aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-06-14 07:26:10 +0200
committerGitHub <noreply@github.com>2021-06-14 07:26:10 +0200
commit114633b43a0f1ebedbc5dfd85f75ede9841f26fd (patch)
tree18e61c7d69883a1c9b69098b7d36856abaed5c1e /vorlesungen/slides
parentDelete buch.pdf (diff)
parentFix references.bib (diff)
downloadSeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.tar.gz
SeminarMatrizen-114633b43a0f1ebedbc5dfd85f75ede9841f26fd.zip
Merge branch 'master' into master
Diffstat (limited to 'vorlesungen/slides')
-rw-r--r--vorlesungen/slides/10/ableitung-exp.tex60
-rw-r--r--vorlesungen/slides/10/intro.tex45
-rw-r--r--vorlesungen/slides/10/matrix-dgl.tex83
-rw-r--r--vorlesungen/slides/10/n-zu-1.tex63
-rw-r--r--vorlesungen/slides/10/potenzreihenmethode.tex91
-rw-r--r--vorlesungen/slides/10/repetition.tex119
-rw-r--r--vorlesungen/slides/10/so2.tex141
-rw-r--r--vorlesungen/slides/10/taylor.tex216
-rw-r--r--vorlesungen/slides/10/template.tex21
-rw-r--r--vorlesungen/slides/10/vektorfelder.mp361
-rw-r--r--vorlesungen/slides/10/vektorfelder.tex82
-rw-r--r--vorlesungen/slides/2/Makefile.inc14
-rw-r--r--vorlesungen/slides/2/chapter.tex14
-rw-r--r--vorlesungen/slides/2/hilbertraum/adjungiert.tex83
-rw-r--r--vorlesungen/slides/2/hilbertraum/basis.tex65
-rw-r--r--vorlesungen/slides/2/hilbertraum/definition.tex63
-rw-r--r--vorlesungen/slides/2/hilbertraum/energie.tex67
-rw-r--r--vorlesungen/slides/2/hilbertraum/l2.tex61
-rw-r--r--vorlesungen/slides/2/hilbertraum/l2beispiel.tex82
-rw-r--r--vorlesungen/slides/2/hilbertraum/laplace.tex66
-rw-r--r--vorlesungen/slides/2/hilbertraum/plancherel.tex102
-rw-r--r--vorlesungen/slides/2/hilbertraum/qm.tex90
-rw-r--r--vorlesungen/slides/2/hilbertraum/riesz.tex76
-rw-r--r--vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex107
-rw-r--r--vorlesungen/slides/2/hilbertraum/sobolev.tex51
-rw-r--r--vorlesungen/slides/2/hilbertraum/spektral.tex91
-rw-r--r--vorlesungen/slides/2/hilbertraum/sturm.tex58
-rw-r--r--vorlesungen/slides/4/Makefile.inc14
-rw-r--r--vorlesungen/slides/4/chapter.tex13
-rw-r--r--vorlesungen/slides/4/char2.tex48
-rw-r--r--vorlesungen/slides/4/charakteristik.tex71
-rw-r--r--vorlesungen/slides/4/euklidmatrix.tex2
-rw-r--r--vorlesungen/slides/4/frobenius.tex54
-rw-r--r--vorlesungen/slides/4/galois/aufloesbarkeit.tex120
-rw-r--r--vorlesungen/slides/4/galois/automorphismus.tex118
-rw-r--r--vorlesungen/slides/4/galois/erweiterung.tex65
-rw-r--r--vorlesungen/slides/4/galois/images/Makefile12
-rw-r--r--vorlesungen/slides/4/galois/images/common.inc89
-rw-r--r--vorlesungen/slides/4/galois/images/wuerfel.pngbin0 -> 259243 bytes
-rw-r--r--vorlesungen/slides/4/galois/images/wuerfel.pov9
-rw-r--r--vorlesungen/slides/4/galois/images/wuerfel2.pngbin0 -> 366915 bytes
-rw-r--r--vorlesungen/slides/4/galois/images/wuerfel2.pov9
-rw-r--r--vorlesungen/slides/4/galois/konstruktion.tex147
-rw-r--r--vorlesungen/slides/4/galois/quadratur.tex66
-rw-r--r--vorlesungen/slides/4/galois/radikale.tex69
-rw-r--r--vorlesungen/slides/4/galois/sn.tex87
-rw-r--r--vorlesungen/slides/4/galois/winkeldreiteilung.tex94
-rw-r--r--vorlesungen/slides/4/galois/wuerfel.tex64
-rw-r--r--vorlesungen/slides/4/qundr.tex138
-rw-r--r--vorlesungen/slides/5/Makefile.inc7
-rw-r--r--vorlesungen/slides/5/approximation.tex56
-rw-r--r--vorlesungen/slides/5/beispiele/kombiniert.jpgbin109739 -> 117063 bytes
-rw-r--r--vorlesungen/slides/5/beispiele/kombiniert.pov1
-rw-r--r--vorlesungen/slides/5/chapter.tex6
-rw-r--r--vorlesungen/slides/5/normalbeispiel.tex108
-rw-r--r--vorlesungen/slides/5/normalbeispiel34.tex80
-rw-r--r--vorlesungen/slides/5/plan.tex198
-rw-r--r--vorlesungen/slides/5/planbeispiele.tex103
-rw-r--r--vorlesungen/slides/5/potenzreihenmethode.tex2
-rw-r--r--vorlesungen/slides/5/stoneweierstrass.tex63
-rw-r--r--vorlesungen/slides/5/swbeweis.tex56
-rw-r--r--vorlesungen/slides/6/Makefile.inc32
-rw-r--r--vorlesungen/slides/6/chapter.tex30
-rw-r--r--vorlesungen/slides/6/darstellungen/charakter.tex108
-rw-r--r--vorlesungen/slides/6/darstellungen/definition.tex59
-rw-r--r--vorlesungen/slides/6/darstellungen/irreduzibel.tex47
-rw-r--r--vorlesungen/slides/6/darstellungen/schur.tex47
-rw-r--r--vorlesungen/slides/6/darstellungen/skalarprodukt.tex42
-rw-r--r--vorlesungen/slides/6/darstellungen/summe.tex89
-rw-r--r--vorlesungen/slides/6/darstellungen/zyklisch.tex84
-rw-r--r--vorlesungen/slides/6/normalteiler/konjugation.tex77
-rw-r--r--vorlesungen/slides/6/normalteiler/normal.tex79
-rw-r--r--vorlesungen/slides/6/permutationen/matrizen.tex79
-rw-r--r--vorlesungen/slides/6/produkte/direkt.tex66
-rw-r--r--vorlesungen/slides/6/produkte/frei.tex79
-rw-r--r--vorlesungen/slides/6/punktgruppen/WasserstoffAufspaltung.pdfbin0 -> 74764 bytes
-rw-r--r--vorlesungen/slides/6/punktgruppen/aufspaltung.tex15
-rw-r--r--vorlesungen/slides/6/punktgruppen/c.tex49
-rw-r--r--vorlesungen/slides/6/punktgruppen/chemie.tex63
-rw-r--r--vorlesungen/slides/6/punktgruppen/d.tex53
-rw-r--r--vorlesungen/slides/6/punktgruppen/ebene.tex79
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/Makefile40
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/cn.jpgbin0 -> 49689 bytes
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/cn.pov10
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/cnh.jpgbin0 -> 55691 bytes
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/cnh.pov11
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/cnv.jpgbin0 -> 78880 bytes
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/cnv.pov11
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/common.inc200
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/dn.jpgbin0 -> 54769 bytes
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/dn.pov12
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/dnd.jpgbin0 -> 78146 bytes
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/dnd.pov13
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/dnh.jpgbin0 -> 61656 bytes
-rw-r--r--vorlesungen/slides/6/punktgruppen/images/dnh.pov13
-rw-r--r--vorlesungen/slides/6/punktgruppen/p.tex38
-rw-r--r--vorlesungen/slides/6/punktgruppen/semidirekt.tex80
-rw-r--r--vorlesungen/slides/6/punktgruppen/toi/I.jpgbin0 -> 255945 bytes
-rw-r--r--vorlesungen/slides/6/punktgruppen/toi/O.jpgbin0 -> 298533 bytes
-rw-r--r--vorlesungen/slides/6/punktgruppen/toi/T.jpgbin0 -> 149082 bytes
-rw-r--r--vorlesungen/slides/7/Makefile.inc35
-rw-r--r--vorlesungen/slides/7/ableitung.tex68
-rw-r--r--vorlesungen/slides/7/algebraisch.tex115
-rw-r--r--vorlesungen/slides/7/bch.tex76
-rw-r--r--vorlesungen/slides/7/chapter.tex32
-rw-r--r--vorlesungen/slides/7/dg.tex92
-rw-r--r--vorlesungen/slides/7/drehanim.tex155
-rw-r--r--vorlesungen/slides/7/drehung.tex132
-rw-r--r--vorlesungen/slides/7/einparameter.tex93
-rw-r--r--vorlesungen/slides/7/exponentialreihe.tex24
-rw-r--r--vorlesungen/slides/7/haar.tex84
-rw-r--r--vorlesungen/slides/7/hopf.tex69
-rw-r--r--vorlesungen/slides/7/images/Makefile29
-rw-r--r--vorlesungen/slides/7/images/c/c01.jpgbin0 -> 89652 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c02.jpgbin0 -> 91977 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c03.jpgbin0 -> 92274 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c04.jpgbin0 -> 90229 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c05.jpgbin0 -> 91184 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c06.jpgbin0 -> 91815 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c07.jpgbin0 -> 93209 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c08.jpgbin0 -> 94763 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c09.jpgbin0 -> 96009 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c10.jpgbin0 -> 97027 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c11.jpgbin0 -> 98137 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c12.jpgbin0 -> 99295 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c13.jpgbin0 -> 100147 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c14.jpgbin0 -> 101194 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c15.jpgbin0 -> 101868 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c16.jpgbin0 -> 102544 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c17.jpgbin0 -> 104255 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c18.jpgbin0 -> 105202 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c19.jpgbin0 -> 106230 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c20.jpgbin0 -> 106768 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c21.jpgbin0 -> 107806 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c22.jpgbin0 -> 108712 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c23.jpgbin0 -> 110159 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c24.jpgbin0 -> 111085 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c25.jpgbin0 -> 111563 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c26.jpgbin0 -> 113074 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c27.jpgbin0 -> 114026 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c28.jpgbin0 -> 114945 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c29.jpgbin0 -> 115822 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c30.jpgbin0 -> 117059 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c31.jpgbin0 -> 118367 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c32.jpgbin0 -> 118665 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c33.jpgbin0 -> 120098 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c34.jpgbin0 -> 121217 