diff options
author | Nao Pross <np@0hm.ch> | 2021-04-08 18:49:39 +0200 |
---|---|---|
committer | Nao Pross <np@0hm.ch> | 2021-04-08 18:49:39 +0200 |
commit | cff99b9070bf79a4e98723bbcab5d09909e6e02b (patch) | |
tree | d934e3e1e74ed2f882023aa03907569315c04a6e /buch/chapters/40-eigenwerte/uebungsaufgaben | |
parent | Merge branch 'master' of https://github.com/AndreasFMueller/SeminarMatrizen (diff) | |
parent | new slides (diff) | |
download | SeminarMatrizen-cff99b9070bf79a4e98723bbcab5d09909e6e02b.tar.gz SeminarMatrizen-cff99b9070bf79a4e98723bbcab5d09909e6e02b.zip |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'buch/chapters/40-eigenwerte/uebungsaufgaben')
-rw-r--r-- | buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex | 12 | ||||
-rw-r--r-- | buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex | 30 |
2 files changed, 21 insertions, 21 deletions
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex index 2fab61a..dd82067 100644 --- a/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex +++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4001.tex @@ -2,7 +2,7 @@ Verwenden Sie die Matrixdarstellung komplexer Zahlen, um $i^i$ zu berechnen. \begin{hinweis} -Verwenden Sie die eulersche Formel um $\log J$ zu bestimmen. +Verwenden Sie die Eulersche Formel um $\log J$ zu bestimmen. \end{hinweis} \begin{loesung} @@ -14,11 +14,11 @@ Zunächst erinnern wir an die Eulersche Formel = \sum_{k=0}^\infty \frac{t^k J^k}{k!} = -\sum_{i=0}^\infty \frac{t^{2i}(-1)^i}{(2i)!}\cdot E +\sum_{i=0}^\infty \frac{t^{2i}(-1)^i}{(2i)!}\cdot I + \sum_{i=0}^\infty \frac{t^{2i+1}(-1)^i}{(2i+1)!}\cdot J = -\cos t\cdot E +\cos t\cdot I + \sin t\cdot J. \] @@ -49,7 +49,7 @@ J = \begin{pmatrix} Als nächstes müssen wir $J\log J$ berechnen. Aus \eqref{4001:logvalue} folgt \[ -J\log J = J\cdot \frac{\pi}2J = - \frac{\pi}2 \cdot E. +J\log J = J\cdot \frac{\pi}2J = - \frac{\pi}2 \cdot I. \] Darauf ist die Exponentialreihe auszuwerten, also \[ @@ -57,7 +57,7 @@ J^J = \exp (J\log J) = -\exp(-\frac{\pi}2 E) +\exp(-\frac{\pi}2 I) = \exp \begin{pmatrix} @@ -70,7 +70,7 @@ e^{-\frac{\pi}2}&0\\ 0&e^{-\frac{\pi}2} \end{pmatrix} = -e^{-\frac{\pi}2} E. +e^{-\frac{\pi}2} I. \] Als komplexe Zahlen ausgedrückt folgt also $i^i = e^{-\frac{\pi}2}$. \end{loesung} diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex index 3cd9959..b749356 100644 --- a/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex +++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4003.tex @@ -78,11 +78,11 @@ Ab_1 = 3b_1 \] ab. -Diesen Vektor können wir auch finden, indem wir $\mathcal{J}(A-eE)$ +Diesen Vektor können wir auch finden, indem wir $\mathcal{J}(A-2I)$ bestimmen. -Die vierte Potenz von $A-2E$ ist +Die vierte Potenz von $A-2I$ ist \begin{equation} -(A-2E)^4 +(A-2I)^4 = \begin{pmatrix} 0& 0& 0& 0\\ @@ -108,13 +108,13 @@ b_4 = \begin{pmatrix}0\\0\\1\\2\end{pmatrix} \] -für den Kern $\mathcal{K}(A-2E)$ ablesen. -Da $\lambda=2$ der einzige andere Eigenwert ist, muss $\mathcal{K}(A-2E) -= \mathcal{J}(A-3E)$ sein. -Dies lässt sich überprüfen, indem wir die vierte Potenz von $A-2E$ +für den Kern $\mathcal{K}(A-2I)$ ablesen. +Da $\lambda=2$ der einzige andere Eigenwert ist, muss $\mathcal{K}(A-2I) += \mathcal{J}(A-3I)$ sein. +Dies lässt sich überprüfen, indem wir die vierte Potenz von $A-2I$ berechnen, sie ist \[ -(A-2E)^4 +(A-2I)^4 = \begin{pmatrix} 79& -26& 152& -152\\ @@ -124,7 +124,7 @@ berechnen, sie ist \end{pmatrix}. \] Die Spaltenvektoren lassen sich alle durch die Vektoren $b_2$, $b_3$ -und $b_4$ ausdrücken, also ist $\mathcal{J}(A-2E)=\langle b_2,b_3,b_4\rangle$. +und $b_4$ ausdrücken, also ist $\mathcal{J}(A-2I)=\langle b_2,b_3,b_4\rangle$. Indem die Vektoren $b_i$ als Spalten in eine Matrix $T$ schreibt, kann man jetzt berechnen, wie die Matrix der linearen Abbildung in dieser neuen @@ -154,16 +154,16 @@ A_1 \end{pmatrix} \] in der rechten unteren Ecke hat den dreifachen Eigenwert $2$, -und die Potenzen von $A_1-2E$ sind +und die Potenzen von $A_1-2I$ sind \[ -A_1-2E +A_1-2I \begin{pmatrix} -15 & 5& 29\\ -27 & 9& 51\\ -3 & 1& 6 \end{pmatrix} ,\qquad -(A_1-2E)^2 +(A_1-2I)^2 = \begin{pmatrix} 3 & -1 & -6\\ @@ -171,10 +171,10 @@ A_1-2E 0 & 0 & 0\\ \end{pmatrix} ,\qquad -(A_1-2E)^3=0. +(A_1-2I)^3=0. \] Für die Jordan-Normalform brauchen wir einen von $0$ verschiedenen -Vektor im Kern von $(A_1-2E)^2$, zum Beispiel den Vektor mit den +Vektor im Kern von $(A_1-2I)^2$, zum Beispiel den Vektor mit den Komponenten $1,3,1$. Man beachte aber, dass diese Komponenten jetzt in der neuen Basis $b_2,\dots,b_4$ zu verstehen sind, d.~h.~der Vektor, den wir suchen, ist @@ -185,7 +185,7 @@ b_1+ 3b_2+b_3 = \begin{pmatrix}1\\3\\1\\2\end{pmatrix}. \] -Jetzt berechnen wir die Bilder von $c_3$ unter $A-2E$: +Jetzt berechnen wir die Bilder von $c_3$ unter $A-2I$: \[ c_2 = |