aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/40-eigenwerte/spektraltheorie.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-09-02 11:05:02 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-09-02 11:05:02 +0200
commit8a1598b4fbaca52a1de7e9e23f4a69581b587372 (patch)
tree2cc52c84d12acf537b32decc3f5e871e0c973493 /buch/chapters/40-eigenwerte/spektraltheorie.tex
parenttypos (diff)
downloadSeminarMatrizen-8a1598b4fbaca52a1de7e9e23f4a69581b587372.tar.gz
SeminarMatrizen-8a1598b4fbaca52a1de7e9e23f4a69581b587372.zip
section 5.1
Diffstat (limited to 'buch/chapters/40-eigenwerte/spektraltheorie.tex')
-rw-r--r--buch/chapters/40-eigenwerte/spektraltheorie.tex12
1 files changed, 6 insertions, 6 deletions
diff --git a/buch/chapters/40-eigenwerte/spektraltheorie.tex b/buch/chapters/40-eigenwerte/spektraltheorie.tex
index 466b99e..20efede 100644
--- a/buch/chapters/40-eigenwerte/spektraltheorie.tex
+++ b/buch/chapters/40-eigenwerte/spektraltheorie.tex
@@ -115,7 +115,7 @@ k_i(z)
\frac{(z-z_0)\dots \widehat{(z-z_i)}\dots (z-z_n)}{(z_i-z_0)\dots \widehat{(z_i-z_i)}\dots (z_i-z_n)}
\]
haben die Eigenschaft
-$k_i(z_j)=\delta_{ij}$.
+$k_i(z_j)=\delta_{i\!j}$.
Damit lässt sich jetzt ein Polynom
\[
p(z) = \sum_{j=0}^n f(z_j) \frac{l_j(z)}{l_j(z_j)}
@@ -126,7 +126,7 @@ p(z_i)
=
\sum_{j=0}^n f(z_j) \frac{l_j(z_i)}{l_j(z_j)}
=
-\sum_{j=0}^n f(z_j) \delta_{ij}
+\sum_{j=0}^n f(z_j) \delta_{i\!j}
=
f_(z_i)
\]
@@ -699,15 +699,15 @@ Sei $A$ eine obere Dreiecksmatrix, das Argument für eine untere Dreiecksmatrix
funktioniert gleich.
Wir berechnen ein Diagonalelement für beide Produkte $AA^*$ und $A^*A$.
Dazu brauchen wir die Matrixelemente von $A$ und $A^*$.
-Bezeichnen wir die Matrixelemente von $A$ mit $a_{ij}$, dann hat $A^*$
-die Matrixelemente $(A^*)_{ij}=\overline{a}_{ji}$.
+Bezeichnen wir die Matrixelemente von $A$ mit $a_{i\!j}$, dann hat $A^*$
+die Matrixelemente $(A^*)_{i\!j}=\overline{a}_{ji}$.
Damit kann man die Diagonalelemente der Produkte als
\begin{align*}
(AA^*)_{ii}
&=
-\sum_{j=1}^n a_{ij}\overline{a}_{ij}
+\sum_{j=1}^n a_{i\!j}\overline{a}_{i\!j}
=
-\sum_{j=i}^n |a_{ij}|^2
+\sum_{j=i}^n |a_{i\!j}|^2
\\
(A^*A)_{ii}
&=