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c35.jpgbin0 -> 122325 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c36.jpgbin0 -> 122812 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c37.jpgbin0 -> 123804 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c38.jpgbin0 -> 124962 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c39.jpgbin0 -> 125724 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c40.jpgbin0 -> 126927 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c41.jpgbin0 -> 127858 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c42.jpgbin0 -> 128953 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c43.jpgbin0 -> 129970 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c44.jpgbin0 -> 130975 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c45.jpgbin0 -> 131873 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c46.jpgbin0 -> 132818 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c47.jpgbin0 -> 133829 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c48.jpgbin0 -> 134665 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c49.jpgbin0 -> 135442 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c50.jpgbin0 -> 136606 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c51.jpgbin0 -> 136916 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c52.jpgbin0 -> 137866 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c53.jpgbin0 -> 138695 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c54.jpgbin0 -> 139282 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c55.jpgbin0 -> 140090 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c56.jpgbin0 -> 140469 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c57.jpgbin0 -> 141408 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c58.jpgbin0 -> 141554 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c59.jpgbin0 -> 142018 bytes
-rw-r--r--vorlesungen/slides/7/images/c/c60.jpgbin0 -> 142174 bytes
-rw-r--r--vorlesungen/slides/7/images/common.inc70
-rw-r--r--vorlesungen/slides/7/images/commutator.ini8
-rw-r--r--vorlesungen/slides/7/images/commutator.m111
-rw-r--r--vorlesungen/slides/7/images/commutator.pov59
-rw-r--r--vorlesungen/slides/7/images/drehung.inc142
-rw-r--r--vorlesungen/slides/7/images/interpolation.ini8
-rw-r--r--vorlesungen/slides/7/images/interpolation.m54
-rw-r--r--vorlesungen/slides/7/images/interpolation.pov10
-rw-r--r--vorlesungen/slides/7/images/rodriguez.jpgbin0 -> 168776 bytes
-rw-r--r--vorlesungen/slides/7/images/rodriguez.pngbin0 -> 261798 bytes
-rw-r--r--vorlesungen/slides/7/images/rodriguez.pov118
-rw-r--r--vorlesungen/slides/7/images/test.pov7
-rw-r--r--vorlesungen/slides/7/integration.tex66
-rw-r--r--vorlesungen/slides/7/interpolation.tex112
-rw-r--r--vorlesungen/slides/7/kommutator.tex166
-rw-r--r--vorlesungen/slides/7/kurven.tex104
-rw-r--r--vorlesungen/slides/7/liealgbeispiel.tex78
-rw-r--r--vorlesungen/slides/7/liealgebra.tex85
-rw-r--r--vorlesungen/slides/7/logarithmus.tex82
-rw-r--r--vorlesungen/slides/7/mannigfaltigkeit.tex46
-rw-r--r--vorlesungen/slides/7/parameter.tex107
-rw-r--r--vorlesungen/slides/7/qdreh.tex110
-rw-r--r--vorlesungen/slides/7/quaternionen.tex74
-rw-r--r--vorlesungen/slides/7/semi.tex117
-rw-r--r--vorlesungen/slides/7/sl2.tex242
-rw-r--r--vorlesungen/slides/7/symmetrien.tex145
-rw-r--r--vorlesungen/slides/7/ueberlagerung.tex98
-rw-r--r--vorlesungen/slides/7/vektorlie.tex206
-rw-r--r--vorlesungen/slides/7/zusammenhang.tex99
-rw-r--r--vorlesungen/slides/8/Makefile.inc20
-rw-r--r--vorlesungen/slides/8/amax.tex86
-rw-r--r--vorlesungen/slides/8/chapter.tex21
-rw-r--r--vorlesungen/slides/8/chrind.tex231
-rw-r--r--vorlesungen/slides/8/chrindprop.tex62
-rw-r--r--vorlesungen/slides/8/chroma1.tex56
-rw-r--r--vorlesungen/slides/8/chrwilf.tex115
-rw-r--r--vorlesungen/slides/8/inzidenz.tex4
-rw-r--r--vorlesungen/slides/8/inzidenzd.tex4
-rw-r--r--vorlesungen/slides/8/produkt.tex2
-rw-r--r--vorlesungen/slides/8/spanningtree.tex4
-rw-r--r--vorlesungen/slides/8/subgraph.tex60
-rw-r--r--vorlesungen/slides/8/wavelets/Makefile8
-rw-r--r--vorlesungen/slides/8/wavelets/beispiel.tex44
-rw-r--r--vorlesungen/slides/8/wavelets/dilatation.tex62
-rw-r--r--vorlesungen/slides/8/wavelets/dilbei.tex46
-rw-r--r--vorlesungen/slides/8/wavelets/ev.m97
-rw-r--r--vorlesungen/slides/8/wavelets/fourier.tex86
-rw-r--r--vorlesungen/slides/8/wavelets/frame.tex66
-rw-r--r--vorlesungen/slides/8/wavelets/framekonstanten.tex71
-rw-r--r--vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex78
-rw-r--r--vorlesungen/slides/8/wavelets/funktionen.tex78
-rw-r--r--vorlesungen/slides/8/wavelets/gundh.tex85
-rw-r--r--vorlesungen/slides/8/wavelets/laplacebasis.tex62
-rw-r--r--vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex46
-rw-r--r--vorlesungen/slides/8/wavelets/matrixdilatation.tex39
-rw-r--r--vorlesungen/slides/8/wavelets/vektoren.tex200
-rw-r--r--vorlesungen/slides/8/weitere.tex43
-rw-r--r--vorlesungen/slides/8/wilf.m22
-rw-r--r--vorlesungen/slides/9/Makefile.inc15
-rw-r--r--vorlesungen/slides/9/chapter.tex16
-rw-r--r--vorlesungen/slides/9/parrondo/deformation.tex45
-rw-r--r--vorlesungen/slides/9/parrondo/erwartung.tex81
-rw-r--r--vorlesungen/slides/9/parrondo/kombiniert.tex73
-rw-r--r--vorlesungen/slides/9/parrondo/spiela.tex52
-rw-r--r--vorlesungen/slides/9/parrondo/spielb.tex100
-rw-r--r--vorlesungen/slides/9/parrondo/spielbmod.tex103
-rw-r--r--vorlesungen/slides/9/parrondo/uebersicht.tex17
-rw-r--r--vorlesungen/slides/9/pf/dreieck.tex44
-rw-r--r--vorlesungen/slides/9/pf/folgerungen.tex203
-rw-r--r--vorlesungen/slides/9/pf/positiv.tex64
-rw-r--r--vorlesungen/slides/9/pf/primitiv.tex84
-rw-r--r--vorlesungen/slides/9/pf/trennung.tex99
-rw-r--r--vorlesungen/slides/9/pf/vergleich.tex113
-rw-r--r--vorlesungen/slides/9/pf/vergleich3d.tex26
-rw-r--r--vorlesungen/slides/9/potenz.tex15
-rw-r--r--vorlesungen/slides/Makefile.inc6
-rw-r--r--vorlesungen/slides/a/Makefile.inc25
-rw-r--r--vorlesungen/slides/a/aes/blocks.tex193
-rw-r--r--vorlesungen/slides/a/aes/bytes.tex96
-rw-r--r--vorlesungen/slides/a/aes/keys.tex36
-rw-r--r--vorlesungen/slides/a/aes/runden.tex47
-rw-r--r--vorlesungen/slides/a/aes/sinverse.tex15
-rw-r--r--vorlesungen/slides/a/chapter.tex23
-rw-r--r--vorlesungen/slides/a/dc/beispiel.tex54
-rw-r--r--vorlesungen/slides/a/dc/effizient.tex65
-rw-r--r--vorlesungen/slides/a/dc/naiv.txt2
-rw-r--r--vorlesungen/slides/a/dc/prinzip.tex86
-rw-r--r--vorlesungen/slides/a/ecc/gruppendh.tex51
-rw-r--r--vorlesungen/slides/a/ecc/inverse.tex48
-rw-r--r--vorlesungen/slides/a/ecc/kurve.tex56
-rw-r--r--vorlesungen/slides/a/ecc/oakley.tex85
-rw-r--r--vorlesungen/slides/a/ecc/oakley1.txt14
-rw-r--r--vorlesungen/slides/a/ecc/oakley2.txt16
-rw-r--r--vorlesungen/slides/a/ecc/oakley3.txt17
-rw-r--r--vorlesungen/slides/a/ecc/oakley4.txt17
-rw-r--r--vorlesungen/slides/a/ecc/operation.tex68
-rw-r--r--vorlesungen/slides/a/ecc/prime1.txt5
-rw-r--r--vorlesungen/slides/a/ecc/prime2.txt8
-rw-r--r--vorlesungen/slides/a/ecc/primes13
-rw-r--r--vorlesungen/slides/a/ecc/quadrieren.tex59
-rw-r--r--vorlesungen/slides/slides.tex24
-rw-r--r--vorlesungen/slides/test.tex31
275 files changed, 13549 insertions, 33 deletions
diff --git a/vorlesungen/slides/10/ableitung-exp.tex b/vorlesungen/slides/10/ableitung-exp.tex
new file mode 100644
index 0000000..10ce191
--- /dev/null
+++ b/vorlesungen/slides/10/ableitung-exp.tex
@@ -0,0 +1,60 @@
+%
+% ableitung-exp.tex -- Ableitung von exp(x)
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+% Erstellt durch Roy Seitz
+%
+% !TeX spellcheck = de_CH
+\bgroup
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ %\frametitle{Ableitung von $\exp(x)$}
+ %\vspace{-20pt}
+ \begin{columns}[t,onlytextwidth]
+ \begin{column}{0.48\textwidth}
+ \begin{block}{Ableitung von $\exp(at)$}
+ \begin{align*}
+ \frac{d}{dt} \exp(at)
+ &=
+ \frac{d}{dt} \sum_{k=0}^{\infty} a^k \frac{t^k}{k!}
+ \\
+ &\uncover<2->{
+ = \sum_{k=0}^{\infty} a^k\frac{kt^{k-1}}{k(k-1)!}
+ }
+ \\
+ &\uncover<3->{
+ = a \sum_{k=1}^{\infty}
+ a^{k-1}\frac{t^{k-1}}{(k-1)!}
+ }
+ \\
+ &\uncover<4->{
+ = a \exp(at)
+ }
+ \end{align*}
+ \end{block}
+ \end{column}
+ \begin{column}{0.48\textwidth}
+ \uncover<5->{
+ \begin{block}{Ableitung von $\exp(At)$}
+ \begin{align*}
+ \frac{d}{dt} \exp(At)
+ &=
+ \frac{d}{dt} \sum_{k=0}^{\infty} A^k \frac{t^k}{k!}
+ \\
+ &=
+ \sum_{k=0}^{\infty} A^k\frac{kt^{k-1}}{k(k-1)!}
+ \\
+ &=
+ A \sum_{k=1}^{\infty} A^{k-1}\frac{t^{k-1}}{(k-1)!}
+ \\
+ &=
+ A \exp(At)
+ \end{align*}
+ \end{block}
+ }
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\egroup
diff --git a/vorlesungen/slides/10/intro.tex b/vorlesungen/slides/10/intro.tex
new file mode 100644
index 0000000..276bf49
--- /dev/null
+++ b/vorlesungen/slides/10/intro.tex
@@ -0,0 +1,45 @@
+%
+% intro.tex -- Repetition Lie-Gruppen und -Algebren
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+% Erstellt durch Roy Seitz
+%
+% !TeX spellcheck = de_CH
+\bgroup
+
+
+
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+% \frametitle{Repetition}
+% \vspace{-20pt}
+ \begin{block}{Offene Fragen}
+ \begin{itemize}[<+->]
+ \item Woher kommt die Exponentialfunktion?
+ \begin{fleqn}
+ \[
+ \exp(At)
+ =
+ 1
+ + At
+ + A^2\frac{t^2}{2}
+ + A^3\frac{t^3}{3!}
+ + \ldots
+ \]
+ \end{fleqn}
+ \item Wie löst man eine Matrix-DGL?
+ \begin{fleqn}
+ \[
+ \dot\gamma(t) = A\gamma(t),
+ \qquad
+ \gamma(t) \in G \subset M_n
+ \]
+ \end{fleqn}
+ \item Lie-Gruppen und Lie-Algebren
+ \item Was bedeutet $\exp(At)$?
