetrie bezeichnet.
-Die Gesetze der Physik sind typischerweise unabhängig davon, wo man den
-den Nullpunkt der Zeit oder das räumlichen Koordinatensystems ansetzt,
+Die Gesetze der Physik sind typischerweise unabhängig davon, wo man
+den Nullpunkt der Zeit oder des räumlichen Koordinatensystems ansetzt,
eine Transformation des Zeitnullpunktes oder des Ursprungs des
Koordinatensystems ändert daher die Bewegungsgleichungen nicht, sie ist
eine Symmetrie des Systems.
@@ -52,8 +52,8 @@ zusätzliche geometrische Struktur, man nennt sie eine differenzierbare
Mannigfaltigkeit.
Dieser Begriff wird im Abschnitt~\ref{buch:subsection:mannigfaltigkeit}
eingeführt.
-Es wird sich zum Beispiel zeigen, dass die Menge der Drehungen der
-Ebene mit den Punkten eines Kreises parametrisieren lassen,
+Es wird sich zum Beispiel zeigen, dass sich die Menge der Drehungen der
+Ebene mit den Punkten eines Kreises parametrisieren lässt,
die Lösungen der Gleichung $x^2+y^2=1$ sind.
Eine Lie-Gruppe ist eine Gruppe, die gleichzeitig eine differenzierbare
@@ -94,10 +94,10 @@ Die folgenden Beispiele sollen zeigen, wie solche Symmetriedefinitionen
auf algebraische Bedingungen an die Matrixelemente führen.
Zu jeder Abbildung $f\colon\mathbb{R}^n\to\mathbb{R}^n$, unter der
-ein geometrisches Objekt in $\mathbb{R}^n$ symmetrisch ist, können wir
+ein geometrisches Objekt in $\mathbb{R}^n$ unveränder bleibt, können wir
sofort weitere Abbildungen angeben, die ebenfalls Symmetrien sind.
Zum Beispiel sind die iterierten Abbildungen $f\circ f$, $f\circ f\circ f$
-u.~s.~w., die wir auch $f^n$ mit $n\in\mathbb{N}$ schreiben werden,
+usw., die wir auch $f^n$ mit $n\in\mathbb{N}$ schreiben werden,
ebenfalls Symmetrien.
Wenn die Symmetrie auch umkehrbar ist, dann gilt dies sogar für alle
$n\in\mathbb{Z}$.
@@ -105,7 +105,9 @@ Wir erhalten so eine Abbildung
$\varphi\colon \mathbb{Z}\to \operatorname{GL}_n(\mathbb{R}):n\mapsto f^n$
mit den Eigenschaften $\varphi(0)=f^0 = I$ und
$\varphi(n+m)=f^{n+m}=f^n\circ f^m = \varphi(n)\circ\varphi(m)$.
-$\varphi$ ist ein Homomorphismus der Gruppe $\mathbb{Z}$ in die Gruppe
+$\varphi$ ist ein Homomorphismus (siehe
+Definition~\ref{buch:gruppen:def:homomorphismus})
+der Gruppe $\mathbb{Z}$ in die Gruppe
$\operatorname{GL}_n(\mathbb{R})$.
Wir nennen dies eine {\em diskrete Symmetrie}.
@@ -114,10 +116,10 @@ Wir nennen dies eine {\em diskrete Symmetrie}.
Von besonderem Interesse sind kontinuierliche Symmetrien.
Dies sind Abbildungen eines Systems, die von einem Parameter
abhängen.
-Zum Beispiel können wir Drehungen der Ebene $\mathbb{R}^2$ um den
-Winkel $\alpha$ durch Matrizen
+Zum Beispiel können Drehungen der Ebene $\mathbb{R}^2$ um den
+Winkel $\alpha$ durch die Matrizen
\[
-D_{\alpha}
+R_{\alpha}
=
\begin{pmatrix}
\cos\alpha&-\sin\alpha\\
@@ -126,18 +128,20 @@ D_{\alpha}
\]
beschrieben werden.
