diff options
author | Ayexor <9105454+Ayexor@users.noreply.github.com> | 2021-08-27 18:09:54 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-08-27 18:09:54 +0200 |
commit | 2b2c5daa139aec08d091b658ad6191d6e57024ef (patch) | |
tree | 2c8f3fc7017394746d8e4f92a358e2a11015e072 /buch/papers/reedsolomon | |
parent | Anpassungen nach Mail (diff) | |
parent | new image: tetraeder (diff) | |
download | SeminarMatrizen-2b2c5daa139aec08d091b658ad6191d6e57024ef.tar.gz SeminarMatrizen-2b2c5daa139aec08d091b658ad6191d6e57024ef.zip |
Merge branch 'master' into master
Diffstat (limited to '')
44 files changed, 2510 insertions, 173 deletions
diff --git a/buch/papers/reedsolomon/Makefile b/buch/papers/reedsolomon/Makefile index 9c96e88..4be963e 100644 --- a/buch/papers/reedsolomon/Makefile +++ b/buch/papers/reedsolomon/Makefile @@ -4,6 +4,52 @@ # (c) 2020 Prof Dr Andreas Mueller # -images: - @echo "no images to be created in reedsolomon" +SOURCES := \ + anwendungen.tex \ + codebsp.tex \ + decmitfehler.tex \ + decohnefehler.tex \ + dtf.tex \ + einleitung.tex \ + endlichekoerper.tex \ + hilfstabellen.tex \ + idee.tex \ + main.tex \ + packages.tex \ + rekonstruktion.tex \ + restetabelle1.tex \ + restetabelle2.tex \ + standalone.tex \ + zusammenfassung.tex + +TIKZFIGURES := \ + tikz/polynom2.tex \ + tikz/fourier.tex + +FIGURES := $(patsubst tikz/%.tex, figures/%.pdf, $(TIKZFIGURES)) + + +all: images standalone + + +.PHONY: images +images: $(FIGURES) + +figures/%.pdf: tikz/%.tex + mkdir -p figures + pdflatex --output-directory=figures $< + +.PHONY: standalone +standalone: standalone.tex $(SOURCES) $(FIGURES) + mkdir -p standalone + cd ../..; \ + pdflatex \ + --halt-on-error \ + --shell-escape \ + --output-directory=papers/reedsolomon/standalone \ + papers/reedsolomon/standalone.tex; + cd standalone; \ + bibtex standalone; \ + makeindex standalone; + diff --git a/buch/papers/reedsolomon/Makefile.inc b/buch/papers/reedsolomon/Makefile.inc index 6a676f8..ea51f7a 100644 --- a/buch/papers/reedsolomon/Makefile.inc +++ b/buch/papers/reedsolomon/Makefile.inc @@ -6,9 +6,17 @@ dependencies-reedsolomon = \ papers/reedsolomon/packages.tex \ papers/reedsolomon/main.tex \ - papers/reedsolomon/references.bib \ - papers/reedsolomon/teil0.tex \ - papers/reedsolomon/teil1.tex \ - papers/reedsolomon/teil2.tex \ - papers/reedsolomon/teil3.tex + papers/reedsolomon/einleitung.tex \ + papers/reedsolomon/idee.tex \ + papers/reedsolomon/dtf.tex \ + papers/reedsolomon/endlichekoerper.tex \ + papers/reedsolomon/codebsp.tex \ + papers/reedsolomon/decohnefehler.tex \ + papers/reedsolomon/decmitfehler.tex \ + papers/reedsolomon/rekonstruktion.tex \ + papers/reedsolomon/zusammenfassung.tex \ + papers/reedsolomon/anwendungen.tex \ + papers/reedsolomon/hilfstabellen.tex \ + papers/reedsolomon/references.bib + diff --git a/buch/papers/reedsolomon/RS presentation/images/polynom1 - Kopie.tex b/buch/papers/reedsolomon/RS presentation/images/polynom1 - Kopie.tex new file mode 100644 index 0000000..038e93e --- /dev/null +++ b/buch/papers/reedsolomon/RS presentation/images/polynom1 - Kopie.tex @@ -0,0 +1,33 @@ +% polynome1 +%------------------- +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\newcommand{\teiler}{40} +\begin{document} + + +\begin{tikzpicture}[>=latex,thick] + + \begin{axis}[ + axis lines = left, + xlabel = \(x\), + ylabel = {\(f(x)\)}, + ] + %Below the red parabola is defined + \addplot[ + color=blue, + ] + coordinates { + (0,23.1)(10,27.5)(20,32)(30,37.8)(40,44.6)(60,61.8)(80,83.8)(100,114) + }; + %Here the blue parabola is defined + + \end{axis} +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/reedsolomon/anwendungen.tex b/buch/papers/reedsolomon/anwendungen.tex index 83e0f94..b9b1d69 100644 --- a/buch/papers/reedsolomon/anwendungen.tex +++ b/buch/papers/reedsolomon/anwendungen.tex @@ -6,14 +6,38 @@ \section{Anwendungen des Reed-Solomon-Codes \label{reedsolomon:section:anwendung}} \rhead{Anwendungen} -\textcolor{red}{Platzierung der Bilder? Quellenangabe der Bilder?} -In den vorherigen Abschnitten haben wir betrachtet, wie Reed-Solomon-Codes in der Theorie Funktionieren. +In den vorherigen Abschnitten haben wir betrachtet, wie Reed-Solomon-Codes in der Theorie funktionieren. In diesem Abschnitt werden wir einige Anwendungen vorstellen, bei denen ein Reed-Solomon-Code zum Einsatz kommt. + +Dabei teilen all diese Anwendungen das gleiche Problem: Die Daten können nur durch einen (höchst Wahrscheinlichen) fehlerbehafteten Kanal empfangen werden. Es gibt keine andere Methode, an diese Daten zu kommen, als über diesen Kanal. + +In der Netzwerktechnik zum Beispiel ist es üblich, dass bei Paketverluste oder beschädigt empfangene Datenpaketen diese einfach noch einmal innert wenigen Millisekunden angefordert werden können. +In der Raumfahrt ist dies nicht möglich, da aufgrund der beschränkten Speichermöglichkeit die gesammelten Daten so rasch wie möglich zur Erde gesendet werden. +Diese Daten wiederum brauchen aufgrund der grossen Distanz Stunden bis die Daten beim Empfänger ankommen. +Fehlerhafte Daten kann also auf Grund der Zeitverzögerung nicht mehr angefordert werden. + +Bei CDs oder DVDs gibt es zwar kein zeitliches Problem, jedoch erschweren Kratzer, Verschmutzungen oder Produktionsfehler das Lesen einer solchen Disk. +Da vor allem Produktionsfehler und Kratzer irreversibel sind und die Disk nicht nach jedem Kratzer ersetzt werden muss, so wird die korrekte Ausgabe der gespeicherten Information durch die Fehlerkorrektur sichergestellt. + +Einen ähnlichen Ansatz verfolgen QR-Codes, wobei die Information auch dann noch gelesen werden kann wenn der Code nicht mehr vollständig vorhanden ist. + +%Wie man sieht, eignen sich Reed-Solomon-Codes vor allem für Anwendungen, bei der die Informationen nicht auf einen Anderen Weg beschafft werden kann. +% +% +%, bei denen die Wahrscheinlichkeit hoch ist, dass während der Übertragung +% +%Es ist deshalb umso wichtiger die Daten Codiert zu lesen um so gleich die Lesefehler zu korrigieren. +% +% da aufgrund der grossen Distanz Stunden vergehen können bis gesendete Daten auf der Erde empfangen werden kann. +% + Obwohl alle diese Codes nach dem gleichen Prinzip arbeiten gibt es starke Unterschiede in deren Funktionsweise. Dies kommt vor allem daher, da die Codes nur Ressourcen zur Verfügung haben, die von der Hardware bereitstellt wird, auf denen die Codes implementiert wurden. Diese Codes bedienen sich daher verschiedener Tricks und Optimierungen um möglichst effizient zu arbeiten. -% + +Um die Fähigkeit eines verwendeten Reed-Solomon-Codes zu beschreiben verwendet man die Notation ($n$,$k$), wobei $n$ die Grösse des Nachrichtenblocks angibt und $k$ die Anzahl der Stellen, die für Nutzdaten gebraucht werden können. + %Dies kommt vor allem daher, da diese Codes an ihre Hardware gebunden sind, auf denen sie implementiert worden sind. %Deshalb wurden diese Codes stark optimiert damit sie möglichst Effizient arbeiten können. % @@ -45,8 +69,23 @@ Diese Codes bedienen sich daher verschiedener Tricks und Optimierungen um mögli %In den letzten abschnitten haben wir uns ausführlich die Funktionsweise des Reed-Solomon-Codes angeschaut. In diesem Abschnitt möchten wir dem Leser ein paar bekannte beispiele vorstellen, in denen Reed-Solomon-Codes zum einsatz kommen. Es sei jedoch angemerkt, dass diese Anwendungen in der Umsetzung oft ein wenig anderst funktionieren als hier vorgestellt. Dies wurde vor allem wegen technischen optimierungen realisiert. (technische tricks und finessen), von der logik jedoch sehr stark an unserem Beispiel orientieren \subsection{Raumfahrt} -Obwohl Reed-Solomon-Codes bereits in den 1960er entwickelt wurden fanden sie erstmals Anwendung in der Voyager Raumsonde der NASA. Die Daten der zwei im Jahre 1977 gestarteten Sonden werden mit einem RS(255,233)-Code \textcolor{red}{benötigt das weitere erklärungen, wie z.b. 255: grösse nachrichtenblock, 233: anzahl der nutzbaren daten ?} zusammen mit einem konventionellen Faltungscode übertragen. +Obwohl Reed-Solomon-Codes bereits in den 1960er entwickelt wurden fanden sie erstmals Anwendung in der Voyager Raumsonde der NASA. Die Daten der zwei im Jahre 1977 gestarteten Sonden (siehe Abbildung \ref{fig:voyager}) werden mit einem ($255$,$233$)-Code +Codiert. +Der Nachrichtenblock hat somit eine Länge von $255$ Zahlen, wovon $233$ als Nutzlast zur Verfügung stehen. +Damit ist es möglich bis zu $11$ Fehler im Nachrichtenblock zu korrigieren. +Der Codierte Nachrichtenblock wird in kleinere Blöcke aufgeteilt, mit einem Faltungscode erneut Codiert und anschliessend gesendet. +Ein Faltungscode ist wie ein Reed-Solomon-Code in der Lage Fehler zu korrigieren, +Codiert seine Information aber auf eine andere weise. Aus jedem unterteilten Block wird vor dem Versenden ein Paritätsbit erzeugt und dem Block angehängt. Anhand diesem Paritätsbit überprüft der Empfänger, ob bei der Übertragung der Block beschädigt wurde. Ist dies der Fall, wird der Block bei der Decodierung nicht beachtet. Diese so entstandenen ``Lücken'' im Datenstrom werden wiederum vom Reed-Solomon-Code korrigiert. Dieses Zusammenspiel beider Codes garantiert so eine hohe Robustheit gegenüber Übertragungsfeher. +% +% Funktioniert aber nach einem ganz anderen Prinzip. +% +%Durch diese doppelte Codierung wird eine äusserst hohe Übertragungssicherheit garantiert. +% +%Dabei steht die Zahl 255 für grösse des Nachrichtenblocks, der die Anzahl 233 +% +% +% \textcolor{red}{benötigt das weitere Erklärungen, wie z.b. 255: grösse Nachrichtenblock, 233: anzahl der nutzbaren daten ?} zusammen mit einem konventionellen Faltungscode übertragen. Eine von der Sonde gesendete Nachricht hat eine Blockgrösse von 255 Zeichen, wovon 233 für die Nutzdaten gebraucht werden können. Dieser Code ist somit in der Lage 11 Fehler in einem Nachrichtenblock zu korrigieren. % % Die zwei im Jahre 1977 gestarteten Sonden senden Daten mit der Hilfe eines RS(255,233)-Code für die digitalen Bilder sowie einem konventionellen Faltungscode. % @@ -56,14 +95,14 @@ Obwohl Reed-Solomon-Codes bereits in den 1960er entwickelt wurden fanden sie ers \begin{figure} \centering \includegraphics[width=0.5\textwidth]{papers/reedsolomon/images/Voyager_Sonde} - \caption{Voyager Raumsonde} + \caption{Mit einer Entfernung von über 22.8 Milliarden Kilometer ist die Voyager 1 Raumsonde das am weitesten entfernte, von Menschen erschaffene Objekt. Obwohl ihre Schwestersonde Voyager 2 zuerst ins All gestartet wurde befindet Sie sich ``nur'' 19 Milliarden Kilometer weit weg von der Erde. Aufgrund abnehmender Batterieleistung werden die beiden Sonden ihre wissenschaftlichen Aktivitäten etwa 2025 einstellen, bleiben aber bis in die 2030er mit uns in Kontakt.} \label{fig:voyager} \end{figure} \subsection{CD/DVD} Compact discs verwenden sogar zwei ineinander verschachtelte Reed-Solomon-Codes, einen (32,28)-Code und einen (28,24)-Code. -Beide Codes sind in der Lage, Fehler aus dem jeweils anderen gelesenen Block zu korrigieren. Dieses spezielle zusammenspielen dieser beiden Codes werden auch Cross-interleaved Reed-Solomon-Codes (CIRC) genannt. -Diese Vorgehensweise erzielt eine hohe Robustheit gegenüber Produktionsfehler oder Verschmutzung auf der Disc. Bei CD's sind diese in der Lage bis zu 4000 fehlerhafte Bits am Stück (ca. $2.5mm$) zu erkennen und zu korrigieren. +Beide Codes sind in der Lage, Fehler aus dem jeweils anderen gelesenen Block zu korrigieren. Dieses spezielle Zusammenspielen dieser beiden Codes werden auch Cross-interleaved Reed-Solomon-Codes (CIRC) genannt. +Diese Vorgehensweise erzielt eine hohe Robustheit gegenüber Produktionsfehlern oder Verschmutzung auf der Disc. Bei CDs sind diese in der Lage, bis zu 4000 fehlerhafte Bits am Stück (ca. $2.5mm$) zu erkennen und zu korrigieren. Die Digital Video Disc funktioniert nach dem selben Konzept mit grösseren Codeblöcken. Die DVD verwendet einen (208,192)-Code und einen (182,172)-Code. @@ -72,13 +111,25 @@ Die Digital Video Disc funktioniert nach dem selben Konzept mit grösseren Codeb \begin{figure} \centering - \includegraphics[width=0.5\textwidth]{papers/reedsolomon/images/Compact_Disc} - \caption{Compact Disc} + \subfigure[]{ + \includegraphics[width=0.45\textwidth]{papers/reedsolomon/images/Compact_Disc} + } + \subfigure[]{ + \includegraphics[width=0.45\textwidth]{papers/reedsolomon/images/Compact_Disc_zoomed_in} + } + \caption{CDs kamen 1982 auf den Markt. Sie funktioniert durch das Einpressen oder Einbrennen von Punkten und Strichen, die die Daten repräsentieren. Gelesen werden diese wiederum durch die Reflektion eines Lasers an diesen Punkten und Strichen.