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+\egroup
diff --git a/vorlesungen/slides/10/matrix-dgl.tex b/vorlesungen/slides/10/matrix-dgl.tex
new file mode 100644
index 0000000..ae68fb1
--- /dev/null
+++ b/vorlesungen/slides/10/matrix-dgl.tex
@@ -0,0 +1,83 @@
+%
+% matrix-dgl.tex -- Matrix-Differentialgleichungen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+% Erstellt durch Roy Seitz
+%
+% !TeX spellcheck = de_CH
+\bgroup
+
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{1.~Ordnung mit Skalaren}
+ \vspace{-20pt}
+ \begin{columns}[t,onlytextwidth]
+ \begin{column}{0.48\textwidth}
+ \begin{block}{Aufgabe}
+ Sei $a, x(t), x_0 \in \mathbb R$,
+ \[
+ \dot x(t) = ax(t),
+ \quad
+ x(0) = x_0
+ \]
+ \end{block}
+ \begin{block}{Potenzreihen-Ansatz}
+ Sei $a_k \in \mathbb R$,
+ \[
+ x(t) = a_0 + a_1t + a_2t^2 + a_3t^3 \ldots
+ \]
+ \end{block}
+ \end{column}
+ \begin{column}{0.48\textwidth}
+ \begin{block}{Lösung}
+ Einsetzen in DGL, Koeffizientenvergleich liefert
+ \[ x(t) = \exp(at) \, x_0, \]
+ wobei
+ \begin{align*}
+ \exp(at)
+ &= 1 + at + \frac{a^2t^2}{2} + \frac{a^3t^3}{3!} + \ldots \\
+ &{\color{gray}(= e^{at}.)}
+ \end{align*}
+ \end{block}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{1.~Ordnung mit Matrizen}
+ \vspace{-20pt}
+ \begin{columns}[t,onlytextwidth]
+ \begin{column}{0.48\textwidth}
+ \begin{block}{Aufgabe}
+ Sei $A \in M_n$, $x(t), x_0 \in \mathbb R^n$,
+ \[
+ \dot x(t) = Ax(t),
+ \quad
+ x(0) = x_0
+ \]
+ \end{block}
+ \begin{block}{Potenzreihen-Ansatz}
+ Sei $A_k \in \mathbb M_n$,
+ \[
+ x(t) = A_0 + A_1t + A_2t^2 + A_3t^3 \ldots
+ \]
+ \end{block}
+ \end{column}
+ \begin{column}{0.48\textwidth}
+ \begin{block}{Lösung}
+ Einsetzen in DGL, Koeffizientenvergleich liefert
+ \[ x(t) = \exp(At) \, x_0, \]
+ wobei
+ \[
+ \exp(At)
+ = 1 + At + \frac{A^2t^2}{2} + \frac{A^3t^3}{3!} + \ldots
+ \]
+ \end{block}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\egroup
diff --git a/vorlesungen/slides/10/n-zu-1.tex b/vorlesungen/slides/10/n-zu-1.tex
new file mode 100644
index 0000000..09475ad
--- /dev/null
+++ b/vorlesungen/slides/10/n-zu-1.tex
@@ -0,0 +1,63 @@
+%
+% n-zu-1.tex -- Umwandlend einer DGL n-ter Ordnung in ein System 1. Ordnung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+% Erstellt durch Roy Seitz
+%
+% !TeX spellcheck = de_CH
+\bgroup
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ %\frametitle{Reicht $1.$ Ordnung?}
+ %\vspace{-20pt}
+ \begin{columns}[t,onlytextwidth]
+ \begin{column}{0.48\textwidth}
+ \uncover<1->{
+ \begin{block}{Beispiel: DGL 3.~Ordnung} \vspace*{-1ex}
+ \begin{align*}
+ x^{(3)} + a_2 \ddot x + a_1 \dot x + a_0 x = 0 \\
+ \Rightarrow
+ x^{(3)} = -a_2 \ddot x - a_1 \dot x - a_0 x
+ \end{align*}
+ \end{block}
+ }
+ \uncover<2->{
+ \begin{block}{Ziel: Nur noch 1.~Ableitungen}
+ Einführen neuer Variablen:
+ \begin{align*}
+ x_0 &\coloneqq x &
+ x_1 &\coloneqq \dot x &
+ x_2 &\coloneqq \ddot x
+ \end{align*}
+ System von Gleichungen 1.~Ordnung
+ \begin{align*}
+ \dot x_0 &= x_1 \\
+ \dot x_1 &= x_2 \\
+ \dot x_2 &= -a_2 x_2 - a_1 x_1 - a_0 x_0
+ \end{align*}
+ \end{block}
+ }
+ \end{column}
+ \uncover<3->{
+ \begin{column}{0.48\textwidth}
+ \begin{block}{Als Vektor-Gleichung} \vspace*{-1ex}
+ \begin{align*}
+ \frac{d}{dt}
+ \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix}
+ = \begin{pmatrix}
+ 0 & 1 & 0 \\
+ 0 & 0 & 1 \\
+ -a_0 & -a_1 & -a_2
+ \end{pmatrix}
+ \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix}
+ \end{align*}
+
+ \uncover<4->{Geht für jede lineare Differentialgleichung!}
+
+ \end{block}
+ \end{column}
+ }
+ \end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/10/potenzreihenmethode.tex b/vorlesungen/slides/10/potenzreihenmethode.tex
new file mode 100644
index 0000000..1715134
--- /dev/null
+++ b/vorlesungen/slides/10/potenzreihenmethode.tex
@@ -0,0 +1,91 @@
+%
+% potenzreihenmethode.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+% Bearbeitet durch Roy Seitz
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Potenzreihenmethode}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Lineare Differentialgleichung}
+\begin{align*}
+x'&=ax&&\Rightarrow&x'-ax&=0
+\\
+x(0)&=C
+\end{align*}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Potenzreihenansatz}
+\begin{align*}
+x(t)
+&=
+a_0+ a_1t + a_2t^2 + \dots
+\\
+x(0)&=a_0=C
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\uncover<3->{%
+\begin{block}{Lösung}
+\[
+\arraycolsep=1.4pt
+\begin{array}{rcrcrcrcrcr}
+\uncover<3->{ x'(t)}
+ \uncover<5->{
+ &=&\phantom{(} a_1\phantom{\mathstrut-aa_0)}
+ &+& 2a_2\phantom{\mathstrut-aa_1)}t
+ &+& 3a_3\phantom{\mathstrut-aa_2)}t^2
+ &+& 4a_4\phantom{\mathstrut-aa_3)}t^3
+ &+& \dots}\\
+\uncover<3->{-ax(t)}
+ \uncover<6->{
+ &=&\mathstrut-aa_0 \phantom{)}
+ &-& aa_1\phantom{)}t
+ &-& aa_2\phantom{)}t^2
+ &-& aa_3\phantom{)}t^3
+ &-& \dots}\\[2pt]
+\hline
+\\[-10pt]
+\uncover<3->{0}
+ \uncover<7->{
+ &=&(a_1-aa_0)
+ &+& (2a_2-aa_1)t
+ &+& (3a_3-aa_2)t^2
+ &+& (4a_4-aa_3)t^3
+ &+& \dots}\\
+\end{array}
+\]
+\begin{align*}
+\uncover<4->{
+a_0&=C}\uncover<8->{,
+\quad
+a_1=aa_0=aC}\uncover<9->{,
+\quad
+a_2=\frac12a^2C}\uncover<10->{,
+\quad
+a_3=\frac16a^3C}\uncover<11->{,
+\ldots,
+a_k=\frac1{k!}a^kC}
+\hspace{3cm}
+\\
+\uncover<4->{
+\Rightarrow x(t) &= C}\uncover<8->{+Cat}\uncover<9->{ + C\frac12(at)^2}
+\uncover<10->{ + C \frac16(at)^3}
+\uncover<11->{ + \dots+C\frac{1}{k!}(at)^k+\dots}
+\ifthenelse{\boolean{presentation}}{
+\only<12>{
+=
+C\sum_{k=0}^\infty \frac{(at)^k}{k!}}
+}{}
+\uncover<13->{=
+C\exp(at)}
+\end{align*}
+\end{block}}
+\end{frame}
diff --git a/vorlesungen/slides/10/repetition.tex b/vorlesungen/slides/10/repetition.tex
new file mode 100644
index 0000000..7c007ca
--- /dev/null
+++ b/vorlesungen/slides/10/repetition.tex
@@ -0,0 +1,119 @@
+%
+% repetition.tex -- Repetition Lie-Gruppen und -Algebren
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+% Erstellt durch Roy Seitz
+%
+% !TeX spellcheck = de_CH
+\bgroup
+
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{Repetition}
+ \vspace{-20pt}
+ \begin{columns}[t,onlytextwidth]
+ \begin{column}{0.48\textwidth}
+ \uncover<1->{
+ \begin{block}{Lie-Gruppe}
+ Kontinuierliche Matrix-Gruppe $G$ mit bestimmter Eigenschaft
+ \end{block}
+ }
+ \uncover<3->{
+ \begin{block}{Ein-Parameter-Untergruppe}
+ Darstellung der Lie-Gruppe $G$:
+ \[
+ \gamma \colon \mathbb R \to G
+ : \quad
+ t \mapsto \gamma(t),
+ \]
+ so dass
+ \[ \gamma(s + t) = \gamma(t) \gamma(s). \]
+ \end{block}
+ }
+ \end{column}
+ \begin{column}{0.48\textwidth}
+ \uncover<2->{
+ \begin{block}{Beispiel}
+ Volumen-erhaltende Abbildungen:
+ \[ \gSL2R= \{A \in M_2 \,|\, \det(A) = 1\} .\]
+ \begin{align*}
+ \uncover<4->{ \gamma_x(t) }
+ &
+ \uncover<4->{= \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} }
+ \\
+ \uncover<5->{ \gamma_y(t) }
+ &
+ \uncover<5->{= \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} }
+ \\
+ \uncover<6->{ \gamma_h(t)}
+ &
+ \uncover<6->{= \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} }
+ \end{align*}
+ \end{block}
+ }
+ \end{column}
+ \end{columns}
+\end{frame}
+
+
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{Repetition}
+ \vspace{-20pt}
+ \begin{columns}[t,onlytextwidth]
+ \begin{column}{0.48\textwidth}
+ \uncover<1->{
+ \begin{block}{Lie-Algebra aus Lie-Gruppe}
+ Ableitungen der Ein-Parameter-Untergruppen:
+ \begin{align*}
+ G &\to \mathcal A \\
+ \gamma &\mapsto \dot\gamma(0)
+ \end{align*}
+ \uncover<3->{
+ Lie-Klammer als Produkt:
+ \[ [A, B] = AB - BA \in \mathcal A \]
+ }
+ \end{block}
+ }
+ \uncover<7->{\vspace*{-4ex}
+ \begin{block}{Lie-Gruppe aus Lie-Algebra}
+ Lösung der Differentialgleichung:
+ \[
+ \dot\gamma(t) = A\gamma(t)
+ \quad \text{mit} \quad
+ A = \dot\gamma(0)
+ \]
+ \[
+ \Rightarrow \gamma(t) = \exp(At)
+ \]
+ \end{block}
+ }
+ \end{column}
+ \begin{column}{0.48\textwidth}
+ \uncover<2->{
+ \begin{block}{Beispiel}
+ Lie-Algebra von \gSL2R:
+ \[ \asl2R = \{ A \in M_2 \,|\, \Spur(A) = 0 \} \]
+ \end{block}
+ }
+ \begin{align*}
+ \uncover<4->{ X(t) }
+ &
+ \uncover<4->{= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} }
+ \\
+ \uncover<5->{ Y(t) }
+ &
+ \uncover<5->{= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} }
+ \\
+ \uncover<6->{ H(t) }
+ &
+ \uncover<6->{= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} }
+ \end{align*}
+
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\egroup
diff --git a/vorlesungen/slides/10/so2.tex b/vorlesungen/slides/10/so2.tex
new file mode 100644
index 0000000..dcbcdc8
--- /dev/null
+++ b/vorlesungen/slides/10/so2.tex
@@ -0,0 +1,141 @@
+%
+% so2.tex -- Illustration of so(2) -> SO(2)
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+% Erstellt durch Roy Seitz
+%
+% !TeX spellcheck = de_CH
+\bgroup
+
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{Von der Lie-Gruppe zur -Algebra}
+ \vspace{-20pt}
+ \begin{columns}[t,onlytextwidth]
+ \begin{column}{0.48\textwidth}
+ \uncover<1->{
+ \begin{block}{Lie-Gruppe}
+ Darstellung von \gSO2:
+ \begin{align*}
+ \mathbb R
+ &\to
+ \gSO2
+ \\
+ t
+ &\mapsto
+ \begin{pmatrix}
+ \cos t & -\sin t \\
+ \sin t & \phantom-\cos t
+ \end{pmatrix}
+ \end{align*}
+ \end{block}
+ }
+ \uncover<2->{
+ \begin{block}{Ableitung am neutralen Element}
+ \begin{align*}
+ \frac{d}{d t}
+ &
+ \left.
