aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/30-endlichekoerper/wurzeln.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-08-31 20:58:56 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-08-31 20:58:56 +0200
commit036e7aae98bcf2cb7d63546e153c25649baa93d1 (patch)
treef587581e008b96d3a14078756dec5bbb1397e238 /buch/chapters/30-endlichekoerper/wurzeln.tex
parentKapitel 3 (diff)
downloadSeminarMatrizen-036e7aae98bcf2cb7d63546e153c25649baa93d1.tar.gz
SeminarMatrizen-036e7aae98bcf2cb7d63546e153c25649baa93d1.zip
Kapitel 3
Diffstat (limited to 'buch/chapters/30-endlichekoerper/wurzeln.tex')
-rw-r--r--buch/chapters/30-endlichekoerper/wurzeln.tex44
1 files changed, 32 insertions, 12 deletions
diff --git a/buch/chapters/30-endlichekoerper/wurzeln.tex b/buch/chapters/30-endlichekoerper/wurzeln.tex
index 600336c..b066969 100644
--- a/buch/chapters/30-endlichekoerper/wurzeln.tex
+++ b/buch/chapters/30-endlichekoerper/wurzeln.tex
@@ -52,10 +52,10 @@ Inverse kann zum Beispiel als die inverse Matrix mit dem
Gauss-Algorithmus berechnet werden.
In einem zweiten Schritt zeigen wir dann, dass man die Rechnung noch
etwas vereinfachen kann, wenn man in Polynomringen arbeitet.
-Schliesslich zeigen wir dann im
-Abschnitt~\ref{buch:subsection:zerfaellungskoerper}, wie man
-den Prozess iterieren kann und so für beliebige Polynome immer einen
-Körper finden kann, der alle Nullstellen enthält.
+%Schliesslich zeigen wir dann im
+%Abschnitt~\ref{buch:subsection:zerfaellungskoerper}, wie man
+%den Prozess iterieren kann und so für beliebige Polynome immer einen
+%Körper finden kann, der alle Nullstellen enthält.
Wir beginnen in Abschnitt~\ref{buch:subsection:irreduziblepolynome}
damit, die Polynome, die für die Konstruktion in Frage kommen, etwas
genauer zu charakterisieren.
@@ -608,7 +608,17 @@ $J$ mit $I\subset J\subset R$ entweder $I=J$ oder $J=R$ gilt.
Die Ideale $p\mathbb{Z}\subset \mathbb{Z}$ sind maximal genau dann, wenn
$p$ eine Primzahl ist.
-TODO: XXX Begründung
+Ist nämlich $p=n_1n_2$ eine Faktorisierung, dann ist
+$\mathbb{Z}\supset n_1\mathbb{Z} \supset p\mathbb{Z}$
+und $n_1\mathbb{Z}$ ist ein grössers Ideal als $p\mathbb{Z}$,
+d.~h.~$p\mathbb{Z}$ ist nicht maximal.
+
+In $\mathbb{Z}$ sind alle Ideale von der Form $n\mathbb{Z}$.
+Wenn es also ein Ideal $I\supset p\mathbb{Z}$ gibt, welches
+$p\mathbb{Z}$ echt enthält, dann gibt es $n\in\mathbb{Z}$ derart,
+dass $n\mathbb{Z} \subset p\mathbb{Z}$.
+Dies ist gleichbedeutend damit, dass $n$ ein echter Teiler von $p$
+ist, also ist $p$ keine Primzahl.
\end{beispiel}
\begin{satz}
@@ -616,6 +626,23 @@ Der Ring $R/I$ ist genau dann ein Körper, wenn $I$ ein maximales Ideal ist.
\end{satz}
\begin{proof}[Beweis]
+Nehmen wir zunächst an, dass $I$ ein maximales Ideal ist.
+Damit $R/I$ ein Körper ist, muss jedes von $0$ verschiedene Element
+eine multiplikatives Inverses haben.
+Sei als $a\in R\setminus I$, dann ist $a+I$ ein von $0$ verschiedenes
+Körperelement.
+Die Menge $Ra+I$ ist dann ein Ideal von $R$, welches $I$ echt enthält.
+Weil $I$ maximal ist, ist $Ra+I=R$, also gibt es ein Element $b\in I$
+derart, dass $ab+I=1+I$, d.~h.~$b+I$ ist das gesuchte multiplikative
+Inverse.
+
+Sei nun umgekehrt $R/I$ ein Körper und $J\supset I$ sei ein Ideal,
+welches $I$ echt enhält.
+Sei $a\in J\setminus I$.
+Da $R/I$ ein Körper ist, ist $a+I$ invertierbar, es gibt also ein
+$b\in R$ mit $ab+I=1+I$.
+Da $a\in J$ folgt $Ra\subset J$.
+Andererseits ist $1\in Ra$, also ist $J=R$ und das Ideal $J$ ist maximal.
\end{proof}
Ein irreduzibles Polynom $m\in\Bbbk[X]$ erzeugt ein maximales Ideal,
@@ -894,10 +921,3 @@ Dieser Spezialfall ist für die praktische Anwendung in der Kryptographie
von besonderer Bedeutung, daher wird er im
In Kapitel~\ref{buch:chapter:kryptographie} genauer untersucht.
-\subsection{Zerfällungskörper
-\label{buch:subsection:zerfaellungskoerper}}
-XXX TODO
-
-
-
-