aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/05-zahlen/rational.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-08-30 20:32:46 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-08-30 20:32:46 +0200
commit61fc78a9f2f6d524ba506703bfcd766e2a56aa1e (patch)
tree87dfe5bc37ee9e66fae5c878bb61d2532a643f56 /buch/chapters/05-zahlen/rational.tex
parentMerge pull request #94 from Lukaszogg/master, resolving conflict in buch/pape... (diff)
downloadSeminarMatrizen-61fc78a9f2f6d524ba506703bfcd766e2a56aa1e.tar.gz
SeminarMatrizen-61fc78a9f2f6d524ba506703bfcd766e2a56aa1e.zip
review chapter 1
Diffstat (limited to 'buch/chapters/05-zahlen/rational.tex')
-rw-r--r--buch/chapters/05-zahlen/rational.tex26
1 files changed, 19 insertions, 7 deletions
diff --git a/buch/chapters/05-zahlen/rational.tex b/buch/chapters/05-zahlen/rational.tex
index 9d2f59e..4a2342e 100644
--- a/buch/chapters/05-zahlen/rational.tex
+++ b/buch/chapters/05-zahlen/rational.tex
@@ -14,8 +14,8 @@ die negativen Zahlen kennenlernen.
Wir können hierbei denselben Trick anwenden,
wie schon beim Übergang von den natürlichen zu den ganzen Zahlen.
-Wir kreieren wieder Paare $(z, n)$, deren Elemente nennen wir \emph{Zähler} und
-\emph{Nenner}, wobei $z, n \in \mathbb Z$ und zudem $n \ne 0$.
+Wir kreieren wieder Paare $(z, n)$, deren Elemente wir \emph{Zähler} und
+\emph{Nenner} nennen, wobei $z, n \in \mathbb Z$ und zudem $n \ne 0$.
Die Rechenregeln für Addition und Multiplikation lauten
\[
(a, b) + (c, d)
@@ -27,8 +27,8 @@ Die Rechenregeln für Addition und Multiplikation lauten
(ac, bd)
.
\]
-Die ganzen Zahlen lassen sich als in dieser Darstellung als
-$z \mapsto (z, 1)$ einbetten.
+Die ganzen Zahlen $z\in\mathbb{Z}$ lassen sich in dieser Darstellung als
+$z \mapsto (z, 1)$ in diese Menge von Paaren einbetten.
Ähnlich wie schon bei den ganzen Zahlen ist diese Darstellung
aber nicht eindeutig.
@@ -67,6 +67,7 @@ Rationale Zahlen sind genau die Äquivalenzklassen dieser Paare $(a, b)$ von
ganzen Zahlen $a$ und $b\ne 0$.
Da diese Schreibweise recht unhandlich ist, wird normalerweise die Notation
als Bruch $\frac{a}{b}$ verwendet.
+\index{Bruch}%
Die Rechenregeln werden dadurch zu den wohlvertrauten
\[
\frac{a}{b}+\frac{c}{d}
@@ -120,6 +121,7 @@ Kürzen und Erweitern ineinander übergeführt werden können.
Die Menge der Äquivalenzklassen von Brüchen ist die Menge $\mathbb{Q}$
der rationalen Zahlen.
+\index{Q@$\mathbb{Q}$}%
In $\mathbb{Q}$ sind Addition, Subtraktion und Multiplikation mit den
gewohnten Rechenregeln, die bereits in $\mathbb{Z}$ gegolten haben,
uneingeschränkt möglich.
@@ -127,7 +129,7 @@ uneingeschränkt möglich.
\subsubsection{Kehrwert}
Zu jedem Bruch $\frac{a}{b}$ lässt sich der Bruch $\frac{b}{a}$,
der sogenannte {\em Kehrwert}
-\index{Kehrwert}
+\index{Kehrwert}%
konstruieren.
Er hat die Eigenschaft, dass
\[
@@ -139,7 +141,7 @@ Er hat die Eigenschaft, dass
\]
gilt.
Der Kehrwert ist also das multiplikative Inverse, jede von $0$ verschiedene
-rationale Zahl hat eine Inverse.
+rationale Zahl hat eine solche Inverse.
\subsubsection{Lösung von linearen Gleichungen}
Mit dem Kehrwert lässt sich jetzt jede lineare Gleichung lösen.
@@ -165,13 +167,23 @@ und Division möglich sind mit der einzigen Einschränkung, dass nicht durch
$0$ dividiert werden kann.
Körper sind die natürliche Bühne für die lineare Algebra, da sich lineare
Gleichungssysteme ausschliesslich mit den Grundoperation lösen lassen.
+Eine formelle Definition eines Körpers werden wir in
+Abschnitt~\ref{buch:subsection:koerper} geben.
Wir werden im Folgenden für verschiedene Anwendungszwecke weitere Körper
konstruieren, zum Beispiel die reellen Zahlen $\mathbb{R}$ und die
rationalen Zahlen $\mathbb{C}$.
Wann immer die Wahl des Körpers keine Rolle spielt, werden wir den
Körper mit $\Bbbk$ bezeichnen.
-\index{$\Bbbk$}%
+\index{k@$\Bbbk$}%
+Ein Körper $\Bbbk$ zeichnet sich dadurch aus, dass alle ELemente ausser $0$
+invertierbar sind.
+Diese wichtige Teilmenge wird mit $\Bbbk^* = \Bbbk \setminus\{0\}$ mit
+bezeichnet.
+In dieser Relation sind beliebige Multiplikationen ausführbar, das Element
+$1\in\Bbbk^*$ ist neutrales Element bezüglich der Multiplikation.
+Die Menge $\Bbbk^*$ trägt die Struktur einer Gruppe, siehe dazu auch
+den Abschnitt~\ref{buch:grundlagen:subsection:gruppen}.