+ \begin{pmatrix}
+ \cos t & -\sin t \\
+ \sin t & \phantom-\cos t
+ \end{pmatrix}
+ \right|_{ t = 0}
+ \\
+ =
+ &
+ \begin{pmatrix} -\sin0 & -\cos0 \\ \phantom-\cos0 & -\sin0 \end{pmatrix}
+ =
+ \begin{pmatrix} 0 & -1 \\ 1 & \phantom-0 \end{pmatrix}
+ \end{align*}
+ \end{block}
+ }
+ \end{column}
+ \begin{column}{0.48\textwidth}
+ \uncover<3->{
+ \begin{block}{Lie-Algebra}
+ Darstellung von \aso2:
+ \begin{align*}
+ \mathbb R
+ &\to
+ \aso2
+ \\
+ t
+ &\mapsto
+ \begin{pmatrix}
+ 0 & -t \\
+ t & \phantom-0
+ \end{pmatrix}
+ \end{align*}
+ \end{block}
+ }
+ \end{column}
+ \end{columns}
+\end{frame}
+
+
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{Von der Lie-Algebra zur -Gruppe}
+ \vspace{-20pt}
+ \begin{columns}[t,onlytextwidth]
+ \begin{column}{0.48\textwidth}
+ \uncover<1->{
+ \begin{block}{Differentialgleichung}
+ Gegeben:
+ \[
+ J
+ =
+ \dot\gamma(0) = \begin{pmatrix} 0 & -1 \\ 1 & \phantom-0 \end{pmatrix}
+ \]
+ Gesucht:
+ \[ \dot \gamma (t) = J \gamma(t) \qquad \gamma \in \gSO2 \]
+ \[ \Rightarrow \gamma(t) = \exp(Jt) \gamma(0) = \exp(Jt) \]
+ \end{block}
+ }
+ \end{column}
+ \begin{column}{0.48\textwidth}
+ \uncover<2->{
+ \begin{block}{Lie-Algebra}
+ Potenzen von $J$:
+ \begin{align*}
+ J^2 &= -I &
+ J^3 &= -J &
+ J^4 &= I &
+ \ldots
+ \end{align*}
+ \end{block}
+ }
+ \end{column}
+ \end{columns}
+\uncover<3->{
+ Folglich:
+ \begin{align*}
+ \exp(Jt)
+ &= I + Jt
+ + J^2\frac{t^2}{2!}
+ + J^3\frac{t^3}{3!}
+ + J^4\frac{t^4}{4!}
+ + J^5\frac{t^5}{5!}
+ + \ldots \\
+ &= \begin{pmatrix}
+ \vspace*{3pt}
+ 1 - \frac{t^2}{2} + \frac{t^4}{4!} - \ldots
+ &
+ -t + \frac{t^3}{3!} - \frac{t^5}{5!} + \ldots
+ \\
+ t - \frac{t^3}{3!} + \frac{t^5}{5!} - \ldots
+ &
+ 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \ldots
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ \cos t & -\sin t \\
+ \sin t & \phantom-\cos t
+ \end{pmatrix}
+ \end{align*}
+ }
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/10/taylor.tex b/vorlesungen/slides/10/taylor.tex
new file mode 100644
index 0000000..8c71965
--- /dev/null
+++ b/vorlesungen/slides/10/taylor.tex
@@ -0,0 +1,216 @@
+%
+% taylor.tex -- Repetition Taylot-Reihen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+% Erstellt durch Roy Seitz
+%
+% !TeX spellcheck = de_CH
+\bgroup
+
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{Beispiel $\sin(x)$}
+ \ifthenelse{\boolean{presentation}}{\vspace{-20pt}}{\vspace{-8pt}}
+ \begin{block}{Taylor-Approximationen von $\sin(x)$}
+ \begin{align*}
+ p_{
+ \only<1>{0}
+ \only<2>{1}
+ \only<3>{2}
+ \only<4>{3}
+ \only<5>{4}
+ \only<6>{5}
+ \only<7->{n}
+ }(x)
+ &=
+ \uncover<1->{0}
+ \uncover<2->{+ x}
+ \uncover<3->{+ 0 \frac{x^2}{2!}}
+ \uncover<4->{- 1 \frac{x^3}{3!}}
+ \uncover<5->{+ 0 \frac{x^4}{4!}}
+ \uncover<6->{+ 1 \frac{x^5}{5!}}
+ \uncover<7->{+ \ldots}
+ \uncover<8->{
+ = \sum_{k=0}^{n/2} (-1)^{2k + 1}\frac{x^{2k+1}}{(2k+1)!}
+ }
+ \end{align*}
+ \end{block}
+ \begin{center}
+ \begin{tikzpicture}[>=latex,thick,scale=1.3]
+ \draw[->] (-5.0, 0.0) -- (5.0,0.0) coordinate[label=$x$];
+ \draw[->] ( 0.0,-1.5) -- (0.0,1.5);
+ \clip (-5,-1.5) rectangle (5,1.5);
+ \draw[domain=-4:4, samples=50, smooth, blue]
+ plot ({\x}, {sin(180/3.1415968*\x)})
+ node[above right] {$\sin(x)$};
+ \uncover<1|handout:0>{
+ \draw[domain=-4:4, samples=2, smooth, red]
+ plot ({\x}, {0})
+ node[above right] {$p_0(x)$};}
+ \uncover<2|handout:0>{
+ \draw[domain=-1.5:1.5, samples=2, smooth, red]
+ plot ({\x}, {\x})
+ node[below right] {$p_1(x)$};}
+ \uncover<3|handout:0>{
+ \draw[domain=-1.5:1.5, samples=2, smooth, red]
+ plot ({\x}, {\x})
+ node[below right] {$p_2(x)$};}
+ \uncover<4>{
+ \draw[domain=-3:3, samples=50, smooth, red]
+ plot ({\x}, {\x - \x*\x*\x/6})
+ node[above right] {$p_3(x)$};}
+ \uncover<5|handout:0>{
+ \draw[domain=-3:3, samples=50, smooth, red]
+ plot ({\x}, {\x - \x*\x*\x/6})
+ node[above right] {$p_4(x)$};}
+ \uncover<6|handout:0>{
+ \draw[domain=-3.9:3.9, samples=50, smooth, red]
+ plot ({\x}, {\x - \x*\x*\x/6 + \x*\x*\x*\x*\x/120})
+ node[below right] {$p_5(x)$};}
+ \uncover<7|handout:0>{
+ \draw[domain=-3.9:3.9, samples=50, smooth, red]
+ plot ({\x}, {\x - \x*\x*\x/6 + \x*\x*\x*\x*\x/120})
+ node[below right] {$p_6(x)$};}
+ \uncover<8-|handout:0>{
+ \draw[domain=-4:4, samples=50, smooth, red]
+ plot ({\x}, {\x - \x*\x*\x/6 + \x*\x*\x*\x*\x/120 -
+ \x*\x*\x*\x*\x*\x*\x/5040})
+ node[above right] {$p_7(x)$};}
+ \end{tikzpicture}
+ \end{center}
+\end{frame}
+
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{Taylor-Reihen}
+ \ifthenelse{\boolean{presentation}}{\vspace{-20pt}}{\vspace{-8pt}}
+ \begin{block}{Polynom-Approximationen von $f(t)$}
+ \begin{align*}
+ p_n(t)
+ &=
+ f(0)
+ \uncover<2->{ + f' (0) t }
+ \uncover<3->{ + f''(0)\frac{t^2}{2} }
+ \uncover<4->{ + \ldots + f^{(n)}(0) \frac{t^n}{n!} }
+ \uncover<5->{ = \sum_{k=0}^{n} f^{(k)} \frac{t^k}{k!} }
+ \end{align*}
+ \end{block}
+ \uncover<6->{
+ \begin{block}{Erste $n$ Ableitungen von $f(0)$ und $p_n(0)$ sind gleich!}}
+ \begin{align*}
+ \uncover<6->{ p'_n(t) }
+ &
+ \uncover<7->{
+ = f'(0)
+ + f''(0)t
+ + \mathcal O(t^2)
+ }
+ &\uncover<8->{\Rightarrow}&&
+ \uncover<8->{p'_n(0) = f'(0)}
+ \\
+ \uncover<9->{ p''_n(t) }
+ &
+ \uncover<10->{
+ = f''(0)
+ + \mathcal O(t)
+ }
+ &\uncover<11->{\Rightarrow}&&
+ \uncover<11->{ p''_n(0) = f''(0) }
+ \end{align*}
+ \end{block}
+ \uncover<12->{
+ \begin{block}{Für alle praktisch relevanten Funktionen $f(t)$ gilt:}
+ \begin{align*}
+ \lim_{n\to \infty} p_n(t)
+ =
+ f(t)
+ \end{align*}
+ \end{block}
+ }
+\end{frame}
+
+
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{Beispiel $e^t$}
+ \ifthenelse{\boolean{presentation}}{\vspace{-20pt}}{\vspace{-8pt}}
+ \begin{block}{Taylor-Approximationen von $e^{at}$}
+ \begin{align*}
+ p_{
+ \only<1>{0}
+ \only<2>{1}
+ \only<3>{2}
+ \only<4>{3}
+ \only<5>{4}
+ \only<6>{5}
+ \only<7->{n}
+ }(t)
+ &=
+ 1
+ \uncover<2->{+ a t}
+ \uncover<3->{+ a^2 \frac{t^2}{2}}
+ \uncover<4->{+ a^3 \frac{t^3}{3!}}
+ \uncover<5->{+ a^4 \frac{t^4}{4!}}
+ \uncover<6->{+ a^5 \frac{t^5}{5!}}
+ \uncover<7->{+ a^6 \frac{t^6}{6!}}
+ \uncover<8->{+ \ldots
+ = \sum_{k=0}^{n} a^k \frac{t^k}{k!}}
+ \\
+ &
+ \uncover<9->{= \exp(at)}
+ \end{align*}
+ \end{block}
+ \begin{center}
+ \begin{tikzpicture}[>=latex,thick,scale=1.3]
+ \draw[->] (-4.0, 0.0) -- (4.0,0.0) coordinate[label=$t$];
+ \draw[->] ( 0.0,-0.5) -- (0.0,2.5);
+ \clip (-3,-0.5) rectangle (3,2.5);
+ \draw[domain=-4:1, samples=50, smooth, blue]
+ plot ({\x}, {exp(\x)})
+ node[above right] {$\exp(t)$};
+ \uncover<1|handout:0>{
+ \draw[domain=-4:4, samples=12, smooth, red]
+ plot ({\x}, {1})
+ node[below right] {$p_0(t)$};}
+ \uncover<2|handout:0>{
+ \draw[domain=-4:1.5, samples=10, smooth, red]
+ plot ({\x}, {1 + \x})
+ node[below right] {$p_1(t)$};}
+ \uncover<3|handout:0>{
+ \draw[domain=-4:1, samples=50, smooth, red]
+ plot ({\x}, {1 + \x + \x*\x/2})
+ node[below right] {$p_2(t)$};}
+ \uncover<4>{
+ \draw[domain=-4:1, samples=50, smooth, red]
+ plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6})
+ node[below right] {$p_3(t)$};}
+ \uncover<5|handout:0>{
+ \draw[domain=-4:0.9, samples=50, smooth, red]
+ plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24})
+ node[below left] {$p_4(t)$};}
+ \uncover<6|handout:0>{
+ \draw[domain=-4:0.9, samples=50, smooth, red]
+ plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24
+ + \x*\x*\x*\x*\x/120})
+ node[below left] {$p_5(t)$};}
+ \uncover<7|handout:0>{
+ \draw[domain=-4:0.9, samples=50, smooth, red]
+ plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24
+ + \x*\x*\x*\x*\x/120
+ + \x*\x*\x*\x*\x*\x/720})
+ node[below left] {$p_6(t)$};}
+ \uncover<8-|handout:0>{
+ \draw[domain=-4:0.9, samples=50, smooth, red]
+ plot ({\x}, {1 + \x + \x*\x/2 + \x*\x*\x/6 + \x*\x*\x*\x/24
+ + \x*\x*\x*\x*\x/120
+ + \x*\x*\x*\x*\x*\x/720
+ + \x*\x*\x*\x*\x*\x*\x/5040})
+ node[below left] {$p_7(t)$};}
+ \end{tikzpicture}
+ \end{center}
+\end{frame}
+
+\egroup
diff --git a/vorlesungen/slides/10/template.tex b/vorlesungen/slides/10/template.tex
new file mode 100644
index 0000000..50f0a3b
--- /dev/null
+++ b/vorlesungen/slides/10/template.tex
@@ -0,0 +1,21 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+% Erstellt durch Roy Seitz
+%
+% !TeX spellcheck = de_CH
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Template}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\end{column}
+\begin{column}{0.48\textwidth}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/10/vektorfelder.mp b/vorlesungen/slides/10/vektorfelder.mp
new file mode 100644
index 0000000..e63b2d5
--- /dev/null
+++ b/vorlesungen/slides/10/vektorfelder.mp
@@ -0,0 +1,361 @@
+%
+% Stroemungsfelder linearer Differentialgleichungen
+%
+% (c) 2015 Prof Dr Andreas Mueller, Hochschule Rapperswil
+% 2021-04-14, Roy Seitz, Copied for SeminarMatrizen
+%
+verbatimtex
+\documentclass{book}
+\usepackage{times}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{amsfonts}