Ein Kreis um den Nullpunkt bleibt unter jeder dieser Drehungen invariant.
-Im Gegensatz dazu sind alle $3n$-Ecke mit Schwerpunkt $0$ nur invariant
-unter der einen Drehung $D_{\frac{2\pi}3}$ invariant.
-Die kleinste Menge, die einen vorgegebenen Punkt enthält und unter
-allen Drehungen $D_\alpha$ invariant ist, ist immer ein Kreis um
+Im Gegensatz dazu sind alle gleichseitigen Dreiecke mit Schwerpunkt $0$
+nur unter der einen Drehung $R_{\frac{2\pi}3}$ invariant.
+Eine minimale Menge, die einen vorgegebenen Punkt enthält und unter
+allen Drehungen $R_\alpha$ invariant ist, ist immer ein Kreis um
den Nullpunkt.
\begin{definition}
+\label{buch:lie:def:einparameteruntergruppe}
Ein Homomorphismus $\varphi\colon\mathbb{R}\to\operatorname{GL}_n(\mathbb{R})$
von der additiven Gruppe $\mathbb{R}$ in die allgemeine lineare Gruppe
-heisst eine {\em Einparameter-Untergruppe} von
+heisst eine {\em Einparameteruntergruppe} von
$\operatorname{GL}_n(\mathbb{R})$.
\end{definition}
+\index{Einparameteruntergruppe}
Die Abbildung
\[
@@ -146,16 +150,18 @@ Die Abbildung
\mathbb{R}\to\operatorname{GL}_n(\mathbb{R})
:
\alpha \mapsto
-D_{\alpha}
+R_{\alpha}
=
\begin{pmatrix}
\cos\alpha&-\sin\alpha\\
\sin\alpha& \cos\alpha
\end{pmatrix}
\]
-ist also eine Einparameter-Untergruppe von $\operatorname{GL}_2(\mathbb{R})$.
+ist also eine Einparameteruntergruppe von $\operatorname{GL}_2(\mathbb{R})$.
\subsubsection{Der harmonische Oszillator}
+\index{harmonischer Oszillator}%
+\index{Oszillator}%
\begin{figure}
\centering
\includegraphics{chapters/60-gruppen/images/phasenraum.pdf}
@@ -165,17 +171,21 @@ im Phasenraum sind Ellipsen mit Halbachsenverhältnis $\omega^{-1}$.
\label{chapter:gruppen:fig:phasenraum}}
\end{figure}
Eine Masse $m$ verbunden mit einer Feder mit der Federkonstanten $K$
+\index{Federkonstante}%
schwingt um die Ruhelage $x=0$ entsprechend der Differentialgleichung
\[
m\frac{d^2}{dt^2} x(t) = -Kx(t).
\]
Die Kreisfrequenz der Schwingung ist
+\index{Kreisfrequenz}%
+\index{Schwingung}%
\[
\omega = \sqrt{\frac{K}{m}}.
\]
Das System kann als zweidimensionales System im Phasenraum mit den
Koordinaten $x_1=x$ und $x_2=p=m\dot{x}$ beschrieben werden.
Die zweidimensionale Differentialgleichung ist
+\index{zweidimensionale Differentialgleichung}%
\begin{equation}
\left.
\begin{aligned}
@@ -230,7 +240,7 @@ p(t)
\label{buch:gruppen:eqn:phi}
\end{equation}
schreiben.
-Die Matrizen $\Phi_t$ bilden eine Einparameter-Untergruppe von
+Die Matrizen $\Phi_t$ bilden eine Einparameteruntergruppe von
$\operatorname{GL}_n(\mathbb{R})$, da
\begin{align*}
\Phi_s\Phi_t
@@ -265,11 +275,13 @@ gilt.