} \label{fig:cd} \end{figure} \subsection{QR-Codes} -Quick Response Codes funktionieren nach einem sehr ähnlichen Prinzip wie in unserem Beispiel, nur dass QR-Codes in einem $\mathbb{F}_{256}$ Körper arbeiten. Je nach grösse der Codierung ist der QR-Code im Endeffekt robuster gegen Beschädigungen. Bei Low Level Codes können 7\% der Daten Wiederhergestellt werden, beim High Level Code sind das sogar 30\%. +Quick Response Codes oder auch QR-Codes funktionieren nach einem sehr ähnlichen Prinzip wie in unserem Beispiel der Abschnitte \ref{reedsolomon:section:codebsp} - \ref{reedsolomon:section:rekonstruktion} nur das QR-Codes in einem $\mathbb{F}_{256}$ Körper arbeiten. Die physische Grösse eines Codes ist stark abhängig von der Menge an codierten Daten sowie dem verwendeten Fehlerkorrektur-Level. Es ist so auf dem ersten Blick nicht ersichtlich, wie viel Nutzinformationen ein Qr-Code enthält. Die QR-Codes in Abbildung \ref{fig:qr} zeigen jeweils die Gleiche Information mit unterschiedlichem Fehlerkorrektur-Level. Codes mit einem höheren Korrektur-Level können auch für Designer-Codes Zweckentfremdet werden. Dabei wird z.B. das Firmenlogo oder einen Schriftzug über den Qr-Code gelegt, ohne das die Funktion des Codes beeinträchtigt wird. Ein Beispiel dazu ist unter Abbildung \ref{fig:designqr} zu finden. + +% + +%So kann auf den ersten Blick nicht +% +% +% funktionieren nach einem sehr ähnlichen Prinzip wie in unserem Beispiel, nur dass QR-Codes in einem $\mathbb{F}_{256}$ Körper arbeiten. Je nach grösse der Codierung ist der QR-Code im Endeffekt robuster gegen Beschädigungen. Bei Low Level Codes können 7\% der Daten Wiederhergestellt werden, beim High Level Code sind das sogar 30\%. \begin{figure} \centering @@ -88,6 +139,30 @@ Quick Response Codes funktionieren nach einem sehr ähnlichen Prinzip wie in uns \subfigure[]{ \includegraphics[width=0.4\textwidth]{papers/reedsolomon/images/qrcode_l} } - \caption{(a) High Level Code, (b) Low Level Code} +% \subfigure[]{ +% \includegraphics[width=0.4\textwidth]{papers/reedsolomon/images/designer_qrcode_ohnelogo} +% } +% \subfigure[]{ +% \includegraphics[width=0.4\textwidth]{papers/reedsolomon/images/designer_qrcode} +% } + \caption{Anhand der grösse würde man darauf schliessen, dass bei (a) mehr Informationen Codiert sind als bei (b). Tatsächlich aber beinhalten beide Codes die gleiche Information. Das liegt daran, da die Fehlerkorrekturfähigkeit von QR-Codes sich in insgesamt vier Levels aufteilen lassen. Der höchste Fehlerkorrektur-Level, der bei (a) angewendet wurde, ist in der Lage, bis zu 30\% der Daten wiederherzustellen. Der kleinste Level schafft etwa 7\%, der in (b) veranschaulicht wird. Da die Grösse also nichts über die Menge an Daten aussagt, könnte es sich bei (a) auch um einen Code mit viel Nutzdaten und kleinem Fehlerkorrektur-Level handeln. Der Unterschied ist von Auge nicht sichtbar.} \label{fig:qr} \end{figure} + +\begin{figure} + \centering +% \subfigure[]{ +% \includegraphics[width=0.4\textwidth]{papers/reedsolomon/images/qrcode_h} +% } +% \subfigure[]{ +% \includegraphics[width=0.4\textwidth]{papers/reedsolomon/images/qrcode_l} +% } + \subfigure[]{ + \includegraphics[width=0.4\textwidth]{papers/reedsolomon/images/designer_qrcode_ohnelogo} + } + \subfigure[]{ + \includegraphics[width=0.4\textwidth]{papers/reedsolomon/images/designer_qrcode} + } + \caption{Während (a) noch einen unveränderten QR-Code repräsentiert, handelt es sich bei (b) nun um einen Designer-QR-Code. Beide Codes verfügen über einen mittleren Fehlerkorrektur-Level von theoretisch 15\%. Da bei (b) jetzt einen Teil des Codes durch ein Logo verdeckt wird, schränkt sich die Fehlerkorrekturfähigkeit je nach Grösse des verdeckten Teils mehr oder weniger stark ein. Unser Designer-Code in (b) ist nur noch in der Lage etwa 9\% des Codes zu rekonstruieren.} + \label{fig:designqr} +\end{figure}
\ No newline at end of file diff --git a/buch/papers/reedsolomon/codebsp.tex b/buch/papers/reedsolomon/codebsp.tex index 8430ebd..eb4e82f 100644 --- a/buch/papers/reedsolomon/codebsp.tex +++ b/buch/papers/reedsolomon/codebsp.tex @@ -76,7 +76,7 @@ dar. \subsection{Der Ansatz der diskreten Fouriertransformation \label{reedsolomon:subsection:diskFT}} -In einem vorherigen Abschnitt \textcolor{red}{(???)} haben wir schon einmal die diskrete Fouriertransformation zum Codieren einer Nachricht verwendet. In den endlichen Körpern wird dies jedoch nicht gelingen, da die Eulerische Zahl $e$ in endlichen Körpern nicht existiert. +Im vorherigen Abschnitt \ref{reedsolomon:section:dtf} haben wir schon einmal die diskrete Fouriertransformation zum Codieren einer Nachricht verwendet. In den endlichen Körpern wird dies jedoch nicht gelingen, da die Eulerische Zahl $e$ in endlichen Körpern nicht existiert. Wir wählen deshalb eine Zahl $a$, die die gleichen Aufgaben haben soll wie $e^{\frac{j}{2 \pi}}$ in der diskreten Fouriertransformation, nur mit dem Unterschied, dass $a$ in $\mathbb{F}_{11}$ ist. Dazu soll die Potenz von $a$ den gesamten Zahlenbereich von $\mathbb{F}_{11}$ abdecken. Dazu ändern wir die Darstellung von \[ diff --git a/buch/papers/reedsolomon/dtf.tex b/buch/papers/reedsolomon/dtf.tex index 025be3a..9647775 100644 --- a/buch/papers/reedsolomon/dtf.tex +++ b/buch/papers/reedsolomon/dtf.tex @@ -1,30 +1,124 @@ % -% teil3.tex -- Beispiel-File für Teil 3 +% dtf.tex -- Idee mit DFT % -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Diskrete Fourien Transformation +\section{Übertragung mit Hilfe der diskrten Fourier-Transformation \label{reedsolomon:section:dtf}} \rhead{Umwandlung mit DTF} -Um die Polynominterpolation zu umgehen, gehen wir nun über in die Fourientransformation. -Dies wird weder eine erklärung der Forientransorfmation noch ein genauer gebrauch -für den Reed-Solomon-Code. Dieser Abschnitt zeigt nur wie die Fourientransformation auf Fehler reagiert. -wobei sie dann bei späteren Berchnungen ganz nütlich ist. +Die Grundidee eines fehlerkorrigierenden Code ist, dass Informationen eines Datenpunktes +durch die Codierung auf viele übertragene Werte verteilt werden. +Die Decodierung ist in der Lage, den ursprünglichen Datenwert zu rekonstruieren, +sogar wenn einzelne wenige übertragene Werte beschädigt worden sind. +\par +Die Fourier-Transformation transformiert einen einzelnen Wert, +eine Dirac-Funktion, auf ein Spektrum, welches sich über die ganze Frequenzachse erstreckt. +Aus der Filtertheorie ist bekannt, dass der ursprüngliche Impuls mehr oder weniger rekonstruierbar ist, + vorausgesetzt, es gehen nicht zu viele Frequenzen bei der Übertragung verloren. +\par +Es liegt daher nahe zu versuchen, die Fourier-Transformation +für Codierung und Decodierung zu verwenden. -\subsection{Übertragungsabfolge -\label{reedsolomon:subsection:Übertragungsabfolge}} -Das Signal.... sind die Daten, Zahlen welche übertragen werden sollen. -Das speziell ist das wir 100 Punkte übertragen und von 64 bis 100, -werden nur Null Punkte übertragen, dies weiss auch unser Empfänger. -Nun wird das Signal in Abbildung... codiert... -Somit wird die Information jedes Punktes auf das ganze spektrum von 0 bis 100 übertragen. -Kommen nuun drei Fehler... hinzu zu diesem codierten Signal sind diese nicht zu erkennen. -Nach dem Empfangen... und decodieren ... erkennt man die fehlerhafte information in den Punkten 64 bis 100. -Filtert man nur diese Punkte heraus und Transformiert sie mit Fourier erhält man die stellen an denen die Fehler sich eingeschlichen haben. +\subsection{Beispiel mit Fehlerkorrektur mit Fourier-Transformation +\label{reedsolomon:subsection:sendbsp}} +Das folgende Beispiel soll zeigen, wie die Idee der Fehlerkorrektur umgesetzt wurde. +Die Fehlererkennung des Reed-Solomon-Codes funktioniert nach einem sehr Ähnlichen Prinzip. -\subsection{Diskrete Fourientransformation Zusamenhang -\label{reedsolomon:subsection:dtfzusamenhang}} -Die Diskrete Fourientransformation ist definiert als -.... +%Das folgende Beispiel soll zeigen, wie Fehlerkorrektur möglich ist. +%Dieses auf eine Art, die der Funktionsweise des Reed-Solomon-Codes, +%der später erklärt wird, analog ist. +\par +Der Auftrag besteht darin, 64 Datenwerte zu übertragen, 32 Fehler erkennen können und bis zu 16 Fehler zu rekonstruieren. +Mit Hilfe der Fourier-Transformation werden die \textcolor{blue}{blauen Datenpunkte} transformiert, +zu den \textcolor{darkgreen}{grünen Übertragungspunkten}. +Durch eine Rücktransformation können die \textcolor{blue}{blauen Datenpunkte} wieder rekonstruiert werden. +\begin{figure}%[!ht] + \centering + \resizebox{\textwidth}{!}{ + \includegraphics[width=\textwidth]{papers/reedsolomon/figures/fourier} + %\input{papers/reedsolomon/tikz/plotfftraw.tex} + } + \caption{Übertragungsabfolge \ref{reedsolomon:subsection:sendbsp}} + \label{fig:sendorder} +\end{figure} +In der Abbildung \ref{fig:sendorder} wird eine Übertragung Schritt für Schritt illustriert. +In der folgenden Aufzählung werden diese einzelne Schritte erklärt und erläutert: +\begin{enumerate}[(1)] + \item Das Signal besteht aus 64 zufälligen, ganzzahligen Datenwerten zwischen 0 und 10. + Für die Rekonstruktion werden zusätzliche Datenwerte benötigt, wir fügen deshalb 32 Werte hinzu. + Diese setzen wir willkürlich alle auf Null und nennen sie Fehlerkorrekturstellen. + Wir erhalten so einen erweiterten Signalvektor der Länge $N =96$. + \item Mit der Fourier-Transformation wird der ganze Signalvektor codiert. + Dadurch wird jede Informationseinheit auf alle Punkte des Spektrums verteilt. + \item Wir dürfen annehmen, dass bei der Übertragung, nur einzelne übertragene + Werte durch Fehler verändert werden. + \par + Im Beispiel sind dies die Werte an den Stellen 6, 20 und 74 (\textcolor{red}{rote Kurve}), + die um einen Betrag verändert werden. + Dieser ist bis zu 150-mal kleiner als die ursprünglich codierten Werte. + Der Empfänger erkennt daher im allgemeinen nicht, ob und wo Übertragungsfehler aufgetreten sind. + \item Ohne Übertragungsfehler kann der Signalvektor durch die inverse Fourier-Transformation vollständig + wiederhergestellt werden. + Dazu gehören auch die Nullen an den Fehlerkorrekturstellen 64 - 96. + \par + Sind Übertragungsfehler aufgetreten, werden an diesen Stellen die Werte von Null abweichen. + Somit haben wir bereits Fehler erkannt. + \item Die Werte an den Fehlerkorrekturstellen 64 - 96, die nicht mehr Null sind, nennen wir das Syndrom. + Im Syndrom steckt nur Information über die Fehler, sie werden durch die inverse Fourier-Transformation erzeugt. + \item Um die Fehler zu rekonstruieren, kann man versuchen, die Information im Syndrom mit Fourier-Transformation zu transformieren. + Da das Syndrom nur ein Teil der Fehlerinformation ist, liefert die Fourier-Transformation eine Approximation der Fehler. + Diese Approximation der Fehler ist genau genug, um die Fehlerstellen zu lokalisieren. +\end{enumerate} +Im Beispiel haben wir mit dem Syndrom nur etwa ein Drittel der Fehlerinformation, es ist daher zu erwarten, +dass die Fehlerwerte auch nur ein Drittel so gross sind. +\par +Damit können die Fehler korrigiert und die Originaldaten wiederhergestellt werden. +Der Rekonstruktionsauftrag ist damit erfolgreich ausgeführt. +\subsection{Fourier-Transformation und Polynome\label{reedsolomon:subsection:ftandpolynom}} +Im Abschnitt \externaldocument{papers/reedsolomon/idee}\ref{reedsolomon:section:polynomansatz} +wurden Werte eines Polynoms zur Codierung verwendet. +Die 7 Übertragungspunkte könnten ein Polynom +\begin{equation} + \textcolor{darkgreen}{p(x)} + = + \textcolor{blue}{a_0} + \textcolor{blue}{a_1}x + \textcolor{blue}{a_2}x^2 + + \textcolor{gray}{a_3}x^3 + \textcolor{gray}{a_4}x^4 + \textcolor{gray}{a_5}x^5 + + \textcolor{gray}{a_6}x^6 +\label{reedsolomon:equationpoly} +\end{equation} +sechsten Grades bestimmen. +Durch die Wahl von $\textcolor{gray}{a_3=0}$, $\textcolor{gray}{a_4=0}$, $\textcolor{gray}{a_5=0}$, $\textcolor{gray}{a_6=0}$ +erzeugen wir die für die Fehlerkorrektur nötige Redundanz, ganz analog zum Schritt (1) im Beispiel. +\par +Die Analogie geht aber noch weiter. + Schreibt man + \( w = + e^{-\frac{2\pi j}{N} k}\) + \label{reedsolomon:DFT_summand}, damit wird aus der Formel + \begin{equation} + \hat{c}_{k} + = \frac{1}{N} \sum_{n=0}^{N-1} + {f}_n \cdot e^{-\frac{2\pi j}{N} \cdot kn} + ,\label{reedsolomon:DFT} + \end{equation} + für die diskrete-Fourier-Transformation das Polynom + \begin{equation} + q(w)= + \frac{{f}_0}{N} + \frac{{f}_1}{N} w^1 + \frac{{f}_2}{N} w^2 + \dots + \frac{{f}_{N-1}}{N} w^{N-1}. + \label{reedsolomon:DFT_polynom} + \end{equation} + Im Beispiel werden aber Werte des Polynoms + \begin{equation} + \textcolor{darkgreen}{q(w)}= + \frac{\textcolor{blue}{{f}_0}}{N} + \frac{\textcolor{blue}{{f}_1}}{N} w^1 + \frac{\textcolor{blue}{{f}_2}}{N} w^2 + \dots + + \frac{\textcolor{blue}{{f}_{63}}}{N} w^{63} + \frac{\textcolor{gray}{{f}_{64}}}{N} w^{64} + \textcolor{gray}{\dots} + \frac{\textcolor{gray}{{f}_{N-1}}}{N} w^{N-1} + \label{reedsolomon:DFT_polynom2} + \end{equation} + für verschiedene \( w = e^{-\frac{2\pi j}{N} k}, k=1, \dots ,N-1\) übermittelt. +Das Syndrom entstand durch die Wahl ${f_{64}}=0$ bis ${f}_{N-1}=0$ (graue Koeffizenten). +\par +Die Polynominterpolation und die Fourier-Transformation rechnen beide mit reellen Zahlen. +Wenn die Approximation nicht mehr genügend gut ist um die Fehler zu erkennen und rekonstruieren, +dann brauchen wir andere Varianten. +Um dieser Approximation zu entkommen, verlassen wir die reellen Zahlen und gehen zum endlichen Körpern, oder auch Galois-Körper genannt. +Dieser bietet uns einige Vorteile.