+\usepackage{txfonts}
+\begin{document}
+etex;
+
+input TEX;
+
+TEXPRE("%&latex" & char(10) &
+"\documentclass{book}" &
+"\usepackage{times}" &
+"\usepackage{amsmath}" &
+"\usepackage{amssymb}" &
+"\usepackage{amsfonts}" &
+"\usepackage{txfonts}" &
+"\begin{document}");
+TEXPOST("\end{document}");
+
+%
+% Vektorfeld in der Ebene mit Lösungskurve
+% so(2)
+%
+beginfig(1)
+
+% Scaling parameter
+numeric unit;
+unit := 150;
+
+% Some points
+z1 = (-1.5, 0) * unit;
+z2 = ( 1.5, 0) * unit;
+z3 = ( 0, -1.5) * unit;
+z4 = ( 0, 1.5) * unit;
+
+pickup pencircle scaled 1pt;
+drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0));
+drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10));
+label.top(btex $x_1$ etex, z2 shifted (10,0));
+label.rt(btex $x_2$ etex, z4 shifted (0,10));
+
+% % Draw circles
+% for x = 0.2 step 0.2 until 1.4:
+% path p;
+% p = (x,0);
+% for a = 5 step 5 until 355:
+% p := p--(x*cosd(a), x*sind(a));
+% endfor;
+% p := p--cycle;
+% pickup pencircle scaled 1pt;
+% draw p scaled unit withcolor red;
+% endfor;
+
+% Define DGL
+def dglField(expr x, y) =
+ %(-0.5 * (x + y), -0.5 * (y - x))
+ (-y, x)
+enddef;
+
+pair A;
+A := (1, 0);
+draw A scaled unit withpen pencircle scaled 8bp withcolor red;
+
+% Draw arrows for each grid point
+pickup pencircle scaled 0.5pt;
+for x = -1.5 step 0.1 until 1.55:
+ for y = -1.5 step 0.1 until 1.55:
+ drawarrow ((x, y) * unit)
+ --(((x,y) * unit) shifted (8 * dglField(x,y)))
+ withcolor blue;
+ endfor;
+endfor;
+
+endfig;
+
+%
+% Vektorfeld in der Ebene mit Lösungskurve
+% Euler(1)
+%
+beginfig(2)
+
+numeric unit;
+unit := 150;
+
+z0 = ( 0, 0);
+z1 = (-1.5, 0) * unit;
+z2 = ( 1.5, 0) * unit;
+z3 = ( 0, -1.5) * unit;
+z4 = ( 0, 1.5) * unit;
+
+pickup pencircle scaled 1pt;
+drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0));
+drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10));
+label.top(btex $x_1$ etex, z2 shifted (10,0));
+label.rt(btex $x_2$ etex, z4 shifted (0,10));
+
+def dglField(expr x, y) =
+ (-y, x)
+enddef;
+
+def dglFieldp(expr z) =
+ dglField(xpart z, ypart z)
+enddef;
+
+def curve(expr z, l, s) =
+ path p;
+ p := z;
+ for t = 0 step 1 until l:
+ p := p--((point (length p) of p) shifted (s * dglFieldp(point (length p) of p)));
+ endfor;
+ draw p scaled unit withcolor red;
+enddef;
+
+pair A;
+A := (1, 0);
+draw A scaled unit withpen pencircle scaled 8bp withcolor red;
+curve(A, 0, 1);
+
+% Draw arrows for each grid point
+pickup pencircle scaled 0.5pt;
+for x = -1.5 step 0.1 until 1.55:
+ for y = -1.5 step 0.1 until 1.55:
+ drawarrow ((x, y) * unit)
+ --(((x,y) * unit) shifted (8 * dglField(x,y)))
+ withcolor blue;
+ endfor;
+endfor;
+
+endfig;
+
+%
+% Vektorfeld in der Ebene mit Lösungskurve
+% Euler(2)
+%
+beginfig(3)
+
+numeric unit;
+unit := 150;
+
+z0 = ( 0, 0);
+z1 = (-1.5, 0) * unit;
+z2 = ( 1.5, 0) * unit;
+z3 = ( 0, -1.5) * unit;
+z4 = ( 0, 1.5) * unit;
+
+pickup pencircle scaled 1pt;
+drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0));
+drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10));
+label.top(btex $x_1$ etex, z2 shifted (10,0));
+label.rt(btex $x_2$ etex, z4 shifted (0,10));
+
+def dglField(expr x, y) =
+ (-y, x)
+enddef;
+
+def dglFieldp(expr z) =
+ dglField(xpart z, ypart z)
+enddef;
+
+def curve(expr z, l, s) =
+ path p;
+ p := z;
+ for t = 0 step 1 until l:
+ p := p--((point (length p) of p) shifted (s * dglFieldp(point (length p) of p)));
+ endfor;
+ draw p scaled unit withcolor red;
+enddef;
+
+pair A;
+A := (1, 0);
+draw A scaled unit withpen pencircle scaled 8bp withcolor red;
+curve(A, 1, 0.5);
+
+% Draw arrows for each grid point
+pickup pencircle scaled 0.5pt;
+for x = -1.5 step 0.1 until 1.55:
+ for y = -1.5 step 0.1 until 1.55:
+ drawarrow ((x, y) * unit)
+ --(((x,y) * unit) shifted (8 * dglField(x,y)))
+ withcolor blue;
+ endfor;
+endfor;
+
+endfig;
+
+%
+% Vektorfeld in der Ebene mit Lösungskurve
+% Euler(3)
+%
+beginfig(4)
+
+numeric unit;
+unit := 150;
+
+z0 = ( 0, 0);
+z1 = (-1.5, 0) * unit;
+z2 = ( 1.5, 0) * unit;
+z3 = ( 0, -1.5) * unit;
+z4 = ( 0, 1.5) * unit;
+
+pickup pencircle scaled 1pt;
+drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0));
+drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10));
+label.top(btex $x_1$ etex, z2 shifted (10,0));
+label.rt(btex $x_2$ etex, z4 shifted (0,10));
+
+def dglField(expr x, y) =
+ (-y, x)
+enddef;
+
+def dglFieldp(expr z) =
+ dglField(xpart z, ypart z)
+enddef;
+
+def curve(expr z, l, s) =
+ path p;
+ p := z;
+ for t = 0 step 1 until l:
+ p := p--((point (length p) of p) shifted (s * dglFieldp(point (length p) of p)));
+ endfor;
+ draw p scaled unit withcolor red;
+enddef;
+
+pair A;
+A := (1, 0);
+draw A scaled unit withpen pencircle scaled 8bp withcolor red;
+curve(A, 3, 0.25);
+
+% Draw arrows for each grid point
+pickup pencircle scaled 0.5pt;
+for x = -1.5 step 0.1 until 1.55:
+ for y = -1.5 step 0.1 until 1.55:
+ drawarrow ((x, y) * unit)
+ --(((x,y) * unit) shifted (8 * dglField(x,y)))
+ withcolor blue;
+ endfor;
+endfor;
+
+endfig;
+
+%
+% Vektorfeld in der Ebene mit Lösungskurve
+% Euler(4)
+%
+beginfig(5)
+
+numeric unit;
+unit := 150;
+
+z0 = ( 0, 0);
+z1 = (-1.5, 0) * unit;
+z2 = ( 1.5, 0) * unit;
+z3 = ( 0, -1.5) * unit;
+z4 = ( 0, 1.5) * unit;
+
+pickup pencircle scaled 1pt;
+drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0));
+drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10));
+label.top(btex $x_1$ etex, z2 shifted (10,0));
+label.rt(btex $x_2$ etex, z4 shifted (0,10));
+
+def dglField(expr x, y) =
+ (-y, x)
+enddef;
+
+def dglFieldp(expr z) =
+ dglField(xpart z, ypart z)
+enddef;
+
+def curve(expr z, l, s) =
+ path p;
+ p := z;
+ for t = 0 step 1 until l:
+ p := p--((point (length p) of p) shifted (s * dglFieldp(point (length p) of p)));
+ endfor;
+ draw p scaled unit withcolor red;
+enddef;
+
+pair A;
+A := (1, 0);
+draw A scaled unit withpen pencircle scaled 8bp withcolor red;
+curve(A, 7, 0.125);
+
+% Draw arrows for each grid point
+pickup pencircle scaled 0.5pt;
+for x = -1.5 step 0.1 until 1.55:
+ for y = -1.5 step 0.1 until 1.55:
+ drawarrow ((x, y) * unit)
+ --(((x,y) * unit) shifted (8 * dglField(x,y)))
+ withcolor blue;
+ endfor;
+endfor;
+
+endfig;
+
+%
+% Vektorfeld in der Ebene mit Lösungskurve
+% Euler(5)
+%
+beginfig(6)
+
+numeric unit;
+unit := 150;
+
+z0 = ( 0, 0);
+z1 = (-1.5, 0) * unit;
+z2 = ( 1.5, 0) * unit;
+z3 = ( 0, -1.5) * unit;
+z4 = ( 0, 1.5) * unit;
+
+pickup pencircle scaled 1pt;
+drawarrow (z1 shifted (-10,0))--(z2 shifted (10,0));
+drawarrow (z3 shifted (0,-10))--(z4 shifted (0,10));
+label.top(btex $x_1$ etex, z2 shifted (10,0));
+label.rt(btex $x_2$ etex, z4 shifted (0,10));
+
+def dglField(expr x, y) =
+ (-y, x)
+enddef;
+
+def dglFieldp(expr z) =
+ dglField(xpart z, ypart z)
+enddef;
+
+def curve(expr z, l, s) =
+ path p;
+ p := z;
+ for t = 0 step 1 until l:
+ p := p--((point (length p) of p) shifted (s * dglFieldp(point (length p) of p)));
+ endfor;
+ draw p scaled unit withcolor red;
+enddef;
+
+pair A;
+A := (1, 0);
+draw A scaled unit withpen pencircle scaled 8bp withcolor red;
+curve(A, 99, 0.01);
+
+% Draw arrows for each grid point
+pickup pencircle scaled 0.5pt;
+for x = -1.5 step 0.1 until 1.55:
+ for y = -1.5 step 0.1 until 1.55:
+ drawarrow ((x, y) * unit)
+ --(((x,y) * unit) shifted (8 * dglField(x,y)))
+ withcolor blue;
+ endfor;
+endfor;
+
+endfig;
+
+
+end;
diff --git a/vorlesungen/slides/10/vektorfelder.tex b/vorlesungen/slides/10/vektorfelder.tex
new file mode 100644
index 0000000..3ba7cda
--- /dev/null
+++ b/vorlesungen/slides/10/vektorfelder.tex
@@ -0,0 +1,82 @@
+%
+% iterativ.tex -- Iterative Approximation in \dot x = J x
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+% Erstellt durch Roy Seitz
+%
+% !TeX spellcheck = de_CH
+\bgroup
+\begin{frame}[t]
+ \setlength{\abovedisplayskip}{5pt}
+ \setlength{\belowdisplayskip}{5pt}
+ \frametitle{Als Strömungsfeld}
+ \vspace{-20pt}
+ \begin{columns}[t,onlytextwidth]
+ \begin{column}{0.48\textwidth}
+ \vfil
+ \only<1|handout:0>{
+ \includegraphics[width=\linewidth,keepaspectratio]
+ {../slides/10/vektorfelder-1.pdf}
+ }
+ \only<2|handout:0>{
+ \includegraphics[width=\linewidth,keepaspectratio]
+ {../slides/10/vektorfelder-2.pdf}
+ }
+ \only<3>{
+ \includegraphics[width=\linewidth,keepaspectratio]
+ {../slides/10/vektorfelder-3.pdf}
+ }
+ \only<4|handout:0>{
+ \includegraphics[width=\linewidth,keepaspectratio]
+ {../slides/10/vektorfelder-4.pdf}
+ }
+ \only<5|handout:0>{
+ \includegraphics[width=\linewidth,keepaspectratio]
+ {../slides/10/vektorfelder-5.pdf}
+ }
+ \only<6-|handout:0>{
+ \includegraphics[width=\linewidth,keepaspectratio]
+ {../slides/10/vektorfelder-6.pdf}
+ }
+ \vfil
+ \end{column}
+ \begin{column}{0.48\textwidth}
+ \begin{block}{Differentialgleichung}
+ \[
+ \dot x(t) = J x(t)
+ \quad
+ J = \begin{pmatrix} 0 & -1 \\ 1 & \phantom-0 \end{pmatrix}
+ \quad
+ x_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