Die Lösungen der
Differentialgleichung~\eqref{chapter:gruppen:eqn:phasenraumdgl}
sind in Abbildung~\ref{chapter:gruppen:fig:phasenraum}
+dargestellt.
Die Matrizen $\Phi_t$ beschreiben eine kontinuierliche Symmetrie
des Differentialgleichungssystems, welches den harmonischen Oszillator
beschreibt.
\subsubsection{Fluss einer Differentialgleichung}
+\index{Fluss}%
Die Abbildungen $\Phi_t$ von \eqref{buch:gruppen:eqn:phi} sind jeweils
Matrizen in $\operatorname{GL}_n(\mathbb{R})$.
Der Grund dafür ist, dass die
@@ -333,9 +345,10 @@ Die Abbildung
\[
\Phi\colon \mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n
:
-(t,x_0) \mapsto \Phi_t(x_0) = x(t,x_0)
+(t,x_0) \mapsto \Phi_t(x_0) := x(t,x_0)
\]
heisst der {\em Fluss} der Differentialgleichung
+\index{Fluss}%
\eqref{buch:gruppen:eqn:dgl},
wenn für jedes $x_0\in\mathbb{R}^n$ die Kurve $t\mapsto \Phi_t(x_0)$
eine Lösung der Differentialgleichung ist mit Anfangsbedingung $x_0$.
@@ -358,10 +371,10 @@ Das funktioniert auch, weil $f(t_0,x_0)$ selbst ein Vektor von
$\mathbb{R}^n$ ist, in dem die Bahnkurve verläuft.
Diese Idee funktioniert nicht mehr zum Beispiel für eine
-Differentialgleichung auf einer Kugeloberfläche, weil alle Punkte
+Differentialgleichung auf einer Kugel\-oberfläche, weil alle Punkte
$x(t_0)+hf(t_0,x_0)$ für alle $h\ne 0$ nicht mehr auf der Kugeloberfläche
liegen.
-Physikalisch äussert sich das ein einer zusätzlichen Kraft, die nötig
+Physikalisch äussert sich das in einer zusätzlichen Kraft, die nötig
ist, die Bahn auf der Kugeloberfläche zu halten.
Diese Kraft stellt zum Beispiel sicher, dass die Vektoren $f(t,x)$ für
Punkte $x$ auf der Kugeloberfläche immer tangential an die Kugel sind.
@@ -370,12 +383,13 @@ nicht mehr ein Objekt, welches als Teil der Kugeloberfläche definiert
werden kann, er kann nur definiert werden, wenn man sich die Kugel als
in einen höherdimensionalen Raum eingebettet vorstellen kann.
-Um die Idee der Differentialgleichung auf einer beliebigen Fläche
-konsistent zu machen ist daher notwendig, die Idee einer Tagentialrichtung
+Um die Idee einer Differentialgleichung auf einer beliebigen Fläche
+konsistent zu machen, ist daher notwendig, die Idee einer Tagentialrichtung
auf eine Art zu definieren, die nicht von der Einbettung der Fläche
in den $n$-dimensionalen Raum abhängig ist.
Das in diesem Abschnitt entwickelte Konzept der {\em Mannigfaltigkeit}
löst dieses Problem.
+\index{Mannigfaltigkeit}%
\subsubsection{Karten}
Die Navigation auf der Erdoberfläche verwendet das Koordinatensystem
@@ -385,6 +399,11 @@ den geographischen Polen befindet, denn deren Koordinaten sind
nicht mehr eindeutig.
Alle Punkte mit geographischer Breite $90^\circ$ und beliebiger
geographischer Länge beschreiben den Nordpol.
+\index{geographische Länge}%
+\index{geographische Breite}%
+\index{Nordpol}%
+\index{Länge, geographisch}%
+\index{Breite, geographisch}%
Auch die Ableitung funktioniert dort nicht mehr.