\ No newline at end of file diff --git a/buch/papers/reedsolomon/einleitung.tex b/buch/papers/reedsolomon/einleitung.tex index 3d40db1..f99ad82 100644 --- a/buch/papers/reedsolomon/einleitung.tex +++ b/buch/papers/reedsolomon/einleitung.tex @@ -6,14 +6,12 @@ \section{Einleitung \label{reedsolomon:section:einleitung}} \rhead{Einleitung} -Der Reed-Solomon-Code ist entstaden im ... vom .. um, -das Problem der Daten Übertragung zu lösen. -In deiesem Abschnitt wird möglichst verständlich die mathematische Abfolge, Funktion oder Algorithmus erklärt. -Es wird jedoch nicht auf die technische Umsetzung oder Implementierung eingegangen. -Um beim Daten Übertragen fehler zu erkennen könnte man die Daten jeweils doppelt senden, -und so jeweilige Fehler zu erkennen. -Doch dies braucht schnell unmengen an Daten, wenn man nach vielen Fehler absichern möchte. -Der Reed-Solomon-Code macht dies auf eine andere, clevere Weise. +Der Reed-Solomon-Code wurde von den beiden Mathematiker Irving S. Reed und Gustave Solomon im Jahre 1960 entwickelt. +Dabei haben sie das Problem der Fehlerhaften Datenübertragung gelöst. +In diesem Abschnitt wird möglichst verständlich die mathematische Abfolge und +Funktionsweise des Reed-Solomon-Code erklärt. +Es wird jedoch nicht auf die technische Umsetzung oder Implementierung eingegangen, jedoch wird im Abschnitt \ref{reedsolomon:section:anwendung} einige Anwendungen des Reed-Solomon-Codes vorgestellt. + diff --git a/buch/papers/reedsolomon/endlichekoerper.tex b/buch/papers/reedsolomon/endlichekoerper.tex index 1d196fd..3019dd7 100644 --- a/buch/papers/reedsolomon/endlichekoerper.tex +++ b/buch/papers/reedsolomon/endlichekoerper.tex @@ -3,21 +3,63 @@ % % (c) 2021 Michael Steiner, Hochschule Rapperswil % -\section{Reed-Solomon in Endlichen Körpern +\section{Reed-Solomon in endlichen Körpern \label{reedsolomon:section:endlichekoerper}} \rhead{Reed-Solomon in endlichen Körpern} -\[ -\textcolor{red}{\text{TODO: (warten auf den 1. Teil)}} -\] -Das Rechnen in endlichen Körpern bietet einige Vorteile: +Im vorherigen Abschnitt haben wir gesehen, dass wir die Fehler mittels Approximation suchen und somit nur ungefähre Angaben haben, wo sich Fehler aufhalten. +Um dies zu ändern wechseln wir vom komplexen Zahlenraum in endliche Körper. +In endlichen Körpern gibt es keine Approximationen wie bei den rationalen und reellen Zahlen. +Alle Zahlen sind richtig oder falsch, ``fast richtig'' gibt es nicht. +Zudem beschränken sich die arithmetischen Rechenoperationen auf das Addieren und Multiplizieren. +Wir können also nur ganze Zahlen als Resultat erhalten. +Dies erleichtert auch die Umsetzung auf ein digitales System, da Computer in der Regel lieber mit ganzen als mit gebrochenen oder komplexen Zahlen arbeiten. -\begin{itemize} - \item Konkrete Zahlen: In endlichen Körpern gibt es weder rationale noch komplexe Zahlen. Zudem beschränken sich die möglichen Rechenoperationen auf das Addieren und Multiplizieren. Somit können wir nur ganze Zahlen als Resultat erhalten. - - \item Digitale Fehlerkorrektur: lässt sich nur in endlichen Körpern umsetzen. - -\end{itemize} +Um jetzt eine Nachricht in einem endlichen Körpern zu konstruieren gehen, wir im Grunde gleich vor wie im Beispiel aus dem Abschnitt \ref{reedsolomon:subsection:sendbsp}. +Eine Nachricht besteht aus einem Nutzdatenteil und einem Fehlerkorrekturteil. +Diese Nachricht wird codiert, übertragen und beim Empfänger wieder decodiert. +In endlichen Körpern können wir jedoch nicht mehr die Fouriertransformation zur Hilfe nehmen. +Wir müssen also eine Alternative finden, welche die gleichen Eigenschaften wie die Fouriertransformation aufweist, aber im endlichen Körper verwendet werden kann. +Auch beim Decodieren müssen wir uns etwas einfallen lassen, wenn die Vorgehensweise mit dem Lokator auch in endlichen Körpern funktionieren soll. Die folgenden Abschnitte widmen sich deshalb der genaueren Betrachtung eines Reed-Solomon-Codes und wie er in endlichen Körpern funktioniert. -Um jetzt eine Nachricht in den endlichen Körpern zu konstruieren legen wir fest, dass diese Nachricht aus einem Nutzdatenteil und einem Fehlerkorrekturteil bestehen muss. Somit ist die zu übertragende Nachricht immer grösser als die Daten, die wir übertragen wollen. Zudem müssen wir einen Weg finden, den Fehlerkorrekturteil so aus den Nutzdaten zu berechnen, dass wir die Nutzdaten auf der Empfängerseite wieder rekonstruieren können, sollte es zu einer fehlerhaften Übertragung kommen. - -Nun stellt sich die Frage, wie wir eine fehlerhafte Nachricht korrigieren können, ohne ihren ursprünglichen Inhalt zu kennen. Der Reed-Solomon-Code erzielt dies, indem aus dem Fehlerkorrekturteil ein sogenanntes ``Lokatorpolynom'' generiert werden kann. Dieses Polynom gibt dem Emfänger an, welche Stellen in der Nachricht feherhaft sind. +% +%Damit all diese Probleme möglichst verständlich +% +% +%Um all diese Probleme und möglichst +% +% +%um Fehler zu erkennen und mittels Lokatorpolynom +% +% +% ein Lokatorpolynom zu finden. +% +% +% +% Eine Nachricht besteht aus einem Nutzdatenanteil und einem Fehlerkorrekturteil, +% +% +% +%In diesem Zahlenraum gibt es nur Natürliche Zahlen und es darf nur Addiert oder Multipliziert werden. +%Der grosse Vorteil an endlichen Körper ist, dass dich der einfacher Digital umsetzen lässt. +% +% +%Dieser Zahlenraum bringt eine Menge von neuen Regeln mit sich. +%So gibt es dort nur Natürliche Zahlen und die Arithmetischen Rechenoperationen sind beschränkt auf die Addition und Multiplikation. +% +% +% +%\[ +%\textcolor{red}{\text{TODO: (warten auf den 1. Teil)}} +%\] +%Das Rechnen in endlichen Körpern bietet einige Vorteile: +% +%\begin{itemize} +% \item Konkrete Zahlen: In endlichen Körpern gibt es weder rationale noch komplexe Zahlen. Zudem beschränken sich die möglichen Rechenoperationen auf das Addieren und Multiplizieren. Somit können wir nur ganze Zahlen als Resultat erhalten. +% +% \item Digitale Fehlerkorrektur: lässt sich nur in endlichen Körpern umsetzen. +% +%\end{itemize} +% +%Um jetzt eine Nachricht in den endlichen Körpern zu konstruieren legen wir fest, dass diese Nachricht aus einem Nutzdatenteil und einem Fehlerkorrekturteil bestehen muss. Somit ist die zu übertragende Nachricht immer grösser als die Daten, die wir übertragen wollen. Zudem müssen wir einen Weg finden, den Fehlerkorrekturteil so aus den Nutzdaten zu berechnen, dass wir die Nutzdaten auf der Empfängerseite wieder rekonstruieren können, sollte es zu einer fehlerhaften Übertragung kommen. +% +%Nun stellt sich die Frage, wie wir eine fehlerhafte Nachricht korrigieren können, ohne ihren ursprünglichen Inhalt zu kennen. Der Reed-Solomon-Code erzielt dies, indem aus dem Fehlerkorrekturteil ein sogenanntes ``Lokatorpolynom'' generiert werden kann. Dieses Polynom gibt dem Emfänger an, welche Stellen in der Nachricht feherhaft sind. diff --git a/buch/papers/reedsolomon/experiments/f.m b/buch/papers/reedsolomon/experiments/f.m index 6bdc741..bf2587c 100644 --- a/buch/papers/reedsolomon/experiments/f.m +++ b/buch/papers/reedsolomon/experiments/f.m @@ -1,8 +1,8 @@ -# -# f.m -- Reed-Solomon-Visualisierung mit FFT -# -# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule -# +% +% f.m -- Reed-Solomon-Visualisierung mit FFT +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule + N = 64; b = 32; l = N + b; @@ -51,6 +51,7 @@ syndrom(1:N,1) = zeros(N,1) plot(abs(syndrom)); xlim([1, l]); title("Syndrom"); + pause() locator = abs(fft(syndrom)) @@ -59,3 +60,13 @@ plot(locator); xlim([1, l]); title("Locator"); pause() + + +writematrix([transpose(counter), abs(signal)], 'signal.txt') +writematrix([transpose(counter), abs(codiert)], 'codiert.txt') +writematrix([transpose(counter), fehler], 'fehler.txt') +writematrix([transpose(counter), abs(empfangen)], 'empfangen.txt') +writematrix([transpose(counter), abs(decodiert)], 'decodiert.txt') +writematrix([transpose(counter), abs(syndrom)], 'syndrom.txt') +writematrix([transpose(counter), locator], 'locator.txt') + diff --git a/buch/papers/reedsolomon/experiments/plot.tex b/buch/papers/reedsolomon/experiments/plot.tex new file mode 100644 index 0000000..4b156bb --- /dev/null +++ b/buch/papers/reedsolomon/experiments/plot.tex @@ -0,0 +1,103 @@ +% polynome1 +%------------------- +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usepackage{pgfplotstable} +\usepackage{filecontents} +\usetikzlibrary{arrows,intersections,math} +\newcommand{\x}{10} +\newcommand{\y}{-8} +\begin{document} + +\begin{tikzpicture}[] + + %--------------------------------------------------------------- + %Knote + \matrix[draw = none, column sep=20mm, row sep=4mm]{ + \node(signal) [] { + \begin{tikzpicture} + \begin{axis}[ + title = {\Large {Signal}}, + xlabel={Anzahl Übertragene Zahlen}, + xtick={0,20,40,64,80,98},] + \addplot[blue] table[col sep=comma] {signal.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(codiert) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Codiert}}] + \addplot[] table[col sep=comma] {codiert.txt}; + \end{axis} + \end{tikzpicture}}; \\ + + &\node(fehler) [] { + \begin{tikzpicture} + \begin{axis}[scale=0.6, title = {\Large {Fehler}}] + \addplot[red] table[col sep=comma] {fehler.txt}; + \end{axis} + \end{tikzpicture}};\\ + + \node(decodiert) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Decodiert}}] + \addplot[blue] table[col sep=comma] {decodiert.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(empfangen) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Empfangen}}] + \addplot[] table[col sep=comma] {empfangen.txt}; + \end{axis} + \end{tikzpicture}};\\ + + \node(syndrom) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Syndrom}}] + \addplot[blue] table[col sep=comma] {syndrom.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(locator) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Locator}}] + \addplot[] table[col sep=comma] {locator.txt}; + \end{axis} + \end{tikzpicture}};\\ + }; + %------------------------------------------------------------- + %FFT & IFFT deskription + + \draw[thin,gray,dashed] (0,12) to (0,-12); + \node(IFFT) [scale=0.7] at (0,12.3) {IFFT}; + \draw[<-](IFFT.south west)--(IFFT.south east); + \node(FFT) [scale=0.7, above of=IFFT] {FFT}; + \draw[->](FFT.north west)--(FFT.north east); + + \draw[thick, ->,] (fehler.west)++(-1,0) +(0.05,0.5) -- +(-0.1,-0.1) -- +(0.1,0.1) -- +(0,-0.5); + %Arrows + \draw[ultra thick, ->] (signal.east) to (codiert.west); + \draw[ultra thick, ->] (codiert.south) to (fehler.north); + \draw[ultra thick, ->] (fehler.south) to (empfangen.north); + \draw[ultra thick, ->] (empfangen.west) to (decodiert.east); + \draw[ultra thick, ->] (syndrom.east) to (locator.west); + \draw(decodiert.south east)++(-1.8,1) ellipse (1.3cm and 0.8cm) ++(-1.3,0) coordinate(zoom) ; + \draw[ultra thick, ->] (zoom) to[out=180, in=90] (syndrom.north); + + %item + \node[circle, draw, fill =lightgray] at (signal.north west) {1}; + \node[circle, draw, fill =lightgray] at (codiert.north west) {2}; + \node[circle, draw, fill =lightgray] at (fehler.north west) {3}; + \node[circle, draw, fill =lightgray] at (empfangen.north west) {4}; + \node[circle, draw, fill =lightgray] at (decodiert.north west) {5}; + \node[circle, draw, fill =lightgray] at (syndrom.north west) {6}; + \node[circle, draw, fill =lightgray] at (locator.north west) {7}; + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/reedsolomon/figures/fourier.pdf b/buch/papers/reedsolomon/figures/fourier.pdf Binary files differnew file mode 100644 index 0000000..4995141 --- /dev/null +++ b/buch/papers/reedsolomon/figures/fourier.pdf diff --git a/buch/papers/reedsolomon/figures/plotfft.pdf b/buch/papers/reedsolomon/figures/plotfft.pdf Binary files differnew file mode 100644 index 0000000..80adafb --- /dev/null +++ b/buch/papers/reedsolomon/figures/plotfft.pdf diff --git a/buch/papers/reedsolomon/figures/polynom2.pdf