+ \]
+ \end{block}
+
+ \only<2|handout:0>{
+ Nach einem Schritt der Länge $t$:
+ \[
+ x(t) = x_0 + \dot x t = x_0 + Jx_0t = (1 + Jt)x_0
+ \]
+ }
+
+ \only<3|handout:0>{
+ Nach zwei Schritten der Länge $t/2$:
+ \[
+ x(t) = \left(1 + \frac{Jt}{2}\right)^2x_0
+ \]
+ }
+
+ \only<4->{
+ Nach n Schritten der Länge $t/n$:
+ \[
+ x(t) = \left(1 + \frac{Jt}{n}\right)^nx_0
+ \]
+ }
+ \only<6->{
+ \[
+ \lim_{n\to\infty}\left(1 + \frac{At}{n}\right)^n = \exp(At)
+ \]
+ }
+ \end{column}
+ \end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/Makefile.inc b/vorlesungen/slides/2/Makefile.inc
index c857fec..cbd4dfe 100644
--- a/vorlesungen/slides/2/Makefile.inc
+++ b/vorlesungen/slides/2/Makefile.inc
@@ -17,5 +17,19 @@ chapter2 = \
../slides/2/frobeniusanwendung.tex \
../slides/2/quotient.tex \
../slides/2/quotientv.tex \
+ ../slides/2/hilbertraum/definition.tex \
+ ../slides/2/hilbertraum/l2beispiel.tex \
+ ../slides/2/hilbertraum/basis.tex \
+ ../slides/2/hilbertraum/plancherel.tex \
+ ../slides/2/hilbertraum/l2.tex \
+ ../slides/2/hilbertraum/riesz.tex \
+ ../slides/2/hilbertraum/rieszbeispiel.tex \
+ ../slides/2/hilbertraum/adjungiert.tex \
+ ../slides/2/hilbertraum/spektral.tex \
+ ../slides/2/hilbertraum/sturm.tex \
+ ../slides/2/hilbertraum/laplace.tex \
+ ../slides/2/hilbertraum/qm.tex \
+ ../slides/2/hilbertraum/energie.tex \
+ ../slides/2/hilbertraum/sobolev.tex \
../slides/2/chapter.tex
diff --git a/vorlesungen/slides/2/chapter.tex b/vorlesungen/slides/2/chapter.tex
index 49e656a..d3714c3 100644
--- a/vorlesungen/slides/2/chapter.tex
+++ b/vorlesungen/slides/2/chapter.tex
@@ -15,3 +15,17 @@
\folie{2/frobeniusanwendung.tex}
\folie{2/quotient.tex}
\folie{2/quotientv.tex}
+\folie{2/hilbertraum/definition.tex}
+\folie{2/hilbertraum/l2beispiel.tex}
+\folie{2/hilbertraum/basis.tex}
+\folie{2/hilbertraum/plancherel.tex}
+\folie{2/hilbertraum/l2.tex}
+\folie{2/hilbertraum/riesz.tex}
+\folie{2/hilbertraum/rieszbeispiel.tex}
+\folie{2/hilbertraum/adjungiert.tex}
+\folie{2/hilbertraum/spektral.tex}
+\folie{2/hilbertraum/sturm.tex}
+\folie{2/hilbertraum/laplace.tex}
+\folie{2/hilbertraum/qm.tex}
+\folie{2/hilbertraum/energie.tex}
+\folie{2/hilbertraum/sobolev.tex}
diff --git a/vorlesungen/slides/2/hilbertraum/adjungiert.tex b/vorlesungen/slides/2/hilbertraum/adjungiert.tex
new file mode 100644
index 0000000..da41576
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/adjungiert.tex
@@ -0,0 +1,83 @@
+%
+% adjungiert.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Adjungierter Operator}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+\begin{itemize}
+\item<2->
+$A\colon H\to L$ lineare Abbildung zwischen Hilberträumen, $y\in L$
+\item<3->
+\[
+H\to\mathbb{C}
+:
+x\mapsto \langle y, Ax\rangle_L
+\]
+ist eine lineare Abbildung $H\to\mathbb{C}$
+\item<4->
+Nach dem Darstellungssatz gibt es $v\in H$ mit
+\[
+\langle y,Ax\rangle_L = \langle v,x\rangle_H
+\quad
+\forall x\in H
+\]
+\end{itemize}
+\uncover<5->{%
+Die Abbildung
+\[
+L\to H
+:
+y\mapsto v =: A^*y
+\]
+heisst {\em adjungierte Abbildung}}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Endlichdimensional (Matrizen)}
+\[
+A^* = \overline{A}^t
+\]
+\end{block}}
+\vspace{-8pt}
+\uncover<7->{%
+\begin{block}{Selbstabbildungen}
+Für Operatoren $A\colon H\to H$ ist $A^*\colon H\to H$
+\[
+\langle x,Ay\rangle
+=
+\langle A^*x, y\rangle
+\quad
+\forall x,y\in H
+\]
+\end{block}}
+\vspace{-8pt}
+\uncover<9->{%
+\begin{block}{Selbstadjungierte Operatoren}
+\[
+A=A^*
+\uncover<10->{\;\Leftrightarrow\;
+\langle x,Ay \rangle
+=
+\langle A^*x,y \rangle}
+\uncover<11->{=
+\langle Ax,y \rangle}
+\]
+\uncover<12->{Matrizen:
+\begin{itemize}
+\item<13-> hermitesch
+\item<14-> für reelle Hilberträume: symmetrisch
+\end{itemize}}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/basis.tex b/vorlesungen/slides/2/hilbertraum/basis.tex
new file mode 100644
index 0000000..022fa07
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/basis.tex
@@ -0,0 +1,65 @@
+%
+% basis.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Hilbert-Basis}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Eine Menge $\mathcal{B}=\{b_k|k>0\}$ ist eine Hilbertbasis, wenn
+\begin{itemize}
+\item<2-> $\mathcal{B}$ ist orthonormiert: $\langle b_k,b_l\rangle=\delta_{kl}$
+\item<3-> Der Unterraum $\langle b_k|k>0\rangle\subset H$ ist
+dicht:
+Jeder Vektor von $H$ kann beliebig genau durch Linearkombinationen von $b_k$
+approximiert werden.
+\end{itemize}
+\uncover<4->{%
+Ein Hilbertraum mit einer Hilbertbasis heisst {\em separabel}}
+\end{block}
+\uncover<5->{%
+\begin{block}{Endlichdimensional}
+Der Algorithmus bricht nach endlich vielen Schritten ab.
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Konstruktion}
+Iterativ: $\mathcal{B}_0=\emptyset$
+\begin{enumerate}
+\item<7-> $V_k = \langle \mathcal{B}_k \rangle$
+\item<8-> Wenn $V_k\ne H$, wähle einen Vektor
+\begin{align*}
+x\in V_k^{\perp}
+&=
+\{
+x\in H\;|\; x\perp V_k
+\}
+\\
+&=
+\{x\in H\;|\;
+x\perp y\;\forall y\in V_k
+\}
+\end{align*}
+\item<9-> $b_{k+1} = x/\|x\|$
+\[
+\mathcal{B}_{k+1} = \mathcal{B}_k\cup \{b_{k+1}\}
+\]
+\end{enumerate}
+\uncover<10->{%
+Wenn $H$ separabel ist, dann ist
+\[
+\mathcal{B} = \bigcup_{k} \mathcal{B}_k
+\]
+eine Hilbertbasis für $H$}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/definition.tex b/vorlesungen/slides/2/hilbertraum/definition.tex
new file mode 100644
index 0000000..d101637
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/definition.tex
@@ -0,0 +1,63 @@
+%
+% definition.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Hilbertraum --- Definition}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{$\mathbb{C}$-Hilbertraum $H$}
+\begin{enumerate}
+\item<2-> $\mathbb{C}$-Vektorraum, muss nicht endlichdimensional sein
+\item<3-> Sesquilineares Skalarprodukt
+\[
+\langle \cdot,\cdot\rangle
+\colon H \to \mathbb{C}: (x,y) \mapsto \langle x,y\rangle
+\]
+Dazugehörige Norm:
+\[
+\|x\| = \sqrt{\langle x,x\rangle}
+\]
+\item<4-> Vollständigkeit: jede Cauchy-Folge konvergiert
+\end{enumerate}
+\uncover<5->{%
+Ohne Vollständigkeit: {\em Prähilbertraum}}
+\end{block}
+\uncover<6->{%
+\begin{block}{$\mathbb{R}$-Hilbertraum}
+Vollständiger $\mathbb{R}$-Vektorraum mit bilinearem Skalarprodukt
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Vollständigkeit}
+\begin{itemize}
+\item<8-> $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge:
+Für alle $\varepsilon>0$ gibt es $N>0$ derart, dass
+\[
+\| x_n-x_m\| < \varepsilon\quad\forall n,m>N
+\]
+\item<9-> Grenzwert existiert: $\exists x\in H$ derart, dass es für alle
+$\varepsilon >0$ ein $N>0$ gibt derart, dass
+\[
+\|x_n-x\|<\varepsilon\quad\forall n>N
+\]
+\end{itemize}
+\end{block}}
+\uncover<10->{%
+\begin{block}{Cauchy-Schwarz-Ungleichung}
+\[
+|\langle x,y\rangle|
+\le \|x\| \cdot \|y\|
+\]
+Gleichheit für linear abhängige $x$ und $y$
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/energie.tex b/vorlesungen/slides/2/hilbertraum/energie.tex
new file mode 100644
index 0000000..202a7c5
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/energie.tex
@@ -0,0 +1,67 @@
+%
+% energie.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Energie --- Zeitentwicklung --- Schrödinger}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.30\textwidth}
+\uncover<2->{%
+\begin{block}{Totale Energie}
+Hamilton-Funktion
+\begin{align*}
+H
+&=
+\frac12mv^2 + V(x)
+\\
+&=
+\frac{p^2}{2m} + V(x)
+\end{align*}
+\end{block}}
+\uncover<3->{%
+\begin{block}{Quantisierungsregel}
+\begin{align*}
+\text{Variable}&\to \text{Operator}
+\\
+x_k & \to x_k
+\\
+p_k & \to \frac{\hbar}{i} \frac{\partial}{\partial x_k}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.66\textwidth}
+\uncover<4->{%
+\begin{block}{Energie-Operator}
+\[
+H
+=
+-\frac{\hbar^2}{2m}\Delta + V(x)
+\]
+\end{block}}
+\uncover<5->{%
+\begin{block}{Eigenwertgleichung}
+\[
+-\frac{\hbar^2}{2m}\Delta\psi(x,t) + V(x)\psi(x,t) = E\psi(x,t)
+\]
+Zeitunabhängige Schrödingergleichung
+\end{block}}
+\uncover<6->{%
+\begin{block}{Zeitabhängigkeit = Schrödingergleichung}
+\[
+-\frac{\hbar}{i}
+\frac{\partial}{\partial t}
+\psi(x,t)
+=
+-\frac{\hbar^2}{2m}\Delta\psi(x,t) + V(x)\psi(x,t)
+\]
+\uncover<7->{Eigenwertgleichung durch Separation von $t$}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/l2.tex b/vorlesungen/slides/2/hilbertraum/l2.tex
new file mode 100644
index 0000000..bd744ab
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/l2.tex
@@ -0,0 +1,61 @@
+%
+% l2.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{$L^2$-Hilbertraum}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+\begin{itemize}
+\item<2->
+Vektorraum: Funktionen
+\[
+f\colon [a,b] \to \mathbb{C}
+\]
+\item<3->
+Sesquilineares Skalarprodukt
+\[
+\langle f,g\rangle
+=
+\int_a^b \overline{f(x)}\, g(x) \,dx
+\]
+\item<4->
+Norm:
+\[
+\|f\|^2 = \int_a^b |f(x)|^2\,dx
+\]
+\item<5->
+Vollständigkeit?