Bewegt man sich mit konstanter Geschwindigkeit über den Nordpol,
springt die Ableitung der geographischen Breite von einem positiven
@@ -412,6 +431,7 @@ verschiedenen Koordinatensystemen versehen werden kann.
Ein Koordinatensystem ist eine umkehrbare Abbildung einer offenen Teilmenge
$U\subset M$ in den Raum $\mathbb{R}^n$.
Die Komponenten dieser Abbildung heissen die {\em Koordinaten}.
+\index{Koordinaten}%
\begin{figure}
\centering
@@ -429,12 +449,13 @@ entstehen soll.
\end{figure}
\begin{definition}
-Eine Karte auf $M$ ist eine umkehrbare Abbildung
-$\varphi\colon U\to \mathbb{R}^n$ (siehe auch
-Abbildung~\ref{buch:gruppen:fig:karten}).
-Ein differenzierbarer Atlas ist eine Familie von Karten $\varphi_\alpha$
+\index{Karte}%
+Eine {\em Karte} auf $M$ ist eine umkehrbare Abbildung
+$\varphi\colon U\to \mathbb{R}^n$ einer offenen Menge $U_\alpha\subset M$
+(siehe auch Abbildung~\ref{buch:gruppen:fig:karten}).
+Ein {\em differenzierbarer Atlas} ist eine Familie von Karten $\varphi_\alpha$
derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$
-überdecken, und dass die Kartenwechsel Abbildungen
+überdecken, und dass die Kartenwechselabbildungen
\[
\varphi_{\beta\alpha}=\varphi_\beta\circ\varphi_\alpha^{-1}
\colon
@@ -444,8 +465,9 @@ derart, dass die Definitionsgebiete $U_\alpha$ die ganze Menge $M$
\]
als Abbildung von offenen Teilmengen von $\mathbb{R}^n$ differenzierbar
ist.
-Eine {$n$-dimensionale differenzierbare Mannigfaltigkeit} ist eine
+Eine {\em $n$-dimensionale differenzierbare Mannigfaltigkeit} ist eine
Menge $M$ mit einem differenzierbaren Atlas.
+\index{Atlas}%
\end{definition}
Karten und Atlanten regeln also nur, wie sich verschiedene lokale
@@ -569,7 +591,7 @@ konstruieren, der $S^n$ zu einer $n$-dimensionalen Mannigfaltigkeit macht.
\subsubsection{Tangentialraum}
Mit Hilfe einer Karte $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$
kann das Geschehen in einer Mannigfaltigkeit in den vertrauten
-$n$-dimensionalen Raum $\mathbb{B}^n$ transportiert werden.
+$n$-dimensionalen Raum $\mathbb{R}^n$ transportiert werden.
Eine Kurve $\gamma\colon \mathbb{R}\to M$, die so parametrisiert sein
soll, dass $\gamma(t)\in U_\alpha$ für $t$ in einer Umgebung $I$ von $0$ ist,
wird von der Karte in eine Kurve
@@ -606,7 +628,8 @@ Aus
=
\varphi_{\beta\alpha}\circ\gamma_\alpha
\]
-folgt durch Ableitung nach dem Kurvenparameter $t$, dass
+folgt durch Ableitung nach dem Kurvenparameter $t$ mit Hilfe der
+Kettenregel, dass
\[
\frac{d}{dt}\gamma_\beta(t)
=
@@ -624,7 +647,7 @@ $\varphi_{\beta\alpha}$ stellt also nur sicher, dass die Beschreibung
eines Systemes mit Differentialgleichungen in verschiedenen
Koordinatensystemen auf die gleichen Lösungskurven in der
Mannigfaltigkeit führt.
-Insbesondere ist die Verwendung von Karten ist also nur ein Werkzeug,
+Insbesondere ist die Verwendung von Karten also nur ein Werkzeug,
mit dem die Unmöglichkeit einer globalen Besschreibung einer
Mannigfaltigkeit $M$ mit einem einzigen globalen Koordinatensystem
ohne Singularitäten umgangen werden kann.