b/buch/papers/reedsolomon/figures/polynom2.pdf Binary files differnew file mode 100644 index 0000000..55a50ac --- /dev/null +++ b/buch/papers/reedsolomon/figures/polynom2.pdf diff --git a/buch/papers/reedsolomon/idee.tex b/buch/papers/reedsolomon/idee.tex index 4a7716a..daa2913 100644 --- a/buch/papers/reedsolomon/idee.tex +++ b/buch/papers/reedsolomon/idee.tex @@ -1,58 +1,157 @@ % -% teil1.tex -- Beispiel-File für das Paper -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% idee.tex -- Polynom Idee % \section{Idee \label{reedsolomon:section:idee}} \rhead{Problemstellung} -Das Problem liegt darin Informationen, Zahlen, -zu Übertragen und Fehler zu erkennen. -Beim Reed-Solomon-Code kann man nicht nur Fehler erkenen, -man kann sogar einige Fehler korrigieren. +Um Fehler in einer Datenübertragung zu erkennen, könnte man die Daten jeweils doppelt senden, +also den gleiche Wert immer zweimal versenden. +Tritt ein Fehler ein wird sich dies in der Differenz der beiden Werten bemerkbar machen. +Aber wie erkennen wir, welcher nun der richtige ist? Die Lösung ist simpel: Wir übertragen den Wert einfach dreimal. +Wenn jetzt ein Fehler auftritt, kann durch die beiden unveränderten Werten den richtigen bestimmt werden. +Doch was machen wir, wenn bei dieser Übertragung zwei Fehler auftreten? +Oder noch schlimmer: Was wenn zweimal derselbe Fehler auftritt? Die beiden Fehlerhaften Werte überstimmen bei der Evaluierung den gesendeten Datenwert, der dann unwiderruflich verloren geht. +Wir könnten dies noch steigern mit vier, fünf oder mehr gleichen Übertragenen Werte. Dies erhöht zwar die Robustheit der gesendeten Daten, führt aber auch dazu, dass wir durch die Mehrfachübertragung nur sehr wenige Nutzdaten versenden können. +Gerade in unserer heutigen Zeit wäre dies ein enorm grosses Problem und aus diesem Grund wurden alternative Ansätze ausgearbeitet um dieses grundlegende Problem zu lösen. +% +% +%Gerade in der heutigen modernen Zeit bei dem hohen bedarf an Daten würden unsere Kommunikationssysteme bei weitem nicht ausreichen um den einen einzigen Datenwert mehrfach zu übertragen +% +% Gerade in der Heutigen modernen Zeit bei diesem enormen mass an daten die wir alle tagtäglich anfordern Währe dies wohl unmöglich, wenn wir die daten auf diese Weise +% +% +% +% +% +%Wenn es uns gelingt, Fehler nach Ihrer Übertragung zu erkennen, dann könnten wir in einem neuen Ansatz den fehlerhaft empfangenen Wert noch einmal anfordern. +%Wir stellen fest, dass für viele alltägliche Anwendungen völlig ausreichend ist. +% +%Was ist, wenn wir aber eine Datenquelle haben, von der wir nur einmalig lesen können? +% +% +% +%Beim Übertragen von drei Werten können wir maximal 2 Fehler erkennen aber nicht mehr korrigieren. +%Wenn wir noch mehr Werte +% +%Wir Übertragen Ziemlich viele Werte für so wenige Nutzdaten. Hinzu kommt, dass wir bei dieser Vorgehensweise gerade mal bestimmen können, dass überhaupt Fehler aufgetreten sind +% +% +%Wir haben also drei Werte die bestimmt einen Fehler korrigieren können, was ziemlich viele Werte um einen Fehler zu korrigieren. +% +% um so jeweils einzelne Fehler zu erkennen. +%Wenn jedoch mehr als nur ein Fehler erkannt werden und sogar noch das Original rekonstruiert werden soll, dann sollen die Daten drei oder vierfach versendet werden. +%Doch nur schon um einen Fehler zu erkennen werden überproportional viele Daten doppelt und dreifach versendet. +%Das Hauptproblem ist, dass Informationen Fehlerfrei Übertragen werden sollen. Um dies zu erreichen muss gleich nach dem Empfangen Fehler erkannt und korrigiert werden. +% +%Das Problem liegt darin, Informationen oder Zahlen beim Übertragen gleichzeitig noch +% +%Das Problem liegt darin, das Informationen oder Zahlen zu Übertragen und gleichzeitig Fehler zu erkennen +% +% +%Das Problem liegt darin Informationen, Zahlen, zu Übertragen und Fehler zu erkennen und zu korrigieren. +%Der Unterschied des Fehler Erkennens und Korrigirens, ist das beim Erkennen nur die Frage beantwortet wird: Ist die Übertragung fehlerhaft oder nicht? +%Beim Korrigieren werden Fehler erkannt und dann zusätzlich noch die Originalwerte rekonstruiert. +%Eine weitere Möglichkeit wäre, dass der Empfänger nach einer fehlerhaften Übertragung die selben Daten nochmals anfordert. +%Dies führt wieder zu unerwünschten mehrfachen Übertragung. +%In Anwendungen des Reed-Solomon-Codes Abschnitt \externaldocument{papers/reedsolomon/anwendungen} \ref{reedsolomon:section:anwendung} +% ist diese vom Empfänger gesteuerte erneute Übertragen meistens nicht sinnvoll oder sogar unmöglich. +%Der Reed-Solomon-Code macht dies Übertragung auf eine andere, clevere Weise. +\subsection{Polynom-Ansatz +\label{reedsolomon:section:polynomansatz}} \rhead{Polynom-Ansatz} -Eine Idee ist die Daten, -ein Polynom zu bilden und dieses dann mit bestimmten Punkten überträgt. -Nehmen wir als beisbiel die Zahlen \textcolor{blue}{2}, \textcolor{blue}{1}, \textcolor{blue}{5}, -welche uns dann das Polynom +Eine zentrale Idee des Reed-Solomon-Code ist, aus den Daten ein Polynom zu bilden. +Mit dieser Polynomfunktion wird dann eine Anzahl von Werten übertragen. +\begin{beispiel} Nehmen wir die Zahlen \textcolor{blue}{2}, \textcolor{blue}{1} und \textcolor{blue}{5}, welche übertragen werden sollen. Daraus bilden wir das Polynom \begin{equation} p(x) = -2x^2 + 1x + 5 +\textcolor{blue}{2}x^2 + \textcolor{blue}{1}x + \textcolor{blue}{5}. \label{reedsolomon:equation1} \end{equation} -ergeben. -Übertragen werden nun die stellen 1, 2, 3\dots 7 dieses Polynomes. -Grafisch sieht man dies dann im Abbild //TODO -Wenn ein Fehler sich in die Übertragung eingeschlichen hatt, muss der Leser/Empfänger erkennen, welches das Richtige Polynom ist. -Der Leser/Empfänger weiss, mit welchem Grad das Polynom entwickelt wurde. -\subsection{Beispiel} -Für das Beispeil aus der Gleichung \ref{reedsolomon:equation1}, -ist ein Polynome zweiten Grades durch drei Punkte eindeutig bestimmbar. -Hat es Fehler in der Übertragunge gegeben, kann man diese erkennen, -da alle Punkte, die korrekt sind, auf dem Polynom liegen müssen. -Ab wie vielen Fehler ist das Polynom nicht mehr erkennbar beim Übertragen von 7 Punkten? -Bei 2 Fehlern kann man noch eindeutig bestimmen, dass das Polynom mit 4 Punkten, -gegenüber dem mit 5 Punkten falsch liegt. -Werden es mehr Fehler kann nur erkennt werden das das Polynom nicht stimmt. -Das Orginale Polynom kann aber nicht mehr gefunden werden. -Dabei sollten mehr Übertragungspunkte gegeben werden. - -\section{Fehlerbestimmung -\label{reedsolomon:section:Fehlerbestimmmung}} -So wird ein Muster indentifiziert, welches genau vorherbestimmen kann, -wie gross das Polynom sein muss und wie viele Übertragungspunkte gegeben werden müssen. -Durch ein klein wenig Überlegung ist klar das die anzahl Zahlen (Daten, ab hier verwenden wir das Wort Nutzlast), -die dan Entschlüsselt werden sollen den Grad des Polynoms minus 1 ergeben. -Für die Anzahl an Übertragungspunkte, muss bestimmt werden wieviel Fehler erkennt und korrigiert werden sollen. -Mit Hilfe der Tabelle.... sieht man das es bei $$t$$ Fehlern und $$k$$ Nutzlast, -für das Übertragen $$k+2t$$ Punkte gegben werden müssen. - -Ein toller Nebeneffekt ist das dadurch auch $$2t$$ Fehler erkannt werden. -um zurück auf unser Beispiel zu kommen, -können von den 7 Übertragungspunkten bis zu $$2t = 2*2 = 4 $$ Punkten falsch liegen -und es wird kein eindeutiges Polynom 2ten Grades erkannt, und somit die Nutzlast Daten als fehlerhaft deklariert. - -Ein Polynom durch Punkt mit Polynom Interpolation zu rekonstruieren ist schwierig und Fehleranfällig. +\par +Ein Polynom zweiten Grades ist durch drei Punkte eindeutig bestimmbar. +Bei einer fehlerlosen Übertragung können wir mit 3 übertragenen Werten + das Polynom durch Polynominterpolation volständig rekonstruieren. +Wir brauchen Polynominterpolation als Methode, um aus den Punkten wieder ein Polynom zu bilden. +Die Koeffizente des rekonstruierten Polynoms sind dann unsere gesendeten Zahlen \textcolor{blue}{2}, \textcolor{blue}{1} und \textcolor{blue}{5}. +\par +Wie können wir nun Fehler erkennen oder sogar korrigieren? +Versuchen wir doch, mehr Werte zu übertragen, wie zum Beispiel 7 Werte. +Übertragen werden nun die \textcolor{darkgreen}{grünen Werte} + des \textcolor{blue}{blauen Polynomes} an den Stellen 1, 2, 3, \dots , 7. +In Abbildung \ref{fig:polynom} ist das zu den \textcolor{blue}{Datenpunkten} gehörige Polynom blau dargestellt, +die \textcolor{darkgreen}{übertragenen Werte} des Polynoms sind grün, wobei diese Punkte aufgrund von Übertragungsfehler jetzt eine Parabel darstellen. +Die Fehlerhaften Punkte lassen sich sehr einfach bestimmen, weil diese nicht auf der ursprünglichen Funktion liegen. +Somit können die roten Punkte auf der Parabel durch die grauen ersetzt werden und sind damit korrigiert. + +Bisher konnten wir von 7 Zahlen zwei Fehler erkennen und korrigieren. Können wir in diesem Beispiel noch mehr Fehler korrigieren? +Wir erhöhen dazu die Fehleranzahl Schritt für Schritt: +\begin{itemize} + \item[\textit{1 Fehler}:] Bei einem Fehler können konkurrenzierende, aber falsche Polynome zusammen mit zwei originalen Punkten entstehen. + Dabei können aber maximal 3 Punkte auf diesem Konkurrenzpolynom sein. + Da 6 > 3 ist haben wir unser originales Polynom gefunden. + \item[\textit{2 Fehler}:] Bei Zwei Fehlern kann ein Fehler mit zwei originalen Punkten ein konkurrenzierendes, aber falsches Polynom bilden. + Da der zweite \textcolor{red}{Fehler} frei wählbar ist, kann dieser auch auf dem \textcolor{gray}{Konkurrenzpolynom} liegen, wie in der Abbilbung \ref{fig:polynom} zu sehen ist. + Nun haben wir, ein \textcolor{blue}{originales Polynom} mit \textcolor{darkgreen}{5} übereinstimmenden und ein konkurrenzierendes mit 4 Punkten. + Da 5 noch grösser als 4 ist, können wir sagen, welches das Originalpolynom ist. + \item[\textit{3 Fehler}:] Bei Drei kann genau wie bei 1 oder 2 Fehler, ein konkurenzierendes Polynom mit einem Fehler und zwei originalen Punkten bestimmt werden. + Auch hier sind die anderen Fehler frei wählbar und liegen auf dem Konkurrenzpolynom. + Nun ist es so das 5 Punkte auf diesem konkurenzierenden Polynom und 4 Punkte auf dem originalen. + Das Originalpolynom kann nicht mehr gefunden werden. + \item[\textit{4 Fehler}:] Bei Vier kann noch erkannt werden, dass Fehler aufgetreten sind, da 3 originale Punkte das ursprüngliche Polynom ergeben. + Somit haben wir mindestens 2 verschieden Polynome, was bedeutet, dass Fehler entstanden sind. + \item[\textit{5 Fehler:}] Bei Fünf kann mit den 2 originalen Punkte das Originale Polynom nicht mehr erkannt werden und + somit kann auch keine Aussage mehr gemacht werden, ob Fehler aufgetreten sind oder nicht. +\end{itemize} + +\begin{figure}%[!ht] + \centering + %\includegraphics[width=\textwidth]{papers/reedsolomon/figures/polynom2} + \input{papers/reedsolomon/tikz/polynomraw.tex} + \caption{Polynom $p(x)$ von der Gleichung\eqref{reedsolomon:equation1}} + \label{fig:polynom} +\end{figure} +\qedhere +\end{beispiel} + +\section{Anzahl Übertragungswerte bestimmen +\label{reedsolomon:section:Fehlerkorrekturstellen}} +Um zu bestimmen, wie viele zusätzliche \textcolor{darkgreen}{Übertragungspunkte} notwendig sind um die Fehler zu korrigieren, + muss man zuerst wissen, wie viele \textcolor{blue}{Datenwerte} gesendet und wie viele \textcolor{red}{Fehler} erkannt werden sollen. +Die Anzahl Datenwerte ergeben die Anzahl Polynomkoeffizenten \textcolor{blue}{$k$} und somit den Grad $k-1$ des Polynoms. +Die Bestimmung der Anzahl der Fehler \textcolor{red}{$t$}, welche korrigiert werden können, braucht Redundanz. +Bilden wir verschieden grosse Polynome und untersuchen diese mit unterschiedlich vielen Fehlern erkennt man allmählich ein Muster. + +\begin{table}%[!ht] + \centering + \begin{tabular}{ c c | c} + \hline + Nutzlas & Fehler & Übertragen \\ + \hline + 3 & 2 & 7 Werte eines Polynoms vom Grad 2 \\ + 4 & 2 & 8 Werte eines Polynoms vom Grad 3 \\ + 3 & 3 & 9 Werte eines Polynoms vom Grad 2 \\ + \hline + $k$ & $t$ & $k+2t$ Werte eines Polynoms vom Grad $k-1$ \\ + \hline + \end{tabular} + \caption{ Fehlerkorrekturstellen Bestimmung.