+\uncover<6->{$\rightarrow$
+Lebesgue Konvergenz-Satz}
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Vollständigkeit}
+\begin{itemize}
+\item
+Funktioniert nicht für Riemann-Integral
+\item<8->
+Erweiterung des Integrals auf das sogenannte Lebesgue-Integral (nach
+Henri Lebesgue)
+\item<9->
+Abzählbare Mengen spielen keine Rolle $\rightarrow$ Nullmengen
+\item<10->
+Funktionen $\rightarrow$ Klassen von Funktionen, die sich auf einer Nullmenge
+unterscheiden
+\item<11->
+Konvergenz-Satz von Lebesgue $\rightarrow$ es funktioniert
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/l2beispiel.tex b/vorlesungen/slides/2/hilbertraum/l2beispiel.tex
new file mode 100644
index 0000000..3ae44af
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/l2beispiel.tex
@@ -0,0 +1,82 @@
+%
+% l2beispiel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beispiele: $\mathbb{R},\mathbb{R}^2,\dots,\mathbb{R}^n,\dots,l^2$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+\begin{itemize}
+\item<2-> Quadratsummierbare Folgen von komplexen Zahlen
+\[
+l^2
+=
+\biggl\{
+(x_k)_{k\in\mathbb{N}}\,\bigg|\, \sum_{k=0}^\infty |x_k|^2 < \infty
+\biggr\}
+\]
+\item<3-> Skalarprodukt:
+\begin{align*}
+\langle x,y\rangle
+&=
+\sum_{k=0}^\infty \overline{x}_ky_k,
+&
+\uncover<4->{\|x\|^2 = \sum_{k=0}^\infty |x_k|^2}
+\end{align*}
+\item<5-> Vollständigkeit,
+Konvergenz: Cauchy-Schwarz-Ungleichung
+\[
+\biggl|
+\sum_{k=0}^\infty \overline{x}_ky_k
+\biggr|
+\le
+\sum_{k=0}^\infty |x_k|^2
+\sum_{l=0}^\infty |y_l|^2
+\]
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Standardbasisvektoren}
+\begin{align*}
+e_i
+&=
+(0,\dots,0,\underset{\underset{\textstyle i}{\textstyle\uparrow}}{1},0,\dots)
+\\
+\uncover<7->{(e_i)_k &= \delta_{ik}}
+\end{align*}
+\uncover<8->{sind orthonormiert:
+\begin{align*}
+\langle e_i,e_j\rangle
+&=
+\sum_k \overline{\delta}_{ik}\delta_{jk}
+\uncover<9->{=
+\delta_{ij}}
+\end{align*}}
+\end{block}}
+\vspace{-16pt}
+\uncover<10->{%
+\begin{block}{Analyse}
+$x_k$ kann mit Skalarprodukten gefunden werden:
+\begin{align*}
+\hat{x}_i
+=
+\langle e_i,x\rangle
+&\uncover<11->{=
+\sum_{k=0}^\infty \overline{\delta}_{ik} x_k}
+\uncover<12->{=
+x_i}
+\end{align*}
+\uncover<13->{(Fourier-Koeffizienten)}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/laplace.tex b/vorlesungen/slides/2/hilbertraum/laplace.tex
new file mode 100644
index 0000000..8f6b196
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/laplace.tex
@@ -0,0 +1,66 @@
+%
+% laplace.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Höhere Dimension}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.44\textwidth}
+\begin{block}{Problem}
+Gegeben: $\Omega\subset\mathbb{R}^n$ ein Gebiet
+\\
+Gesucht: Lösungen von $\Delta u=0$ mit $u_{|\partial\Omega}=0$
+\end{block}
+\uncover<2->{%
+\begin{block}{Funktionen}
+Hilbertraum $H$ der Funktionen $f:\overline{\Omega}\to\mathbb{C}$
+mit $f_{|\partial\Omega}=0$
+\end{block}}
+\uncover<3->{%
+\begin{block}{Skalarprodukt}
+\[
+\langle f,g\rangle
+=
+\int_{\Omega} \overline{f}(x) g(x)\,d\mu(x)
+\]
+\end{block}}
+\uncover<4->{%
+\begin{block}{Laplace-Operator}
+\[
+\Delta \psi = \operatorname{div}\operatorname{grad}\psi
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.52\textwidth}
+\uncover<5->{%
+\begin{block}{Selbstadjungiert}
+\begin{align*}
+\langle f,\Delta g\rangle
+&\uncover<6->{=
+\int_{\Omega} \overline{f}(x)\operatorname{div}\operatorname{grad}g(x)\,d\mu(x)}
+\\
+&\uncover<7->{=
+\int_{\partial\Omega}
+\underbrace{\overline{f}(x)}_{\displaystyle=0}\operatorname{grad}g(x)\,d\nu(x)}
+\\
+&\uncover<7->{\qquad
+-
+\int_{\Omega}
+\operatorname{grad}\overline{f}(x)\cdot \operatorname{grad}g(x)
+\,d\mu(x)}
+\\
+&\uncover<8->{=\int_{\Omega}\operatorname{div}\operatorname{grad}\overline{f}(x)g(x)\,d\mu(x)}
+\\
+&\uncover<9->{=
+\langle \Delta f,g\rangle}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/plancherel.tex b/vorlesungen/slides/2/hilbertraum/plancherel.tex
new file mode 100644
index 0000000..73dd46b
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/plancherel.tex
@@ -0,0 +1,102 @@
+%
+% plancherel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Plancherel-Gleichung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Hilbertraum mit Hilbert-Basis}
+$H$ Hilbertraum mit Hilbert-Basis
+$\mathcal{B}=\{b_k\;|\; k>0\}$, $x\in H$
+\end{block}
+\uncover<2->{%
+\begin{block}{Analyse: Fourier-Koeffizienten}
+\begin{align*}
+a_k = \hat{x}_k &=\langle b_k, x\rangle
+\\
+\uncover<3->{\hat{x}&=\mathcal{F}x}
+\end{align*}
+\end{block}}
+\vspace{-10pt}
+\uncover<4->{%
+\begin{block}{Synthese: Fourier-Reihe}
+\begin{align*}
+\tilde{x}
+&=
+\sum_k a_k b_k
+\uncover<5->{=
+\sum_k \langle x,b_k\rangle b_k}
+\end{align*}
+\end{block}}
+\vspace{-6pt}
+\uncover<6->{%
+\begin{block}{Analyse von $\tilde{x}$}
+\begin{align*}
+\langle b_l,\tilde{x}\rangle
+&=
+\biggl\langle
+b_l,\sum_{k}\langle b_k,x\rangle b_k
+\biggr\rangle
+\uncover<7->{=
+\sum_k \langle b_k,x\rangle\langle b_l,b_k\rangle}
+\uncover<8->{=
+\sum_k \langle b_k,x\rangle\delta_{kl}}
+\uncover<9->{=
+\langle b_l,x\rangle}
+\uncover<10->{=
+\hat{x}_l}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<11->{%
+\begin{block}{Plancherel-Gleichung}
+\begin{align*}
+\|\tilde{x}\|^2
+&=
+\langle \tilde{x},\tilde{x}\rangle
+=
+\biggl\langle
+\sum_k \hat{x}_kb_k,
+\sum_l \hat{x}_lb_l
+\biggr\rangle
+\\
+&\uncover<12->{=
+\sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\langle b_k,b_l\rangle}
+\uncover<13->{=
+\sum_{k,l} \overline{\hat{x}}_k\hat{x}_l\delta_{kl}}
+\\
+\uncover<14->{
+\|\tilde{x}\|^2
+&=
+\sum_k |\hat{x}_k|^2}
+\uncover<15->{=
+\|\hat{x}\|_{l^2}^2}
+\uncover<16->{=
+\|\mathcal{F}x\|_{l^2}^2}
+\end{align*}
+\end{block}}
+\vspace{-12pt}
+\uncover<17->{%
+\begin{block}{Isometrie}
+\begin{align*}
+\mathcal{F}
+\colon
+H \to l^2
+\colon
+x\mapsto \hat{x}
+\end{align*}
+\uncover<18->{Alle separablen Hilberträume sind isometrisch zu $l^2$ via
+%Fourier-Transformation
+$\mathcal{F}$}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/qm.tex b/vorlesungen/slides/2/hilbertraum/qm.tex
new file mode 100644
index 0000000..a108121
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/qm.tex
@@ -0,0 +1,90 @@
+%
+% qm.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Anwendung: Quantenmechanik}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Zustände (Wellenfunktion)}
+$L^2$-Funktionen auf $\mathbb{R}^3$
+\[
+\psi\colon\mathbb{R}^3\to\mathbb{C}
+\]
+\end{block}
+\vspace{-6pt}
+\uncover<2->{%
+\begin{block}{Wahrscheinlichkeitsinterpretation}
+\[
+|\psi(x)|^2 = \left\{
+\begin{minipage}{4.6cm}\raggedright
+Wahrscheinlichkeitsdichte für Position $x$ des Teilchens
+\end{minipage}\right.