@@ -658,9 +681,9 @@ Die Koordinatenumrechnung ist gegeben durch
\dot{x}(t)
=
D\varphi_{31}(\gamma(t))
-\dot{y}(t)
+\dot{y}(t).
\]
-wird für die spezielle Kurve $\gamma(t)=(\cos t,\sin t)$ wird dies zu
+Für die spezielle Kurve $\gamma(t)=(\cos t,\sin t)$ wird dies zu
\[
D\varphi_{31}(\gamma(t))
\cdot
@@ -690,7 +713,7 @@ Darüber hinweg hilft auch die Tatsache nicht, dass die Kreislinie
in den Vektorraum $\mathbb{R}^2$ eingebettet sind, wo sich Vektoren
durch Translation miteinander vergleichen lassen.
Ein nichtverschwindender Tangentialvektor im Punkt $(1,0)$ hat,
-betrachtet als Vektor in $\mathbb{R}^2$ verschwindende $x$-Komponente,
+betrachtet als Vektor in $\mathbb{R}^2$, verschwindende $x$-Komponente,
für Tangentialvektoren im Inneren eines Quadranten ist dies nicht
der Fall.
@@ -701,18 +724,25 @@ Dies ist möglich, weil die Kreislinie eine kontinuierliche Symmetrie,
nämlich die Drehung um den Winkel $t$ hat, die es erlaubt, den Punkt $(1,0)$
in den Punkt $(\cos t,\sin t)$ abzubilden.
Erst diese Symmetrie ermöglicht den Vergleich.
-Dieser Ansatz ist für alle Matrizen erfolgreich, wie wir später sehen werden.
+Dieser Ansatz ist für alle Matrizengruppen erfolgreich,
+wie wir später sehen werden.
Ein weiterer Ansatz, Tangentialvektoren zu vergleichen, ist die Idee,
einen sogenannten Zusammenhang zu definieren, eine Vorschrift, wie
+\index{Zusammenhang}%
+\index{Paralleltransport}%
Tangentialvektoren infinitesimal entlang von Kurven in der Mannigfaltigkeit
transportiert werden können.
Auf einer sogenannten {\em Riemannschen Mannigfaltigkeit} ist zusätzlich
zur Mannigfaltigkeitsstruktur die Längenmessung definiert.
+\index{Riemannsche Mannigfaltigkeit}%
+\index{Mannigfaltigkeit!Riemannsche}%
Sie kann dazu verwendet werden, den Transport von Vektoren entlang einer
Kurve so zu definieren, dass dabei Längen und Winkel erhalten bleiben.
+\index{Längenmessung}%
Dieser Ansatz ist die Basis der Theorie der Krümmung sogenannter
Riemannscher Mannigfaltigkeiten.
+\index{Krümmung}%
%\subsection{Der Satz von Noether
%\label{buch:subsection:noether}}
diff --git a/buch/papers/mceliece/funktionsweise.tex b/buch/papers/mceliece/funktionsweise.tex
index 4a8a71f..3802820 100644
--- a/buch/papers/mceliece/funktionsweise.tex
+++ b/buch/papers/mceliece/funktionsweise.tex
@@ -166,7 +166,7 @@ Der verwendete Linear-Code wird im Abschnitt \ref{mceliece:subsection:seven_four
\end{gather*}
\item Öffentlicher Schlüssel:
\index{Schlüssel, öffentlicher}%
-\index{öffentlicher Schlüssel}%
+\index{offentlicher Schlüssel@öffentlicher Schlüssel}%
% \begin{itemize}
% \item[]
\begin{align*}
diff --git a/buch/papers/multiplikation/einlteung.tex b/buch/papers/multiplikation/einlteung.tex
index 3ffc24c..7637854 100755
--- a/buch/papers/multiplikation/einlteung.tex
+++ b/buch/papers/multiplikation/einlteung.tex
@@ -17,7 +17,7 @@ C_{ij} = \sum_{k=1}^n A_{ik} B_{kj}.