} + \label{tab:fehlerkorrekturstellen} +\end{table} +\par +Es müssen mehr Punkte auf dem \textcolor{blue}{originalen Polynom} liegen, als auf dem konkurenzierenden. +Somit braucht man für die Übertragung pro \textcolor{red}{Fehler} zwei Übertragungspunkte mehr. +Wie in der Tabelle \ref{tab:fehlerkorrekturstellen} ersichtlich ist ergeben sich diese Anzahl an \textcolor{darkgreen}{Punkte} für die Übertragung. +\begin{equation} + \textcolor{darkgreen}{u}= + \textcolor{blue}{k}+2\textcolor{red}{t}. + \label{reedsolomon:equation2} +\end{equation} + +Ein Nebeneffekt ist, dass auch $2t$ Fehler erkannt werden können, die aber nicht korrigiert werden können. +Um die Polynomkoeffizenten nach der Übertragung zu rekonstruieren, haben wir jedes mal die Polynominterpolationsmethode angewendet. +Diese Polynominterpolation ist leider schwierig zu berechnen und sehr fehleranfällig. +Es wäre daher einfacher, wenn wir eine alternative Vorgehensweise finden könnten. + diff --git a/buch/papers/reedsolomon/images/Compact_Disc_zoomed_in.png b/buch/papers/reedsolomon/images/Compact_Disc_zoomed_in.png Binary files differnew file mode 100644 index 0000000..69556d0 --- /dev/null +++ b/buch/papers/reedsolomon/images/Compact_Disc_zoomed_in.png diff --git a/buch/papers/reedsolomon/images/designer_qrcode.png b/buch/papers/reedsolomon/images/designer_qrcode.png Binary files differnew file mode 100644 index 0000000..a9e0505 --- /dev/null +++ b/buch/papers/reedsolomon/images/designer_qrcode.png diff --git a/buch/papers/reedsolomon/images/designer_qrcode_ohnelogo.png b/buch/papers/reedsolomon/images/designer_qrcode_ohnelogo.png Binary files differnew file mode 100644 index 0000000..fe4251d --- /dev/null +++ b/buch/papers/reedsolomon/images/designer_qrcode_ohnelogo.png diff --git a/buch/papers/reedsolomon/main.tex b/buch/papers/reedsolomon/main.tex index 6bd04f2..017fe94 100644 --- a/buch/papers/reedsolomon/main.tex +++ b/buch/papers/reedsolomon/main.tex @@ -8,29 +8,9 @@ \begin{refsection} \chapterauthor{Joshua Bär und Michael Steiner} -Ein paar Hinweise für die korrekte Formatierung des Textes -\begin{itemize} -\item -Absätze werden gebildet, indem man eine Leerzeile einfügt. -Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet. -\item -Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende -Optionen werden gelöscht. -Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen. -\item -Beginnen Sie jeden Satz auf einer neuen Zeile. -Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen -in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt -anzuwenden. -\item -Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren -Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern. -\end{itemize} - % Joshua \input{papers/reedsolomon/einleitung.tex} \input{papers/reedsolomon/idee.tex} -\input{papers/reedsolomon/teil2.tex} \input{papers/reedsolomon/dtf.tex} % Michael @@ -45,6 +25,13 @@ Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren \nocite{reedsolomon:weitz} \nocite{reedsolomon:informationkommunikation} +\nocite{reedsolomon:voyager_programm} +\nocite{reedsolomon:voyager} +\nocite{reedsolomon:cd_wiki} +\nocite{reedsolomon:cd} +\nocite{reedsolomon:strichepunkte} +\nocite{reedsolomon:qr_wiki} +\nocite{reedsolomon:qr} %\nocite{reedsolomon:mendezmueller} \printbibliography[heading=subbibliography] diff --git a/buch/papers/reedsolomon/packages.tex b/buch/papers/reedsolomon/packages.tex index 3643731..40c6ea3 100644 --- a/buch/papers/reedsolomon/packages.tex +++ b/buch/papers/reedsolomon/packages.tex @@ -8,3 +8,7 @@ % following example %\usepackage{packagename} +\usepackage{pgfplots} +\usepackage{filecontents} +\usepackage{xr} + diff --git a/buch/papers/reedsolomon/references.bib b/buch/papers/reedsolomon/references.bib index 731bd35..b84b5a4 100644 --- a/buch/papers/reedsolomon/references.bib +++ b/buch/papers/reedsolomon/references.bib @@ -23,3 +23,65 @@ volume = {1} } +@online{reedsolomon:voyager_programm, + title = {Information über das Voyager Programm}, + url = {https://de.wikipedia.org/wiki/Voyager-Programm}, + date = {2021-07-19}, + year = {2021}, + month = {7}, + day = {19} +} + +@online{reedsolomon:voyager, + title = {Bild der Voyager Raumsonde}, + url = {https://en.wikipedia.org/wiki/Voyager_1}, + date = {2021-07-19}, + year = {2021}, + month = {7}, + day = {19} +} + +@online{reedsolomon:cd_wiki, + title = {Alles über die CD}, + url = {https://de.wikipedia.org/wiki/Compact_Disc}, + date = {2021-07-19}, + year = {2021}, + month = {7}, + day = {19} +} + +@online{reedsolomon:cd, + title = {Abbildung einer CD}, + url = {https://www.stickpng.com/img/electronics/compact-discs/stack-compact-disc}, + date = {2021-07-19}, + year = {2021}, + month = {7}, + day = {19} +} + +@online{reedsolomon:strichepunkte, + title = {Abbildung der Striche und Punkte einer CD}, + url = {https://www.researchgate.net/figure/The-readable-area-of-a-CD-is-magnified-in-order- to-see-the-pit-and-land-sizing-The_fig7_303401629}, + date = {2021-07-26}, + year = {2021}, + month = {7}, + day = {26} +} + +@online{reedsolomon:qr_wiki, + title = {Funktionsweise des QR-Codes}, + url = {https://de.wikipedia.org/wiki/QR-Code}, + date = {2021-07-19}, + year = {2021}, + month = {7}, + day = {19} +} + +@online{reedsolomon:qr, + title = {Tool zum erstellen von QR-Codes}, + url = {https://www.qrcode-generator.ch}, + date = {2021-07-19}, + year = {2021}, + month = {7}, + day = {19} +}
\ No newline at end of file diff --git a/buch/papers/reedsolomon/standalone.tex b/buch/papers/reedsolomon/standalone.tex new file mode 100644 index 0000000..c850d1f --- /dev/null +++ b/buch/papers/reedsolomon/standalone.tex @@ -0,0 +1,30 @@ +\documentclass{book} + +\input{common/packages.tex} + +% additional packages used by the individual papers, add a line for +% each paper +\input{papers/common/addpackages.tex} + +% workaround for biblatex bug +\makeatletter +\def\blx@maxline{77} +\makeatother +\addbibresource{chapters/references.bib} + +% Bibresources for each article +\input{papers/common/addbibresources.tex} + +% make sure the last index starts on an odd page +\AtEndDocument{\clearpage\ifodd\value{page}\else\null\clearpage\fi} +\makeindex + +%\pgfplotsset{compat=1.12} +\setlength{\headheight}{15pt} % fix headheight warning +\DeclareGraphicsRule{*}{mps}{*}{} + +\begin{document} + \input{common/macros.tex} + \def\chapterauthor#1{{\large #1}\bigskip\bigskip} + \input{papers/reedsolomon/main.tex} +\end{document} diff --git a/buch/papers/reedsolomon/standalone/standalone.pdf b/buch/papers/reedsolomon/standalone/standalone.pdf Binary files differnew file mode 100644 index 0000000..dfa9eea --- /dev/null +++ b/buch/papers/reedsolomon/standalone/standalone.pdf diff --git a/buch/papers/reedsolomon/teil2.tex b/buch/papers/reedsolomon/teil2.tex deleted file mode 100644 index b2adc9f..0000000 --- a/buch/papers/reedsolomon/teil2.tex +++ /dev/null @@ -1,40 +0,0 @@ -% -% teil2.tex -- Beispiel-File für teil2 -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{Teil 2 -\label{reedsolomon:section:teil2}} -\rhead{Teil 2} -Sed ut perspiciatis unde omnis iste natus error sit voluptatem -accusantium doloremque laudantium, totam rem aperiam, eaque ipsa -quae ab illo inventore veritatis et quasi architecto beatae vitae -dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit -aspernatur aut odit aut fugit, sed quia consequuntur magni dolores -eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam -est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci -velit, sed quia non numquam eius modi tempora incidunt ut labore -et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima -veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, -nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure -reprehenderit qui in ea voluptate velit esse quam nihil molestiae -consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla -pariatur? - -\subsection{De finibus bonorum et malorum -\label{reedsolomon:subsection:bonorum}} -At vero eos et accusamus et iusto odio dignissimos ducimus qui -blanditiis praesentium voluptatum deleniti atque corrupti quos -dolores et quas molestias excepturi sint occaecati cupiditate non -provident, similique sunt in culpa qui officia deserunt mollitia -animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis -est et expedita distinctio. Nam libero tempore, cum soluta nobis -est eligendi optio cumque nihil impedit quo minus id quod maxime -placeat facere possimus, omnis voluptas assumenda est, omnis dolor -repellendus. Temporibus autem quibusdam et aut officiis debitis aut -rerum necessitatibus saepe eveniet ut et voluptates repudiandae -sint et molestiae non recusandae. Itaque earum rerum hic tenetur a -sapiente delectus, ut aut reiciendis voluptatibus maiores alias -consequatur aut perferendis doloribus asperiores repellat. - - diff --git a/buch/papers/reedsolomon/tikz/Makefile b/buch/papers/reedsolomon/tikz/Makefile new file mode 100644 index 0000000..1753f37 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/Makefile @@ -0,0 +1,7 @@ +# +# Makefile +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +fourier.pdf: fourier.tex + pdflatex fourier.tex diff --git a/buch/papers/reedsolomon/tikz/codiert.txt b/buch/papers/reedsolomon/tikz/codiert.txt new file mode 100644 index 0000000..4a481d8 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/codiert.txt @@ -0,0 +1,96 @@ +0,284 +1,131.570790435043 +2,41.9840308053375 +3,12.1189172092243 +4,23.8408857476069 +5,69.1793197789512 +6,24.0186013379153 +7,37.3066577242559 +8,18.2010889773887 +9,12.3214904922455 +10,15.6627133315015 +11,24.5237955316204 +12,32.1114345314062 +13,44.9845039238714 +14,13.5324640263625 +15,10.1736266929292 +16,4.58257569495584 +17,23.217268502288 +18,16.5769107917917 +19,6.89948680823017 +20,4.84567134895776 +21,10.4219666223433 +22,43.6179140616243 +23,35.9073375743642 +24,15.0332963783729 +25,21.7594021268945 +26,23.2496572716993 +27,17.9815599423852 +28,11.3577742151117 +29,38.467599433197 +30,28.3035029562577 +31,9.54321919833388 +32,21.377558326432 +33,17.6292439561917 +34,12.6951848921471 +35,20.0667752354841 +36,22.9097309529208 +37,8.78894645948548 +38,13.360682005498 +39,25.1757616314718 +40,38.0357773686457 +41,18.4633287776253 +42,19.0584505869806 +43,10.8631093309173 +44,12.6147770818983 +45,12.5398140021274 +46,34.901983501949 +47,22.3480442021702 +48,6 +49,22.3480442021702 +50,34.901983501949 +51,12.5398140021274 +52,12.6147770818983 +53,10.8631093309173 +54,19.0584505869806 +55,18.4633287776253 +56,38.0357773686457 +57,25.1757616314718 +58,13.360682005498 +59,8.78894645948548 +60,22.9097309529208 +61,20.0667752354841 +62,12.6951848921471 +63,17.6292439561917 +64,21.377558326432 +65,9.54321919833388 +66,28.3035029562577 +67,38.467599433197 +68,11.3577742151117 +69,17.9815599423852 +70,23.2496572716993 +71,21.7594021268945 +72,15.0332963783729 +73,35.9073375743642 +74,43.6179140616243 +75,10.4219666223433 +76,4.84567134895776 +77,6.89948680823017 +78,16.5769107917917 +79,23.217268502288 +80,4.58257569495584 +81,10.1736266929292 +82,13.5324640263625 +83,44.9845039238714 +84,32.1114345314062 +85,24.5237955316204 +86,15.6627133315015 +87,12.3214904922455 +88,18.2010889773887 +89,37.3066577242559 +90,24.0186013379153 +91,69.1793197789512 +92,23.8408857476069 +93,12.1189172092243 +94,41.9840308053375 +95,131.570790435043 diff --git a/buch/papers/reedsolomon/tikz/decodiert.txt b/buch/papers/reedsolomon/tikz/decodiert.txt new file mode 100644 index 0000000..f6221e6 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/decodiert.txt @@ -0,0 +1,96 @@ +0,6.05208333333333 +1,6.02602539785853 +2,0.0261327016093151 +3,5.98927158561317 +4,4.019445724874 +5,0.0247005083663722 +6,4.97798278395618 +7,1.95246440445439 +8,0.974000110512201 +9,2.00528527696027 +10,1.00071804528155 +11,1.97630907888264 +12,0.0232923747656228 +13,6.01302820392331 +14,3.03567381915226 +15,5.02435590137329 +16,7.00526061008995 +17,5.00739608089369 +18,5.02211514480064 +19,4.02175864806658 +20,1.00236543833726 +21,4.98147315261261 +22,8.97728828610336 +23,8.98481304394618 +24,2.98958333333333 +25,1.98491220960989 +26,5.97728835934715 +27,5.98144124907561 +28,4.00163839998525 +29,2.02176249296313 +30,9.02210713874162 +31,1.00742763919872 +32,1.00557258081044 +33,1.02435888848794 +34,2.03577412756745 +35,6.01302820392331 +36,5.97917574041123 +37,0.976310374034338 +38,9.00062625447998 +39,7.00515849238528 +40,6.97396416790894 +41,0.95256880864368 +42,8.97794719866783 +43,9.01850701506487 +44,10.0194409579917 +45,8.98926601525997 +46,7.9866590265379 +47,5.02603060999077 +48,2.05208333333333 +49,4.02603841132848 +50,0.986882897867895 +51,0.0177592928994285 +52,9.01944131204563 +53,3.0185365665612 +54,2.97803642439316 +55,2.95243072164649 +56,4.97396651395488 +57,6.00516695947321 +58,0.0143895905726619 +59,7.97630812771393 +60,5.97917574041123 +61,9.01298821331865 +62,3.03567381915226 +63,4.02435609145793 +64,0.0275599094902563 +65,0.0115837187254191 +66,0.025877761014238 +67,0.0224618032819697 +68,0.04410594689944 +69,0.0474504002669341 +70,0.0227694695500626 +71,0.0271436638090525 +72,0.0104166666666667 +73,0.0271436638090523 +74,0.0227694695500608 +75,0.0474504002669343 +76,0.0441059468994397 +77,0.0224618032819701 +78,0.0258777610142379 +79,0.0115837187254183 +80,0.027559909490256 +81,0.0245124379481793 +82,0.0499782237195209 +83,0.0401432022864265 +84,0.0232923747656228 +85,0.0237974288564099 +86,0.0143895905726624 +87,0.0271745729691685 +88,0.0275599094902567 +89,0.0515501672184983 +90,0.0358255004834542 +91,0.024700508366373 +92,0.0210194725405171 +93,0.0177592928994296 +94,0.0261327016093158 +95,0.0314909067039411 diff --git a/buch/papers/reedsolomon/tikz/empfangen.txt b/buch/papers/reedsolomon/tikz/empfangen.txt new file mode 100644 index 0000000..38c13b0 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/empfangen.txt @@ -0,0 +1,96 @@ +0,284 +1,131.570790435043 +2,41.9840308053375 +3,12.1189172092243 +4,23.8408857476069 +5,69.1793197789512 +6,23.6290258699579 +7,37.3066577242559 +8,18.2010889773887 +9,12.3214904922455 +10,15.6627133315015 +11,24.5237955316204 +12,32.1114345314062 +13,44.9845039238714 +14,13.5324640263625 +15,10.1736266929292 +16,4.58257569495584 +17,23.217268502288 +18,16.5769107917917 +19,6.89948680823017 +20,5.55320238736303 +21,10.4219666223433 +22,43.6179140616243 +23,35.9073375743642 +24,15.0332963783729 +25,21.7594021268945 +26,23.2496572716993 +27,17.9815599423852 +28,11.3577742151117 +29,38.467599433197 +30,28.3035029562577 +31,9.54321919833388 +32,21.377558326432 +33,17.6292439561917 +34,12.6951848921471 +35,20.0667752354841 +36,22.9097309529208 +37,8.78894645948548 +38,13.360682005498 +39,25.1757616314718 +40,38.0357773686457 +41,18.4633287776253 +42,19.0584505869806 +43,10.8631093309173 +44,12.6147770818983 +45,12.5398140021274 +46,34.901983501949 +47,22.3480442021702 +48,6 +49,22.3480442021702 +50,34.901983501949 +51,12.5398140021274 +52,12.6147770818983 +53,10.8631093309173 +54,19.0584505869806 +55,18.4633287776253 +56,38.0357773686457 +57,25.1757616314718 +58,13.360682005498 +59,8.78894645948548 +60,22.9097309529208 +61,20.0667752354841 +62,12.6951848921471 +63,17.6292439561917 +64,21.377558326432 +65,9.54321919833388 +66,28.3035029562577 +67,38.467599433197 +68,11.3577742151117 +69,17.9815599423852 +70,23.2496572716993 +71,21.7594021268945 +72,15.0332963783729 +73,35.9073375743642 +74,44.6135417384784 +75,10.4219666223433 +76,4.84567134895776 +77,6.89948680823017 +78,16.5769107917917 +79,23.217268502288 +80,4.58257569495584 +81,10.1736266929292 +82,13.5324640263625 +83,44.9845039238714 +84,32.1114345314062 +85,24.5237955316204 +86,15.6627133315015 +87,12.3214904922455 +88,18.2010889773887 +89,37.3066577242559 +90,24.0186013379153 +91,69.1793197789512 +92,23.8408857476069 +93,12.1189172092243 +94,41.9840308053375 +95,131.570790435043 diff --git a/buch/papers/reedsolomon/tikz/fehler.txt b/buch/papers/reedsolomon/tikz/fehler.txt new file mode 100644 index 0000000..23f1a83 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/fehler.txt @@ -0,0 +1,96 @@ +0,0 +1,0 +2,0 +3,0 +4,0 +5,0 +6,2 +7,0 +8,0 +9,0 +10,0 +11,0 +12,0 +13,0 +14,0 +15,0 +16,0 +17,0 +18,0 +19,0 +20,2 +21,0 +22,0 +23,0 +24,0 +25,0 +26,0 +27,0 +28,0 +29,0 +30,0 +31,0 +32,0 +33,0 +34,0 +35,0 +36,0 +37,0 +38,0 +39,0 +40,0 +41,0 +42,0 +43,0 +44,0 +45,0 +46,0 +47,0 +48,0 +49,0 +50,0 +51,0 +52,0 +53,0 +54,0 +55,0 +56,0 +57,0 +58,0 +59,0 +60,0 +61,0 +62,0 +63,0 +64,0 +65,0 +66,0 +67,0 +68,0 +69,0 +70,0 +71,0 +72,0 +73,0 +74,1 +75,0 +76,0 +77,0 +78,0 +79,0 +80,0 +81,0 +82,0 +83,0 +84,0 +85,0 +86,0 +87,0 +88,0 +89,0 +90,0 +91,0 +92,0 +93,0 +94,0 +95,0 diff --git a/buch/papers/reedsolomon/tikz/fourier.pdf b/buch/papers/reedsolomon/tikz/fourier.pdf Binary files differnew file mode 100644 index 0000000..7e0198b --- /dev/null +++ b/buch/papers/reedsolomon/tikz/fourier.pdf diff --git a/buch/papers/reedsolomon/tikz/fourier.tex b/buch/papers/reedsolomon/tikz/fourier.tex new file mode 100644 index 0000000..7b4ccea --- /dev/null +++ b/buch/papers/reedsolomon/tikz/fourier.tex @@ -0,0 +1,139 @@ +% +% Plot der Übertrangungsabfolge ins FFT und zurück mit IFFT +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{pgfplots} +\usepackage{pgfplotstable} +\usepackage{csvsimple} +\usepackage{filecontents} + +\def\plotwidth{7.5cm} +\def\plotheight{5.5cm} +\def\xverschiebung{4.5cm} +\def\yverschiebung{-7cm} +\def\yyverschiebung{-14cm} + +\def\marke#1{ + \coordinate (M) at (-0.8,4.6); + \fill[color=lightgray] (M) circle[radius=0.3]; + \draw (M) circle[radius=0.3]; + \node at (M) {#1}; +} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\begin{document} +\begin{tikzpicture}[>=latex,thick] + +\fill[color=blue!10] (-5.7,-14.5) rectangle (2.6,5.0); +\fill[color=darkgreen!10] (2.6,-14.5) rectangle (11.1,5.0); + +\draw[dashed,line width=2pt,color=lightgray] (2.6,4.9) -- (2.6,-14.4); +\coordinate (B) at (2.6,-1.3); +\node[color=gray] at (B) [rotate=90,above] {Zeitbereich\strut}; +\node[color=gray] at (B) [rotate=90,below] {Frequenzbereich\strut}; + +\begin{scope}[xshift=-\xverschiebung,yshift=0cm] + \begin{axis} + [title = {\large Signal\strut}, + xtick={0,32,64,96}, + axis background/.style={fill=white}, + width=\plotwidth,height=\plotheight] + \addplot[blue,line width=1pt] table[col sep=comma] + {tikz/signal.txt}; + \end{axis} + \marke{1} +\end{scope} + +\begin{scope}[xshift=\xverschiebung,yshift=0cm] + \begin{axis}[title = {\large Codiert\strut}, + xtick={0,32,64,96}, + axis background/.style={fill=white}, + width=\plotwidth,height=\plotheight] + \addplot[color=black!60!green,line width=1pt] + table[col sep=comma] + {tikz/codiert.txt}; + \end{axis} + \marke{2} + \draw[->,line width=1pt] (3,-0.4) -- node[right] {Übertragung} (3,-2.2); +\end{scope} + +\definecolor{pink}{rgb}{0.6,0.2,1} + +\begin{scope}[xshift=-\xverschiebung,yshift=\yverschiebung] + %\fill[color=pink!20] (4.65,0.35) ellipse (1.1cm and 0.5cm); + \begin{axis}[title = {\large Decodiert\strut}, + xtick={0,32,64,96}, + axis background/.style={fill=white}, + width=\plotwidth,height=\plotheight] + \addplot[blue,line width=1pt] + table[col sep=comma] {tikz/decodiert.txt}; + \end{axis} + \marke{4} + \draw[color=pink] (4.65,0.35) ellipse (1.1cm and 0.5cm); + \draw[->,color=pink,line width=1pt] + (4.65,-0.15) to[out=-90,in=90] (3,-2.2); +\end{scope} + +\begin{scope}[xshift=\xverschiebung,yshift=\yverschiebung] + \begin{axis}[title = {\large Empfangen {\color{red} mit Fehlern}\strut}, + xtick={0,96}, + axis background/.style={fill=white}, + axis y line*=left, + width=\plotwidth,height=\plotheight] + \addplot[color=black!60!green,line width=1pt] + table[col sep=comma] + {tikz/empfangen.txt}; + \end{axis} + \begin{axis}[xtick={6,20,74}, axis y line*=right, + width=\plotwidth,height=\plotheight] + \addplot[red,line width=1pt] + table[col sep=comma] {tikz/fehler.txt}; + \end{axis} + \marke{3} +\end{scope} + +\begin{scope}[xshift=-\xverschiebung,yshift=\yyverschiebung] + \begin{axis}[title = {\large \color{pink}Syndrom\strut}, + xtick={0,32,64,96}, + axis background/.style={fill=white}, + width=\plotwidth,height=\plotheight] + \addplot[pink,line width=1pt] + table[col sep=comma] {tikz/syndrom.txt}; + \end{axis} + \marke{5} +\end{scope} + +\begin{scope}[xshift=\xverschiebung,yshift=\yyverschiebung] + % Beschriftung Rechts + \begin{axis}[axis x line= none, axis y line*=right, ytick={0.3}, + xtick={0,32,64,96}, + axis background/.style={fill=white}, + width=\plotwidth,height=\plotheight] + \addplot[color=black!60,line width=1pt] {0.3}; + \end{axis} + \begin{axis}[title = {\large Lokator\strut},axis y line*=left, + xtick={0,6,20,74,96}, + width=\plotwidth,height=\plotheight] + \addplot[gray,line width=1pt] + table[col sep=comma] {tikz/locator.txt}; + \end{axis} + \marke{6} +\end{scope} + +% Fourier-Transformations-Pfeile + +\draw[->,line width=1pt] (1.8,2) -- node[above] {DFT\strut} (3.8,2); + +\begin{scope}[yshift=\yverschiebung] +\draw[<-,line width=1pt] (1.8,2) -- node[above] {DFT$\mathstrut^{-1}$} (3.8,2); +\end{scope} + +\begin{scope}[yshift=\yyverschiebung] +\draw[->,line width=1pt] (1.8,2) -- node[above] {DFT\strut} (3.8,2); +\end{scope} + +\end{tikzpicture} +\end{document} diff --git a/buch/papers/reedsolomon/tikz/locator.txt b/buch/papers/reedsolomon/tikz/locator.txt new file mode 100644 index 0000000..b28988c --- /dev/null +++ b/buch/papers/reedsolomon/tikz/locator.txt @@ -0,0 +1,96 @@ +0,0.0301224340567056 +1,0.141653026854885 +2,0.138226631799377 +3,0.0339903276086929 +4,0.310585462557496 +5,0.551427312631385 +6,0.628514858396814 +7,0.51102386251559 +8,0.275861355940449 +9,0.0502396354182268 +10,0.090185502547573 +11,0.110759344849756 +12,0.0684618905063001 +13,0.0362855426992259 +14,0.0697096919781468 +15,0.109288539370248 +16,0.0923187999496653 +17,0.0512198536768088 +18,0.274192386987782 +19,0.51349614953654 +20,0.633154426602466 +21,0.553283743533942 +22,0.307840573214514 +23,0.0341664350328392 +24,0.140270857957 +25,0.138527177682831 +26,0.029637547736156 +27,0.0816962563186052 +28,0.0944383203811073 +29,0.0263932110686261 +30,0.0585881348402056 +31,0.0737117341599984 +32,0.0239973937701886 +33,0.0464215468420038 +34,0.0616218854220964 +35,0.0221963086695009 +36,0.0390764778127646 +37,0.0537637218396934 +38,0.0208333333333332 +39,0.0343107696069045 +40,0.0483441215964552 +41,0.0198077862118806 +42,0.0311207395968725 +43,0.0444955089373458 +44,0.0190533549944159 +45,0.0290049795038723 +46,0.0417536642697558 +47,0.0185261550443084 +48,0.0277059929762261 +49,0.0398606084144816 +50,0.0181978813094817 +51,0.0271098219177584 +52,0.0386836665079729 +53,0.0180518611046889 +54,0.0272138992557141 +55,0.0381891287148314 +56,0.0180809085252469 +57,0.0281418959420061 +58,0.0384596362516637 +59,0.0182864418432272 +60,0.0302250788423173 +61,0.0397874837986351 +62,0.0186786556701694 +63,0.0342489348284216 +64,0.0429932815348666 +65,0.0192777878591759 +66,0.0422808966931999 +67,0.0506815964680563 +68,0.0201167847752226 +69,0.0615048274405271 +70,0.0744953894508454 +71,0.021246054596492 +72,0.142602265816215 +73,0.273502052865436 +74,0.325309673287599 +75,0.272705389655349 +76,0.149074257381345 +77,0.0247199397628712 +78,0.0680137859566976 +79,0.075388270873485 +80,0.0273637831604903 +81,0.0407867704453274 +82,0.0632964886441949 +83,0.0309749128751093 +84,0.0315202035072035 +85,0.0627625211892184 +86,0.0360843918243497 +87,0.02794920551495 +88,0.0677921493367236 +89,0.0437167157553067 +90,0.0270640150996317 +91,0.0783380025231622 +92,0.0561293738314281 +93,0.0278742033265809 +94,0.0981443889498639 +95,0.0794543457386548 diff --git a/buch/papers/reedsolomon/tikz/plotfft.tex b/buch/papers/reedsolomon/tikz/plotfft.tex new file mode 100644 index 0000000..77c4dc3 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/plotfft.tex @@ -0,0 +1,104 @@ +% +% Plot der Übertrangungsabfolge ins FFT und zurück mit IFFT +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{pgfplots} +\usepackage{pgfplotstable} +\usepackage{csvsimple} +\usepackage{filecontents} + + + +\begin{document} +\begin{tikzpicture}[] + + %--------------------------------------------------------------- + %Knote + \matrix(m) [draw = none, column sep=25mm, row sep=2mm]{ + + \node(signal) [] { + \begin{tikzpicture} + \begin{axis} + [title = {\Large {Signal}}, + xtick={0,20,40,64,80,98}] + \addplot[blue] table[col sep=comma] {tikz/signal.