diff options
author | LordMcFungus <mceagle117@gmail.com> | 2021-03-22 18:05:11 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-03-22 18:05:11 +0100 |
commit | 76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7 (patch) | |
tree | 11b2d41955ee4bfa0ae5873307c143f6b4d55d26 /vorlesungen/slides/5/charpoly.tex | |
parent | more chapter structure (diff) | |
parent | add title image (diff) | |
download | SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.tar.gz SeminarMatrizen-76d2d77ddb2bed6b7c6b8ec56648d85da4103ab7.zip |
Merge pull request #1 from AndreasFMueller/master
update
Diffstat (limited to 'vorlesungen/slides/5/charpoly.tex')
-rw-r--r-- | vorlesungen/slides/5/charpoly.tex | 78 |
1 files changed, 78 insertions, 0 deletions
diff --git a/vorlesungen/slides/5/charpoly.tex b/vorlesungen/slides/5/charpoly.tex new file mode 100644 index 0000000..63bfee5 --- /dev/null +++ b/vorlesungen/slides/5/charpoly.tex @@ -0,0 +1,78 @@ +% +% charpoly.tex +% +% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\begin{frame}[t] +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\frametitle{Charakteristisches Polynom über $\mathbb{C}$} +\vspace{-18pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Eigenwerte} +Nur diejenigen $\mu$ kommen in Frage, für die +$A-\mu I$ singulär ist: +\[ +\chi_{A}(\mu) += +\det (A-\mu I) = 0 +\] +$\Rightarrow$ $\mu$ ist Nullstelle von $\chi_{A}(X)\in\mathbb{C}[X]$ +\end{block} +\uncover<2->{% +\begin{block}{Zerlegung in Linearfaktoren} +$\mu_1,\dots,\mu_n$ die Nullstellen von $\chi_A(X)$: +\[ +\chi_A(X) += +(X-\mu_1)\dots (X-\mu_n) +\] +\end{block}} +\uncover<3->{% +\begin{block}{Fundamentalsatz der Algebra} +Über $\mathbb{C}$ zerfällt jedes Polynom in $\mathbb{C}[X]$ in +Linearfaktoren +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<4->{% +\begin{block}{Minimalpolynom} +Alle Nullstellen von $\chi_A(X)$ müssen in $m_A(X)$ vorkommen +\end{block}} +\uncover<5->{% +\begin{proof}[Beweis] +\begin{enumerate} +\item<6-> +$m_A(X) = (X-\lambda) \prod_{i\in I}(X-\mu_i)$ +\item<7-> +$A-\lambda I$ ist regulär +\end{enumerate} +\uncover<8->{% +\begin{align*} +&\Rightarrow& +m_A(A)&=0 +\\ +&& +\uncover<9->{ +(A-\lambda)^{-1}m_A(A) &=0 +} +\\ +&& +\uncover<10->{ +\prod_{i\in I}(A-\mu_i)&=0, +} +\end{align*}} +\uncover<11->{% +d.~h.~\( +\displaystyle +\overline{m}_A(X) += +\prod_i{i\in I}(X-\mu_i) +\in +\mathbb{C}[X] +\)} +\end{proof}} +\end{column} +\end{columns} +\end{frame} |