\label{multiplikation:eq:MM}
\end{equation}
Grafisch kann die Matrizenmultiplikation $\mathbf{AB}=\mathbf{C}$ wie in Abbildung \ref{multiplikation:fig:mm_viz} visualisiert werden.
-\index{Matrizenmultiplikation}%
+\index{Matrixmultiplikation}%
\index{Multiplikation, Matrizen-}%
Im Fall einer Matrizengr\"osse von $2\times 2$ kann die Matrixgleichung
\begin{equation}
diff --git a/buch/papers/munkres/teil3.tex b/buch/papers/munkres/teil3.tex
index ed8902c..8a0d2cb 100644
--- a/buch/papers/munkres/teil3.tex
+++ b/buch/papers/munkres/teil3.tex
@@ -21,7 +21,7 @@ Die Ungarische Methode wurde 1955 von Harold Kuhn entwickelt und veröffentlicht
Der Name ``Ungarische Methode'' ergab sich, weil der Algorithmus
weitestgehend auf den früheren Arbeiten zweier ungarischer Mathematiker
basierte: Dénes Kőnig und Jenő Egerváry.
-\index{Kőnig, Dénes}%
+\index{Konig, Denes@Kőnig, Dénes}%
\index{Egerváry, Jenő}%
\index{Munkres, James}%
James Munkres überprüfte den Algorithmus im Jahr 1957 und stellte fest,
diff --git a/buch/papers/spannung/teil1.tex b/buch/papers/spannung/teil1.tex
index 10f7663..76a0437 100644
--- a/buch/papers/spannung/teil1.tex
+++ b/buch/papers/spannung/teil1.tex
@@ -16,8 +16,8 @@ Jede Stufe von Tensoren verlangt andere Rechenregeln.
So zeigt sich auch der Nachteil von Tensoren mit Stufen höher als 2.
Man ist also bestrebt höherstufige Tensoren mit Skalaren, Vektoren oder Matrizen zu beschreiben.
-In den 40er Jahren des 19.~Jahrhunderts wurde der Begriff Tensor von Rowan Hamilton in die Mathematik eingeführt.
-\index{Hamilton, Rowan}%
+In den 40er Jahren des 19.~Jahrhunderts wurde der Begriff Tensor von William Rowan Hamilton in die Mathematik eingeführt.
+\index{Hamilton, William Rowan}%
James Clerk Maxwell hat bereits mit Tensoren operiert, ohne den Begriff Tensor gekannt zu haben.
\index{Maxwell, James Clerk}%
Erst Woldemar Voigt hat den Begriff in die moderne Bedeutung von Skalar, Matrix und Vektor verallgemeinert.
diff --git a/buch/papers/uebersicht.tex b/buch/papers/uebersicht.tex
index 64b8863..f095947 100644
--- a/buch/papers/uebersicht.tex
+++ b/buch/papers/uebersicht.tex
@@ -13,6 +13,8 @@ grundlegenden Modelle werden dabei verfeinert, verallgemeinert
und auf vielfältige Weise angewandt.
Den Anfang machen {\em Robine Luchsinger} und {\em Pascal Andreas Schmid},
+\index{Luchsinger, Robine}%
+\index{Schmid, Pascal Andreas}%
die zeigen, wie man basierend auf der Adjazenzmatrix Suchalgorithmen
für Netzwerke aufbauen kann.
Sie konzentrieren sich dabei auf Verkehrsnetze, die die zusätzliche
@@ -23,6 +25,7 @@ Einfluss auf die Effizienz der Suchalgorithmen haben können.
Die naive Umsetzung der Definition der Matrizenmultiplikation in
ein Coputerprogramm ist nicht unbedingt die effizienteste.