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(codiert) [] { + \begin{tikzpicture}[] + % Beschriftung Rechts + \begin{axis}[axis x line= none, axis y line*=right,ytick={0}] + \addplot[color=white] {0}; + \end{axis} + + \begin{axis}[ title = {\Large {Codiert}}, axis y line*=left] + \addplot[color=black!60!green] table[col sep=comma] {tikz/codiert.txt}; + \end{axis} + \end{tikzpicture}}; \\ + + \node(decodiert) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Decodiert}}] + \addplot[blue] table[col sep=comma] {tikz/decodiert.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(empfangen) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Empfangen \space + \space Fehler}}, + xtick={0,40,60,100}, axis y line*=left] + \addplot[color=black!60!green] table[col sep=comma] {tikz/empfangen.txt}; + \end{axis} + \begin{axis}[xtick={7,21,75}, axis y line*=right] + \addplot[red] table[col sep=comma] {tikz/fehler.txt}; + \end{axis} + \end{tikzpicture}};\\ + + \node(syndrom) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Syndrom}}] + \addplot[black] table[col sep=comma] {tikz/syndrom.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(locator) [] { + \begin{tikzpicture} + % Beschriftung Rechts + \begin{axis}[axis x line= none, axis y line*=right, ytick={0.3}]; + \addplot[color=black!60] {0.3}; + \end{axis} + + \begin{axis}[title = {\Large {Locator}},axis y line*=left] + \addplot[gray] table[col sep=comma] {tikz/locator.txt}; + \end{axis} + \end{tikzpicture}};\\ + }; + %------------------------------------------------------------- + %FFT & IFFT deskription + + \draw[thin,gray,dashed] (0,9) to (0,-9); + \node(IFFT) [scale=0.9] at (0,9.3) {IFFT}; + \draw[stealth-](IFFT.south west)--(IFFT.south east); + \node(FFT) [scale=0.9, above of=IFFT] {FFT}; + \draw[-stealth](FFT.north west)--(FFT.north east); + + %Arrows + \draw[thick, ->] (signal.east) to (codiert.west); + \draw[thick, ->] (codiert.south) to (empfangen.north); + \draw[thick, ->] (empfangen.west) to (decodiert.east); + \draw[thick, ->] (syndrom.east) to (locator.west); + \draw[thick](decodiert.south east)++(-1.8,1) ellipse (1.3cm and 0.8cm) ++(-1.3,0) coordinate(zoom) ; + \draw[thick, ->] (zoom) to[out=180, in=90] (syndrom.north); + + %item + \node[circle, draw, fill =lightgray] at (signal.north west) {1}; + \node[circle, draw, fill =lightgray] at (codiert.north west) {2}; + \node[circle, draw, fill =lightgray] at (empfangen.north west) {3}; + \node[circle, draw, fill =lightgray] at (decodiert.north west) {4}; + \node[circle, draw, fill =lightgray] at (syndrom.north west) {5}; + \node[circle, draw, fill =lightgray] at (locator.north west) {6}; +\end{tikzpicture} +\end{document}
\ No newline at end of file diff --git a/buch/papers/reedsolomon/tikz/plotfftraw.tex b/buch/papers/reedsolomon/tikz/plotfftraw.tex new file mode 100644 index 0000000..db35734 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/plotfftraw.tex @@ -0,0 +1,81 @@ + +\begin{tikzpicture}[] + + %--------------------------------------------------------------- + %Knote + \matrix(m) [draw = none, column sep=25mm, row sep=2mm]{ + + \node(signal) [] { + \begin{tikzpicture} + \begin{axis} + [title = {\Large {Signal}}, + xtick={0,20,40,64,80,98}] + \addplot[blue] table[col sep=comma] {tikz/signal.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(codiert) [] { + \begin{tikzpicture}[] + \begin{axis}[ title = {\Large {Codiert \space + \space Fehler}}, + xtick={0,40,60,100}, axis y line*=left] + \addplot[green] table[col sep=comma] {tikz/codiert.txt}; + \end{axis} + \begin{axis}[xtick={7,21,75}, axis y line*=right] + \addplot[red] table[col sep=comma] {tikz/fehler.txt}; + \end{axis} + \end{tikzpicture}}; \\ + + \node(decodiert) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Decodiert}}] + \addplot[blue] table[col sep=comma] {tikz/decodiert.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(empfangen) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Empfangen}}] + \addplot[green] table[col sep=comma] {tikz/empfangen.txt}; + \end{axis} + \end{tikzpicture}};\\ + + \node(syndrom) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Syndrom}}] + \addplot[black] table[col sep=comma] {tikz/syndrom.txt}; + \end{axis} + \end{tikzpicture}}; & + + \node(locator) [] { + \begin{tikzpicture} + \begin{axis}[title = {\Large {Locator}}] + \addplot[gray] table[col sep=comma] {tikz/locator.txt}; + \end{axis} + \end{tikzpicture}};\\ + }; + %------------------------------------------------------------- + %FFT & IFFT deskription + + \draw[thin,gray,dashed] (0,9) to (0,-9); + \node(IFFT) [scale=0.9] at (0,9.3) {IFFT}; + \draw[stealth-](IFFT.south west)--(IFFT.south east); + \node(FFT) [scale=0.9, above of=IFFT] {FFT}; + \draw[-stealth](FFT.north west)--(FFT.north east); + + \draw[thick, ->,] (codiert)++(-1,0) +(0.05,0.5) -- +(-0.1,-0.1) -- +(0.1,0.1) -- +(0,-0.5); + %Arrows + \draw[thick, ->] (signal.east) to (codiert.west); + \draw[thick, ->] (codiert.south) to (empfangen.north); + \draw[thick, ->] (empfangen.west) to (decodiert.east); + \draw[thick, ->] (syndrom.east) to (locator.west); + \draw[thick](decodiert.south east)++(-1.8,1) ellipse (1.3cm and 0.8cm) ++(-1.3,0) coordinate(zoom) ; + \draw[thick, ->] (zoom) to[out=180, in=90] (syndrom.north); + + %item + \node[circle, draw, fill =lightgray] at (signal.north west) {1}; + \node[circle, draw, fill =lightgray] at (codiert.north west) {2+3}; + \node[circle, draw, fill =lightgray] at (empfangen.north west) {4}; + \node[circle, draw, fill =lightgray] at (decodiert.north west) {5}; + \node[circle, draw, fill =lightgray] at (syndrom.north west) {6}; + \node[circle, draw, fill =lightgray] at (locator.north west) {7}; +\end{tikzpicture}
\ No newline at end of file diff --git a/buch/papers/reedsolomon/tikz/polynom2.tex b/buch/papers/reedsolomon/tikz/polynom2.tex new file mode 100644 index 0000000..80557fb --- /dev/null +++ b/buch/papers/reedsolomon/tikz/polynom2.tex @@ -0,0 +1,60 @@ +% polynome +%------------------- + +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{pgfplots} + + +\begin{document} +% Teiler für das Skalieren der Grafik /40 +\newcommand{\teiler}{40} + + +%////////////////////////////////////// + +\begin{tikzpicture}[>=latex,thick,] + \draw[color=blue, line width=1.4pt] + plot[domain=0:8, samples=100] + ({\x},{(2*\x^2+1*\x+5)/\teiler}); + + \draw[->] (-0.2,0) -- (8,0) coordinate[label={$x$}]; + \draw[->] (0,-0.2) -- (0,150/\teiler) coordinate[label={right:$p(x)$}]; + + \def\punkt#1{ + \fill[color=green] #1 circle[radius=0.08]; + \draw #1 circle[radius=0.07]; + } + + \def\hellpunkt#1{ + \fill[color=lightgray] #1 circle[radius=0.08]; + \draw[gray] #1 circle[ radius=0.07]; + } + + \draw[color=gray,line width=1pt,dashed] + plot[domain=0.5:7, samples=100] + ({\x},{(7.832*\x^2-51.5*\x+121.668)/\teiler}); + + + \punkt{(1,8/\teiler)} + \hellpunkt{(2,15/\teiler)} + \hellpunkt{(3,26/\teiler)} + \punkt{(4,41/\teiler)} + \punkt{(5,60/\teiler)} + \punkt{(6,83/\teiler)} + \punkt{(7,110/\teiler)} + + + + \def\erpunkt#1{ + \fill[color=red] #1 circle[radius=0.08]; + \draw #1 circle[radius=0.07]; + } + \erpunkt{(2,50/\teiler)} + \erpunkt{(3,37.66/\teiler)} + + \draw(0,100/\teiler) -- (-0.1,100/\teiler) coordinate[label={left:$100$}]; + \draw(1,0) -- (1,-0.1) coordinate[label={below:$1$}]; +\end{tikzpicture} +\end{document} diff --git a/buch/papers/reedsolomon/tikz/polynomraw.tex b/buch/papers/reedsolomon/tikz/polynomraw.tex new file mode 100644 index 0000000..02968fd --- /dev/null +++ b/buch/papers/reedsolomon/tikz/polynomraw.tex @@ -0,0 +1,50 @@ +% polynomraw + +\newcommand{\teiler}{40} + + +%////////////////////////////////////// + +\begin{tikzpicture}[>=latex,thick,] + \draw[color=blue, line width=1.4pt] + plot[domain=0:8, samples=100] + ({\x},{(2*\x^2+1*\x+5)/\teiler}); + + \draw[->] (-0.2,0) -- (8,0) coordinate[label={$x$}]; + \draw[->] (0,-0.2) -- (0,150/\teiler) coordinate[label={right:$p(x)$}]; + + \def\punkt#1{ + \fill[color=green] #1 circle[radius=0.08]; + \draw #1 circle[radius=0.07]; + } + + \def\hellpunkt#1{ + \fill[color=lightgray] #1 circle[radius=0.08]; + \draw[gray] #1 circle[ radius=0.07]; + } + + \draw[color=gray,line width=1pt,dashed] + plot[domain=0.5:7, samples=100] + ({\x},{(7.832*\x^2-51.5*\x+121.668)/\teiler}); + + + \punkt{(1,8/\teiler)} + \hellpunkt{(2,15/\teiler)} + \hellpunkt{(3,26/\teiler)} + \punkt{(4,41/\teiler)} + \punkt{(5,60/\teiler)} + \punkt{(6,83/\teiler)} + \punkt{(7,110/\teiler)} + + + + \def\erpunkt#1{ + \fill[color=red] #1 circle[radius=0.08]; + \draw #1 circle[radius=0.07]; + } + \erpunkt{(2,50/\teiler)} + \erpunkt{(3,37.66/\teiler)} + + \draw(0,100/\teiler) -- (-0.1,100/\teiler) coordinate[label={left:$100$}]; + \draw(1,0) -- (1,-0.1) coordinate[label={below:$1$}]; +\end{tikzpicture}
\ No newline at end of file diff --git a/buch/papers/reedsolomon/tikz/signal.txt b/buch/papers/reedsolomon/tikz/signal.txt new file mode 100644 index 0000000..c4fa5f8 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/signal.txt @@ -0,0 +1,96 @@ +0,6 +1,6 +2,0 +3,6 +4,4 +5,0 +6,5 +7,2 +8,1 +9,2 +10,1 +11,2 +12,0 +13,6 +14,3 +15,5 +16,7 +17,5 +18,5 +19,4 +20,1 +21,5 +22,9 +23,9 +24,3 +25,2 +26,6 +27,6 +28,4 +29,2 +30,9 +31,1 +32,1 +33,1 +34,2 +35,6 +36,6 +37,1 +38,9 +39,7 +40,7 +41,1 +42,9 +43,9 +44,10 +45,9 +46,8 +47,5 +48,2 +49,4 +50,1 +51,0 +52,9 +53,3 +54,3 +55,3 +56,5 +57,6 +58,0 +59,8 +60,6 +61,9 +62,3 +63,4 +64,0 +65,0 +66,0 +67,0 +68,0 +69,0 +70,0 +71,0 +72,0 +73,0 +74,0 +75,0 +76,0 +77,0 +78,0 +79,0 +80,0 +81,0 +82,0 +83,0 +84,0 +85,0 +86,0 +87,0 +88,0 +89,0 +90,0 +91,0 +92,0 +93,0 +94,0 +95,0 diff --git a/buch/papers/reedsolomon/tikz/syndrom.txt b/buch/papers/reedsolomon/tikz/syndrom.txt new file mode 100644 index 0000000..8ca9eed --- /dev/null +++ b/buch/papers/reedsolomon/tikz/syndrom.txt @@ -0,0 +1,96 @@ +0,0 +1,0 +2,0 +3,0 +4,0 +5,0 +6,0 +7,0 +8,0 +9,0 +10,0 +11,0 +12,0 +13,0 +14,0 +15,0 +16,0 +17,0 +18,0 +19,0 +20,0 +21,0 +22,0 +23,0 +24,0 +25,0 +26,0 +27,0 +28,0 +29,0 +30,0 +31,0 +32,0 +33,0 +34,0 +35,0 +36,0 +37,0 +38,0 +39,0 +40,0 +41,0 +42,0 +43,0 +44,0 +45,0 +46,0 +47,0 +48,0 +49,0 +50,0 +51,0 +52,0 +53,0 +54,0 +55,0 +56,0 +57,0 +58,0 +59,0 +60,0 +61,0 +62,0 +63,0 +64,0.0275599094902563 +65,0.0115837187254191 +66,0.025877761014238 +67,0.0224618032819697 +68,0.04410594689944 +69,0.0474504002669341 +70,0.0227694695500626 +71,0.0271436638090525 +72,0.0104166666666667 +73,0.0271436638090523 +74,0.0227694695500608 +75,0.0474504002669343 +76,0.0441059468994397 +77,0.0224618032819701 +78,0.0258777610142379 +79,0.0115837187254183 +80,0.027559909490256 +81,0.0245124379481793 +82,0.0499782237195209 +83,0.0401432022864265 +84,0.0232923747656228 +85,0.0237974288564099 +86,0.0143895905726624 +87,0.0271745729691685 +88,0.0275599094902567 +89,0.0515501672184983 +90,0.0358255004834542 +91,0.024700508366373 +92,0.0210194725405171 +93,0.0177592928994296 +94,0.0261327016093158 +95,0.0314909067039411 diff --git a/buch/papers/reedsolomon/tikz/tikz/codiert.txt b/buch/papers/reedsolomon/tikz/tikz/codiert.txt new file mode 100644 index 0000000..4a481d8 