aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/70-graphen/wavelets.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-02-22 20:41:15 +0100
committerAndreas Müller <andreas.mueller@ost.ch>2021-02-22 20:41:15 +0100
commitd2fecb0eeb3854c999108aa224cdcd260bed7ef0 (patch)
tree14f575e8652b1375eca610fc1ae47dd316bf6026 /buch/chapters/70-graphen/wavelets.tex
parentadd new images (diff)
downloadSeminarMatrizen-d2fecb0eeb3854c999108aa224cdcd260bed7ef0.tar.gz
SeminarMatrizen-d2fecb0eeb3854c999108aa224cdcd260bed7ef0.zip
Beispiele von Basen für Wavelets auf Graphen
Diffstat (limited to 'buch/chapters/70-graphen/wavelets.tex')
-rw-r--r--buch/chapters/70-graphen/wavelets.tex125
1 files changed, 125 insertions, 0 deletions
diff --git a/buch/chapters/70-graphen/wavelets.tex b/buch/chapters/70-graphen/wavelets.tex
index 6a4876a..0739f14 100644
--- a/buch/chapters/70-graphen/wavelets.tex
+++ b/buch/chapters/70-graphen/wavelets.tex
@@ -6,3 +6,128 @@
\section{Wavelets auf Graphen
\label{buch:section:wavelets-auf-graphen}}
\rhead{Wavelets auf Graphen}
+Graphen werden oft verwendet um geometrische Objekte zu approximieren.
+Funktionen auf einem Graphen können dann Approximationen von physikalischen
+Grössen wie zum Beispiel der Temperatur auf dem geometrischen Objekt
+interpretiert werden.
+Verschiedene Basen für die Beschreibung solcher Funktionen sind im Laufe
+der Zeit verwendet worden, doch Wavelets auf einem Graphen sind eine
+neuere Idee, mit der man aus der Laplace-Matrix Basen gewinnen kann,
+die die Idee von langsam sich ausbreitenden Störungen besonders gut
+wiederzugeben in der Lage sind.
+
+In diesem Abschnitt werden erst Funktionen auf einem Graphen genauer
+definiert.
+In Abschnitt~\ref{buch:subsection:standardbasis-und-eigenbasis}
+wird die Eigenbasis mit dem Laplace-Operator konstruiert und mit
+der Standarbasis verglichen.
+Schliesslich werden in Abschnitt~\ref{buch:subsection:wavelet-basen}
+verschiedene Wavelet-Basen konstruiert.
+
+\subsection{Funktionen auf einem Graphen und die Laplace-Matrix}
+Sei $G$ ein Graph mit der Knotenmenge $V$.
+Eine Funktion $f$ auf einem Graphen ist eine Funktion $f\colon V\to\mathbb{R}$.
+Funktionen auf $G$ sind also Vektoren, die mit den Knoten $V$ indiziert
+sind.
+
+Es gibt auch ein Skalarprodukt für Funktionen auf dem Graphen.
+Sind $f$ und $g$ zwei Funktionen auf $G$, dann ist das Skalarprodukt
+definiert durch
+\[
+\langle f,g\rangle
+=
+\frac{1}{|V|}\sum_{v\in V} \overline{f}(v) g(v)
+\]
+Dies ist das bekannte Skalarprodukt der Vektoren mit Komponenten $f(v)$.
+
+\begin{figure}
+\centering
+\includegraphics{chapters/70-graphen/images/kreis.pdf}
+\caption{Beispiel Graph zur Illustration der verschiedenen Basen auf einem
+Graphen.
+\label{buch:graphen:fig:kreis}}
+\end{figure}
+\begin{beispiel}
+Wir illustrieren die im folgenden entwickelte Theorie an dem Beispielgraphen
+von Abbildung~\ref{buch:graphen:fig:kreis}.
+Besonders interessant sind die folgenden Funktionen:
+\[
+\left.
+\begin{aligned}
+s_m(k)
+&=
+\sin\frac{2\pi mk}{n}
+\\
+c_m(k)
+&=
+\cos\frac{2\pi mk}{n}
+\end{aligned}
+\;
+\right\}
+\quad
+\Rightarrow
+\quad
+e_m(k)
+=
+e^{2\pi imk/n}
+=
+c_m(k) + is_m(k).
+\]
+Das Skalarprodukt dieser Funktionen ist
+\[
+\langle e_m, e_{m'}\rangle
+=
+\frac1n
+\sum_{k=1}^n
+\overline{e^{2\pi i km/n}}
+e^{2\pi ikm'/n}
+=
+\frac1n
+\sum_{k=1}^n
+e^{\frac{2\pi i}{n}(m'-m)k}
+=
+\delta_{mm'}
+\]
+Die Funktionen bilden daher eine Orthonormalbasis des Raums der
+Funktionen auf $G$.
+Wegen $\overline{e_m} = e_{-m}$ folgt, dass für gerade $n$
+die Funktionen
+\[
+c_0, c_1,s_1,c_2,s_2,\dots c_{\frac{n}2-1},c_{\frac{n}2-1},c_{\frac{n}2}
+\]
+eine orthonormierte Basis.
+\end{beispiel}
+
+
+Die Laplace-Matrix kann mit der folgenden Definition zu einer linearen
+Abbildung auf Funktionen auf dem Graphen gemacht werden.
+Sei $f\colon V\to \mathbb{R}$ und $L$ die Laplace-Matrix mit
+Matrixelementen $l_{vv'}$ wobei $v,v'\in V$ ist.
+Dann definieren wir die Funktion $Lf$ durch
+\[
+(Lf)(v)
+=
+\sum_{v'\in V} l_{vv'}f(v').
+\]
+
+\subsection{Standardbasis und Eigenbasis
+\label{buch:subsection:standardbasis-und-eigenbasis}}
+Die einfachste Basis, aus der siche Funktionen auf dem Graphen linear
+kombinieren lassen, ist die Standardbasis.
+Sie hat für jeden Knoten $v$ des Graphen eine Basisfunktion mit den Werten
+\[
+e_v\colon V\to\mathbb R:v'\mapsto \begin{cases}
+1\qquad&v=v'\\
+0\qquad&\text{sonst.}
+\end{cases}
+\]
+
+
+\subsection{Wavelet-Basen
+\label{buch:subsection:wavelet-basen}}
+
+
+
+
+
+