{\em Michael Schmid} stellt die Algorithmen von Strassen und
+\index{Schmid, Michael}%
Windograd vor, welche ermöglichen, die Laufzeitkomplexität
von $O(n^3)$ auf $O(n^{2.8074})$ oder noch schneller zu verbessern.
Allerdings nur unter gewissen Voraussetzungen, die im Paper
@@ -31,6 +34,8 @@ ebenfalls diskutiert werden.
Eine der schönsten Anwendungen der Gruppentheorie ist die
Kristallographie.
{\em Naoki Pross} und {\em Tim Tönz} zeigen, wie man mit ihrer
+\index{Pross, Naoki}%
+\index{Tönz, Tim}%
Hilfe Kristalle klassifizieren kann, und sie illustrieren am Beispiel
der Piezoelektrizität, dass man auch physikalische Eigenschaften daraus
ableiten kann.
@@ -42,6 +47,8 @@ und DVDs, begegnet er uns heute auch in den allgegenwärtigen QR-Codes.
Ein ganzes Arsenal von algebraischen Methoden ist nötig, um seine
Funktionsweise zu verstehen.
{\em Joshua Bär} und {\em Michael Steiner} zeigen in vielen Einzelschritten,
+\index{Bär, Joshua}%
+\index{Steiner, Michael}%
wie die man die einzelnen Ideen an vertrauteren Beispielen aus der
elementaren Algebra und der Fourier-Theorie verstehen kann.
Die Übertragung in einen Polynomring über einem endlichen Körper
@@ -52,6 +59,7 @@ die diskrete Fourier-Transformation beide als Matrizen schreibt.
Wer glaubt, mit linearen Abbildungen lassen sich nur gradlinige
Objekte beschreiben, liegt völlig falsch.
Die Arbeit von {\em Alain Keller} zeigt, dass die Iteration von
+\index{Keller, Alain}%
affinen Abbildungen hochkomplexe Fraktale hervorbringen kann.
Solche iterierten Funktionsschemata erzeugen aber nicht nur schöne
Bilder, man kann daraus auch eine Idee zur Kompression von
@@ -64,6 +72,7 @@ brechen könnte.
Das McEliece-Kryptosystem kombiniert verschiedene Arten von Matrizen
mit zufälligem Rauschen und einem fehlerkorrigierenden Code.
Wie {\em Reto Fritsche} erklärt, kommt dabei ein Verschlüsselungsverfahren
+\index{Fritsche, Reto}%
heraus, welches nach heutigem Wissensstand gegen Angriffe mit
Quantencomputern resistent ist.
@@ -75,6 +84,8 @@ In der Ebene kann man die komplexen Zahlen als Modell verwenden,
wo Drehungen und Translationen durch einfache arithmetische
Operationen mit Zahlen beschrieben werden können.
{\em Marius Baumann} und {\em Thierry Schwaller} tauchen in die
+\index{Baumann, Marius}%
+\index{Schwaller, Thierry}%
geometrische Algebra ein, welche diese Idee verallgemeinert.
Sie illustrieren, wie sich mit geometrischer Algebra Bewegungen
in $\mathbb{R}^n$ einfach beschreiben lassen.
@@ -91,6 +102,8 @@ der von einem Gebäude im darunterliegenden Boden aufgebaut wird,
im Detail verstehen und modellieren können sollte.
Dazu muss man erst eine geeignete Darstellung finden.
{\em Thomas Reichlin} und {\em Adrian Schuler} zeigen, wie man
+\index{Reichlin, Thomas}%
+\index{Schuler, Adrian}%
dazu eigentlich über die Welt der Matrizen hinaus gehen muss und
sich mit sogenannten Tensoren herumschlagen muss.
Dank sinnvollen Annahmen über die reale Situation im Boden
@@ -107,6 +120,8 @@ aufzeichen kann.
Doch welcher Teil der aufgezeichneten Bewegung kommt vom Erdbeben
und welcher Teil ist Eigenschwingung der Messmasse?