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/codiert.txt @@ -0,0 +1,96 @@ +0,284 +1,131.570790435043 +2,41.9840308053375 +3,12.1189172092243 +4,23.8408857476069 +5,69.1793197789512 +6,24.0186013379153 +7,37.3066577242559 +8,18.2010889773887 +9,12.3214904922455 +10,15.6627133315015 +11,24.5237955316204 +12,32.1114345314062 +13,44.9845039238714 +14,13.5324640263625 +15,10.1736266929292 +16,4.58257569495584 +17,23.217268502288 +18,16.5769107917917 +19,6.89948680823017 +20,4.84567134895776 +21,10.4219666223433 +22,43.6179140616243 +23,35.9073375743642 +24,15.0332963783729 +25,21.7594021268945 +26,23.2496572716993 +27,17.9815599423852 +28,11.3577742151117 +29,38.467599433197 +30,28.3035029562577 +31,9.54321919833388 +32,21.377558326432 +33,17.6292439561917 +34,12.6951848921471 +35,20.0667752354841 +36,22.9097309529208 +37,8.78894645948548 +38,13.360682005498 +39,25.1757616314718 +40,38.0357773686457 +41,18.4633287776253 +42,19.0584505869806 +43,10.8631093309173 +44,12.6147770818983 +45,12.5398140021274 +46,34.901983501949 +47,22.3480442021702 +48,6 +49,22.3480442021702 +50,34.901983501949 +51,12.5398140021274 +52,12.6147770818983 +53,10.8631093309173 +54,19.0584505869806 +55,18.4633287776253 +56,38.0357773686457 +57,25.1757616314718 +58,13.360682005498 +59,8.78894645948548 +60,22.9097309529208 +61,20.0667752354841 +62,12.6951848921471 +63,17.6292439561917 +64,21.377558326432 +65,9.54321919833388 +66,28.3035029562577 +67,38.467599433197 +68,11.3577742151117 +69,17.9815599423852 +70,23.2496572716993 +71,21.7594021268945 +72,15.0332963783729 +73,35.9073375743642 +74,43.6179140616243 +75,10.4219666223433 +76,4.84567134895776 +77,6.89948680823017 +78,16.5769107917917 +79,23.217268502288 +80,4.58257569495584 +81,10.1736266929292 +82,13.5324640263625 +83,44.9845039238714 +84,32.1114345314062 +85,24.5237955316204 +86,15.6627133315015 +87,12.3214904922455 +88,18.2010889773887 +89,37.3066577242559 +90,24.0186013379153 +91,69.1793197789512 +92,23.8408857476069 +93,12.1189172092243 +94,41.9840308053375 +95,131.570790435043 diff --git a/buch/papers/reedsolomon/tikz/tikz/decodiert.txt b/buch/papers/reedsolomon/tikz/tikz/decodiert.txt new file mode 100644 index 0000000..f6221e6 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/decodiert.txt @@ -0,0 +1,96 @@ +0,6.05208333333333 +1,6.02602539785853 +2,0.0261327016093151 +3,5.98927158561317 +4,4.019445724874 +5,0.0247005083663722 +6,4.97798278395618 +7,1.95246440445439 +8,0.974000110512201 +9,2.00528527696027 +10,1.00071804528155 +11,1.97630907888264 +12,0.0232923747656228 +13,6.01302820392331 +14,3.03567381915226 +15,5.02435590137329 +16,7.00526061008995 +17,5.00739608089369 +18,5.02211514480064 +19,4.02175864806658 +20,1.00236543833726 +21,4.98147315261261 +22,8.97728828610336 +23,8.98481304394618 +24,2.98958333333333 +25,1.98491220960989 +26,5.97728835934715 +27,5.98144124907561 +28,4.00163839998525 +29,2.02176249296313 +30,9.02210713874162 +31,1.00742763919872 +32,1.00557258081044 +33,1.02435888848794 +34,2.03577412756745 +35,6.01302820392331 +36,5.97917574041123 +37,0.976310374034338 +38,9.00062625447998 +39,7.00515849238528 +40,6.97396416790894 +41,0.95256880864368 +42,8.97794719866783 +43,9.01850701506487 +44,10.0194409579917 +45,8.98926601525997 +46,7.9866590265379 +47,5.02603060999077 +48,2.05208333333333 +49,4.02603841132848 +50,0.986882897867895 +51,0.0177592928994285 +52,9.01944131204563 +53,3.0185365665612 +54,2.97803642439316 +55,2.95243072164649 +56,4.97396651395488 +57,6.00516695947321 +58,0.0143895905726619 +59,7.97630812771393 +60,5.97917574041123 +61,9.01298821331865 +62,3.03567381915226 +63,4.02435609145793 +64,0.0275599094902563 +65,0.0115837187254191 +66,0.025877761014238 +67,0.0224618032819697 +68,0.04410594689944 +69,0.0474504002669341 +70,0.0227694695500626 +71,0.0271436638090525 +72,0.0104166666666667 +73,0.0271436638090523 +74,0.0227694695500608 +75,0.0474504002669343 +76,0.0441059468994397 +77,0.0224618032819701 +78,0.0258777610142379 +79,0.0115837187254183 +80,0.027559909490256 +81,0.0245124379481793 +82,0.0499782237195209 +83,0.0401432022864265 +84,0.0232923747656228 +85,0.0237974288564099 +86,0.0143895905726624 +87,0.0271745729691685 +88,0.0275599094902567 +89,0.0515501672184983 +90,0.0358255004834542 +91,0.024700508366373 +92,0.0210194725405171 +93,0.0177592928994296 +94,0.0261327016093158 +95,0.0314909067039411 diff --git a/buch/papers/reedsolomon/tikz/tikz/empfangen.txt b/buch/papers/reedsolomon/tikz/tikz/empfangen.txt new file mode 100644 index 0000000..38c13b0 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/empfangen.txt @@ -0,0 +1,96 @@ +0,284 +1,131.570790435043 +2,41.9840308053375 +3,12.1189172092243 +4,23.8408857476069 +5,69.1793197789512 +6,23.6290258699579 +7,37.3066577242559 +8,18.2010889773887 +9,12.3214904922455 +10,15.6627133315015 +11,24.5237955316204 +12,32.1114345314062 +13,44.9845039238714 +14,13.5324640263625 +15,10.1736266929292 +16,4.58257569495584 +17,23.217268502288 +18,16.5769107917917 +19,6.89948680823017 +20,5.55320238736303 +21,10.4219666223433 +22,43.6179140616243 +23,35.9073375743642 +24,15.0332963783729 +25,21.7594021268945 +26,23.2496572716993 +27,17.9815599423852 +28,11.3577742151117 +29,38.467599433197 +30,28.3035029562577 +31,9.54321919833388 +32,21.377558326432 +33,17.6292439561917 +34,12.6951848921471 +35,20.0667752354841 +36,22.9097309529208 +37,8.78894645948548 +38,13.360682005498 +39,25.1757616314718 +40,38.0357773686457 +41,18.4633287776253 +42,19.0584505869806 +43,10.8631093309173 +44,12.6147770818983 +45,12.5398140021274 +46,34.901983501949 +47,22.3480442021702 +48,6 +49,22.3480442021702 +50,34.901983501949 +51,12.5398140021274 +52,12.6147770818983 +53,10.8631093309173 +54,19.0584505869806 +55,18.4633287776253 +56,38.0357773686457 +57,25.1757616314718 +58,13.360682005498 +59,8.78894645948548 +60,22.9097309529208 +61,20.0667752354841 +62,12.6951848921471 +63,17.6292439561917 +64,21.377558326432 +65,9.54321919833388 +66,28.3035029562577 +67,38.467599433197 +68,11.3577742151117 +69,17.9815599423852 +70,23.2496572716993 +71,21.7594021268945 +72,15.0332963783729 +73,35.9073375743642 +74,44.6135417384784 +75,10.4219666223433 +76,4.84567134895776 +77,6.89948680823017 +78,16.5769107917917 +79,23.217268502288 +80,4.58257569495584 +81,10.1736266929292 +82,13.5324640263625 +83,44.9845039238714 +84,32.1114345314062 +85,24.5237955316204 +86,15.6627133315015 +87,12.3214904922455 +88,18.2010889773887 +89,37.3066577242559 +90,24.0186013379153 +91,69.1793197789512 +92,23.8408857476069 +93,12.1189172092243 +94,41.9840308053375 +95,131.570790435043 diff --git a/buch/papers/reedsolomon/tikz/tikz/fehler.txt b/buch/papers/reedsolomon/tikz/tikz/fehler.txt new file mode 100644 index 0000000..23f1a83 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/fehler.txt @@ -0,0 +1,96 @@ +0,0 +1,0 +2,0 +3,0 +4,0 +5,0 +6,2 +7,0 +8,0 +9,0 +10,0 +11,0 +12,0 +13,0 +14,0 +15,0 +16,0 +17,0 +18,0 +19,0 +20,2 +21,0 +22,0 +23,0 +24,0 +25,0 +26,0 +27,0 +28,0 +29,0 +30,0 +31,0 +32,0 +33,0 +34,0 +35,0 +36,0 +37,0 +38,0 +39,0 +40,0 +41,0 +42,0 +43,0 +44,0 +45,0 +46,0 +47,0 +48,0 +49,0 +50,0 +51,0 +52,0 +53,0 +54,0 +55,0 +56,0 +57,0 +58,0 +59,0 +60,0 +61,0 +62,0 +63,0 +64,0 +65,0 +66,0 +67,0 +68,0 +69,0 +70,0 +71,0 +72,0 +73,0 +74,1 +75,0 +76,0 +77,0 +78,0 +79,0 +80,0 +81,0 +82,0 +83,0 +84,0 +85,0 +86,0 +87,0 +88,0 +89,0 +90,0 +91,0 +92,0 +93,0 +94,0 +95,0 diff --git a/buch/papers/reedsolomon/tikz/tikz/locator.txt b/buch/papers/reedsolomon/tikz/tikz/locator.txt new file mode 100644 index 0000000..b28988c --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/locator.txt @@ -0,0 +1,96 @@ +0,0.0301224340567056 +1,0.141653026854885 +2,0.138226631799377 +3,0.0339903276086929 +4,0.310585462557496 +5,0.551427312631385 +6,0.628514858396814 +7,0.51102386251559 +8,0.275861355940449 +9,0.0502396354182268 +10,0.090185502547573 +11,0.110759344849756 +12,0.0684618905063001 +13,0.0362855426992259 +14,0.0697096919781468 +15,0.109288539370248 +16,0.0923187999496653 +17,0.0512198536768088 +18,0.274192386987782 +19,0.51349614953654 +20,0.633154426602466 +21,0.553283743533942 +22,0.307840573214514 +23,0.0341664350328392 +24,0.140270857957 +25,0.138527177682831 +26,0.029637547736156 +27,0.0816962563186052 +28,0.0944383203811073 +29,0.0263932110686261 +30,0.0585881348402056 +31,0.0737117341599984 +32,0.0239973937701886 +33,0.0464215468420038 +34,0.0616218854220964 +35,0.0221963086695009 +36,0.0390764778127646 +37,0.0537637218396934 +38,0.0208333333333332 +39,0.0343107696069045 +40,0.0483441215964552 +41,0.0198077862118806 +42,0.0311207395968725 +43,0.0444955089373458 +44,0.0190533549944159 +45,0.0290049795038723 +46,0.0417536642697558 +47,0.0185261550443084 +48,0.0277059929762261 +49,0.0398606084144816 +50,0.0181978813094817 +51,0.0271098219177584 +52,0.0386836665079729 +53,0.0180518611046889 +54,0.0272138992557141 +55,0.0381891287148314 +56,0.0180809085252469 +57,0.0281418959420061 +58,0.0384596362516637 +59,0.0182864418432272 +60,0.0302250788423173 +61,0.0397874837986351 +62,0.0186786556701694 +63,0.0342489348284216 +64,0.0429932815348666 +65,0.0192777878591759 +66,0.0422808966931999 +67,0.0506815964680563 +68,0.0201167847752226 +69,0.0615048274405271 +70,0.0744953894508454 +71,0.021246054596492 +72,0.142602265816215 +73,0.273502052865436 +74,0.325309673287599 +75,0.272705389655349 +76,0.149074257381345 +77,0.0247199397628712 +78,0.0680137859566976 +79,0.075388270873485 +80,0.0273637831604903 +81,0.0407867704453274 +82,0.0632964886441949 +83,0.0309749128751093 +84,0.0315202035072035 +85,0.0627625211892184 +86,0.0360843918243497 +87,0.02794920551495 +88,0.0677921493367236 +89,0.0437167157553067 +90,0.0270640150996317 +91,0.0783380025231622 +92,0.0561293738314281 +93,0.0278742033265809 +94,0.0981443889498639 +95,0.0794543457386548 diff --git a/buch/papers/reedsolomon/tikz/tikz/signal.txt b/buch/papers/reedsolomon/tikz/tikz/signal.txt new file mode 100644 index 0000000..c4fa5f8 --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/signal.txt @@ -0,0 +1,96 @@ +0,6 +1,6 +2,0 +3,6 +4,4 +5,0 +6,5 +7,2 +8,1 +9,2 +10,1 +11,2 +12,0 +13,6 +14,3 +15,5 +16,7 +17,5 +18,5 +19,4 +20,1 +21,5 +22,9 +23,9 +24,3 +25,2 +26,6 +27,6 +28,4 +29,2 +30,9 +31,1 +32,1 +33,1 +34,2 +35,6 +36,6 +37,1 +38,9 +39,7 +40,7 +41,1 +42,9 +43,9 +44,10 +45,9 +46,8 +47,5 +48,2 +49,4 +50,1 +51,0 +52,9 +53,3 +54,3 +55,3 +56,5 +57,6 +58,0 +59,8 +60,6 +61,9 +62,3 +63,4 +64,0 +65,0 +66,0 +67,0 +68,0 +69,0 +70,0 +71,0 +72,0 +73,0 +74,0 +75,0 +76,0 +77,0 +78,0 +79,0 +80,0 +81,0 +82,0 +83,0 +84,0 +85,0 +86,0 +87,0 +88,0 +89,0 +90,0 +91,0 +92,0 +93,0 +94,0 +95,0 diff --git a/buch/papers/reedsolomon/tikz/tikz/syndrom.txt b/buch/papers/reedsolomon/tikz/tikz/syndrom.txt new file mode 100644 index 0000000..8ca9eed --- /dev/null +++ b/buch/papers/reedsolomon/tikz/tikz/syndrom.txt @@ -0,0 +1,96 @@ +0,0 +1,0 +2,0 +3,0 +4,0 +5,0 +6,0 +7,0 +8,0 +9,0 +10,0 +11,0 +12,0 +13,0 +14,0 +15,0 +16,0 +17,0 +18,0 +19,0 +20,0 +21,0 +22,0 +23,0 +24,0 +25,0 +26,0 +27,0 +28,0 +29,0 +30,0 +31,0 +32,0 +33,0 +34,0 +35,0 +36,0 +37,0 +38,0 +39,0 +40,0 +41,0 +42,0 +43,0 +44,0 +45,0 +46,0 +47,0 +48,0 +49,0 +50,0 +51,0 +52,0 +53,0 +54,0 +55,0 +56,0 +57,0 +58,0 +59,0 +60,0 +61,0 +62,0 +63,0 +64,0.0275599094902563 +65,0.0115837187254191 +66,0.025877761014238 +67,0.0224618032819697 +68,0.04410594689944 +69,0.0474504002669341 +70,0.0227694695500626 +71,0.0271436638090525 +72,0.0104166666666667 +73,0.0271436638090523 +74,0.0227694695500608 +75,0.0474504002669343 +76,0.0441059468994397 +77,0.0224618032819701 +78,0.0258777610142379 +79,0.0115837187254183 +80,0.027559909490256 +81,0.0245124379481793 +82,0.0499782237195209 +83,0.0401432022864265 +84,0.0232923747656228 +85,0.0237974288564099 +86,0.0143895905726624 +87,0.0271745729691685 +88,0.0275599094902567 +89,0.0515501672184983 +90,0.0358255004834542 +91,0.024700508366373 +92,0.0210194725405171 +93,0.0177592928994296 +94,0.0261327016093158 +95,0.0314909067039411 |