Dieser Frage gehen {\em Fabio Viecelli} und {\em Lukas Zogg} nach.
+\index{Viecelli, Fabio}%
+\index{Zogg, Lukas}%
Die Antwort gelingt mit einem Klassiker unter den Ingenieur-Methoden:
dem Kalman-Filter.
Die Autoren stellen die für den Filter nötigen Matrizen zusammen
@@ -119,6 +134,7 @@ Doch wie findet man jetzt diejenige Zuteilung der Aufgaben
zu den Anbietern, die die Gesamtkosten minimiert.
Für dieses klassische Zuordnungsproblem ist die
von {\em Marc Kühne} beschriebene ungarische Methode,
+\index{Kühne, Marc}%
auch als Munkres-Algorithmus bekannt, eine besonders effiziente
Lösung.
diff --git a/buch/papers/verkehr/section1.tex b/buch/papers/verkehr/section1.tex
index 1b4a328..cc5893d 100644
--- a/buch/papers/verkehr/section1.tex
+++ b/buch/papers/verkehr/section1.tex
@@ -8,7 +8,7 @@ Das Verkehrsnetz besteht aus allen Anlagen, auf oder unter der Erdoberfläche, a
Aus verkehrsgeografischer Sicht besteht das Verkehrsnetz aus Kanten, Knotenpunkten und dem Hinterland. Die Knotenpunkte werden auch hier durch die Kanten verbunden, die den Verkehrsstrom aufnehmen, wobei das Hinterland durch einzelne Knoten versorgt wird. Die Aufteilung in Kanten und Knotenpunkte ermöglicht eine Vereinfachung komplexer Verkehrsnetze, damit sie mittels der Graphentheorie untersucht werden können.
\index{Knotenpunkt}%
\index{Hinterland}%
-\index{Verkehrtsstrom}%
+\index{Verkehrsstrom}%
Grundsätzlich können kurze Wege zwischen den Knotenpunkten das Ziel beim Aufbau eines Verkehrsnetzes sein. Es kann aber auch versucht werden, die Bau- und Unterhaltskosten des Verkehrsnetzes in einem gewissen Rahmen zu halten. Aus diesen Vorgaben ergibt sich dann, je nach dem was gewünscht wird, eine grob- oder feinmaschige Struktur des Netzes.
\index{Graphentheorie}%
Ziel ist aber ein möglichst wirtschaftliches und optimales Verkehrsnetz.
diff --git a/vorlesungen/slides/7/kommutator.tex b/vorlesungen/slides/7/kommutator.tex
index 84bf034..0418380 100644
--- a/vorlesungen/slides/7/kommutator.tex
+++ b/vorlesungen/slides/7/kommutator.tex
@@ -145,7 +145,7 @@
to[out=-120,in=80]
(C);
%\fill[color=red] (B) circle[radius=0.08];
-\node[color=red] at (-1.2,1.5) [above left] {$D_{x,\alpha}$};
+\node[color=red] at (-1.2,1.5) [above left] {$R_{x_1,\alpha}$};
\coordinate (D) at (0.3,3.2);
\coordinate (E) at (1.8,2.8);
\coordinate (F) at (5.2,-0.3);
@@ -156,10 +156,10 @@
to[out=-23,in=120]
(F);
\fill[color=blue] (E) circle[radius=0.08];
-\node[color=blue] at (2.4,2.4) [above right] {$D_{y,\beta}$};
+\node[color=blue] at (2.4,2.4) [above right] {$R_{x_2,\beta}$};
\draw[->,color=darkgreen,line width=1.4pt]
(0.7,-3.1) to[out=1,in=-160] (3.9,-2.6);
-\node[color=darkgreen] at (2.5,-3.4) {$D_{z,\gamma}$};
+\node[color=darkgreen] at (2.5,-3.4) {$R_{x_3,\gamma}$};
\end{tikzpicture}
\end{center}
\end{frame}