+\]
+\end{block}}
+\vspace{-6pt}
+\uncover<3->{%
+\begin{block}{Skalarprodukt}
+\[
+\langle\psi,\psi\rangle
+=
+\int_{\mathbb{R}^3} |\psi(x)|^2\,dx = 1
+\]
+\end{block}}
+\vspace{-6pt}
+\uncover<4->{%
+\begin{block}{Messgrösse $A$}
+Selbstadjungierter Operator $A$
+\\
+\uncover<5->{$\rightarrow$
+Hilbertbasis $|i\rangle$ von EV von $A$}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Überlagerung}
+\begin{align*}
+|\psi\rangle
+&=
+\sum_i
+w_i|i\rangle
+\\
+\uncover<7->{\langle \psi|\psi\rangle
+&=
+\sum_i |w_i|^2 \qquad\text{(Plancherel)}}
+\end{align*}
+\uncover<8->{%
+$|w_i|^2=|\langle \psi|i\rangle|^2$ Wahrscheinlichkeit für Zustand $|i\rangle$
+}
+\end{block}}
+\uncover<9->{%
+\begin{block}{Erwartungswert}
+\begin{align*}
+E(A)
+&\uncover<10->{=
+\sum_i |w_i|^2 \alpha_i}
+\uncover<11->{=
+\sum_i \overline{w}_i\alpha_i w_i }
+\hspace{5cm}
+\\
+&\only<12>{=
+\sum_{i,j} \overline{w}_j\alpha_i w_i \langle j|i\rangle}
+\uncover<13->{=
+\sum_{i} \overline{w}_j\langle j| \sum_i \alpha_i w_i |i\rangle}
+\\
+&\uncover<14->{=
+\sum_{i,j} \overline{w}_j w_i \langle j|
+A|i\rangle}
+\uncover<15->{=
+\langle \psi| A |\psi\rangle}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/riesz.tex b/vorlesungen/slides/2/hilbertraum/riesz.tex
new file mode 100644
index 0000000..437fb3c
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/riesz.tex
@@ -0,0 +1,76 @@
+%
+% riesz.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Darstellungssatz von Riesz}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Dualraum}
+$V$ ein Vektorraum, $V^*$ der Raum aller Linearformen
+\[
+f\colon V\to \mathbb{C}
+\]
+\end{block}
+\uncover<3->{%
+\begin{block}{Beispiel: $l^\infty$}
+$l^\infty=\text{beschränkte Folgen in $\mathbb{C}$}$,
+Linearformen:
+\begin{align*}
+\uncover<4->{
+f(x)
+&=
+\sum_{i=0}^\infty f_ix_i}
+\\
+\uncover<5->{
+\|f\|
+&=
+\sup_{\|x\|_{\infty}\le 1}
+|f(x)|}
+\uncover<6->{=
+\sum_{k\in\mathbb{N}} |f_k|}
+\\
+\uncover<7->{
+\Rightarrow
+l^{\infty*}
+&=
+l^1}
+\uncover<9->{\qquad(\ne l^2)}
+\\
+\uncover<8->{
+&=\{\text{summierbare Folgen in $\mathbb{C}$}\}
+}
+\end{align*}
+
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Beispiel: $\mathbb{C}^n$}
+${\mathbb{C}^n}^* = \mathbb{C}^n$
+\end{block}}
+\uncover<10->{%
+\begin{theorem}[Riesz]
+Zu einer stetigen Linearform $f\colon H\to\mathbb{C}$ gibt es $v\in H$ mit
+\[
+f(x) = \langle v,x\rangle
+\quad\forall x\in H
+\]
+und $\|f\| = \|v\|$
+\end{theorem}}
+\uncover<11->{%
+\begin{block}{Dualraum von $H$}
+$H^*=H$
+\end{block}}%
+\uncover<12->{%
+Der Hilbertraum ist die ``intuitiv richtige, unendlichdimensionale''
+Verallgemeinerung von $\mathbb{C}^n$}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex b/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex
new file mode 100644
index 0000000..de9383f
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/rieszbeispiel.tex
@@ -0,0 +1,107 @@
+%
+% rieszbeispiel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Linearform auf $L^2$-Funktionen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Linearform auf $\mathbb{C}^n$}
+\begin{align*}
+{\color{blue}x}&=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix},
+&
+f({\color{blue}x})
+&=
+\begin{pmatrix}f_1&f_2&\dots&f_n\end{pmatrix} {\color{blue}x}
+\\
+\uncover<2->{
+{\color{red}v}&=
+\rlap{$
+\begin{pmatrix}
+\overline{f}_1&\overline{f}_2&\dots&\overline{f}_n
+\end{pmatrix}^t
+\uncover<3->{\;\Rightarrow\;
+f({\color{blue}x})=\langle {\color{red}v},{\color{blue}x}\rangle}
+$}}
+\end{align*}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Linearform auf $L^2([a,b])$}
+\begin{align*}
+{\color{red}x}&\in L^2([a,b])
+\\
+\uncover<5->{
+f&\colon L^2([a,b]) \to \mathbb{C}
+: {\color{red}x} \mapsto f({\color{red}x})}
+\intertext{\uncover<6->{Riesz-Darstellungssatz: $\exists {\color{blue}v}\in L^2([a,b])$}}
+\uncover<7->{f({\color{red}x})
+&=
+\int_a^b {\color{blue}\overline{v}(t)}{\color{red}x(t)}\,dt}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\begin{scope}[xshift=-3.5cm]
+\def\s{0.058}
+\foreach \n in {0,...,5}{
+\uncover<3->{
+ \draw[color=red,line width=3pt]
+ ({\n+\s},{1/(\n+0.5)}) -- ({\n+\s},0);
+ \node[color=red] at ({\n},{-0.2+1/(\n+0.5)})
+ [above right] {$v_\n\mathstrut$};
+}
+ \draw[color=blue,line width=3pt]
+ ({\n-\s},{0.4+0.55*sin(200*\n)+0.25*\n}) -- ({\n-\s},0);
+ \node[color=blue] at ({\n},{-0.2+0.4+0.55*sin(200*\n)+0.25*\n})
+ [above left] {$x_\n\mathstrut$};
+}
+\draw[->] (-0.6,0) -- (6,0) coordinate[label={$n$}];
+\draw[->] (-0.5,-0.1) -- (-0.5,2.5) coordinate[label={right:$x$}];
+\foreach \n in {0,...,5}{
+ \fill (\n,0) circle[radius=0.08];
+ \node at (\n,0) [below] {$\n$\strut};
+}
+\node at (5.6,0) [below] {$\cdots$\strut};
+\end{scope}
+\uncover<4->{
+\begin{scope}[xshift=3.5cm]
+\uncover<7->{
+\fill[color=red!40,opacity=0.5]
+ plot[domain=0:5,samples=100] (\x,{1/(\x+0.5)})
+ --
+ (5,0) -- (0,0) -- cycle;
+}
+\fill[color=blue!40,opacity=0.5]
+ plot[domain=0:5,samples=100] (\x,{0.4+0.55*sin(200*\x)+0.25*\x})
+ -- (5,0) -- (0,0) -- cycle;
+\uncover<7->{
+\draw[color=red,line width=1.4pt]
+ plot[domain=0:5,samples=100] (\x,{1/(\x+0.5)});
+\node[color=red] at (0,2) [right] {$x(t)$};
+}
+
+\draw[color=blue,line width=1.4pt]
+ plot[domain=0:5,samples=100] (\x,{0.4+0.55*sin(200*\x)+0.25*\x});
+\node[color=blue] at (4.5,2) [right]{$v(t)$};
+
+\draw[->] (-0.6,0) -- (6.0,0) coordinate[label={$t$}];
+\draw[->] (-0.5,-0.1) -- (-0.5,2.5) coordinate[label={right:$x$}];
+\draw (0.0,-0.1) -- (0.0,0.1);
+\node at (0.0,0) [below] {$a$\strut};
+\draw (5.0,-0.1) -- (5.0,0.1);
+\node at (5.0,0) [below] {$b$\strut};
+\end{scope}
+}
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/sobolev.tex b/vorlesungen/slides/2/hilbertraum/sobolev.tex
new file mode 100644
index 0000000..828d34d
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/sobolev.tex
@@ -0,0 +1,51 @@
+%
+% sobolev.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Sobolev-Raum}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Vektorrraum $W$}
+Funktionen $f\colon \Omega\to\mathbb{C}$
+\begin{itemize}
+\item<2->
+$f\in L^2(\Omega)$
+\item<3->
+$\nabla f\in L^2(\Omega)$
+\item<4->
+homogene Randbedingungen:
+$f_{|\partial \Omega}=0$
+\end{itemize}
+\end{block}
+\uncover<5->{%
+\begin{block}{Skalarprodukt}
+\begin{align*}
+\langle f,g\rangle_W
+&\uncover<6->{=
+\int_\Omega \overline{\nabla f}(x)\cdot\nabla g(x)\,d\mu(x)}
+\\
+&\uncover<7->{\qquad + \int_{\Omega} \overline{f}(x)\,g(x)\,d\mu(x)}
+\\
+&\uncover<8->{=\langle f,-\Delta g + g\rangle_{L^2(\Omega)}}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<9->{%
+\begin{block}{Vollständigkeit}
+\dots
+\end{block}}
+\uncover<10->{%
+\begin{block}{Anwendung}
+``Ein Hilbertraum für jedes partielle Differentialgleichungsproblem''
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/spektral.tex b/vorlesungen/slides/2/hilbertraum/spektral.tex
new file mode 100644
index 0000000..b561b69
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/spektral.tex
@@ -0,0 +1,91 @@
+%
+% spektral.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Spektraltheorie für selbstadjungierte Operatoren}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Voraussetzungen}
+\begin{itemize}
+\item
+Hilbertraum $H$
+\item
+$A\colon H\to H$ linear
+\end{itemize}
+\end{block}
+\uncover<2->{%
+\begin{block}{Eigenwerte}
+$x\in H$ ein EV von $A$ zum EW $\lambda\ne 0$
+\begin{align*}
+\uncover<3->{\langle x,x\rangle
+&=
+\frac1{\lambda}
+\langle x,\lambda x\rangle}
+\uncover<3->{=
+\frac1{\lambda}
+\langle x,Ax\rangle}
+\\
+&\uncover<4->{=
+\frac1{\lambda}
+\langle Ax,x\rangle}
+\uncover<5->{=
+\frac{\overline{\lambda}}{\lambda}
+\langle x,x\rangle}
+\\
+\uncover<6->{\frac{\overline{\lambda}}{\lambda}&=1
+\quad\Rightarrow\quad
+\overline{\lambda} = \lambda}
+\uncover<7->{\quad\Rightarrow\quad
+\lambda\in\mathbb{R}}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{block}{Orthogonalität}
+$u,v$ EV zu EW $\mu,\lambda\in \mathbb{R}\setminus\{0\}$, $\overline{\mu}=\mu\ne\lambda$
+\begin{align*}
+\uncover<9->{
+\langle u,v\rangle
+&=
+\frac{1}{\mu}
+\langle \mu u,v\rangle}
+\uncover<10->{=
+\frac{1}{\mu}
+\langle Au,v\rangle}
+\\
+&\uncover<11->{=
+\frac{1}{\mu}
+\langle u,Av\rangle}
+\uncover<12->{=
+\frac{1}{\mu}
+\langle u,\lambda v\rangle}
+\uncover<13->{=
+\frac{\lambda}{\mu}
+\langle u,v\rangle}
+\\
+\uncover<14->{\Rightarrow
+\;
+0
+&=
+\underbrace{\biggl(\frac{\lambda}{\mu}-1\biggr)}_{\displaystyle \ne 0}
+\langle u,v\rangle}
+\uncover<15->{\;\Rightarrow\;
+\langle u,v\rangle = 0}
+\end{align*}
+\uncover<16->{EV zu verschiedenen EW sind orthogonal}
+\end{block}}
+\end{column}
+\end{columns}
+\uncover<17->{%
+\begin{block}{Spektralsatz}
+Es gibt eine Hilbertbasis von $H$ aus Eigenvektoren von $A$
+\end{block}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/2/hilbertraum/sturm.tex b/vorlesungen/slides/2/hilbertraum/sturm.tex
new file mode 100644
index 0000000..a6865ab
--- /dev/null
+++ b/vorlesungen/slides/2/hilbertraum/sturm.tex
@@ -0,0 +1,58 @@
+%
+% sturm.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Sturm-Liouville-Problem}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Wellengleichung}
+Saite mit variabler Massedichte führt auf die DGL
+\[
+-y''(t) + q(t) y(t) = \lambda y(t),
+\quad
+q(t) > 0
+\]
+mit Randbedingungen $y(0)=y(1)=0$
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Sturm-Liouville-Operator}
+\[
+A=-\frac{d^2}{dt^2} + q(t) = -D^2 + p
+\]
+auf differenzierbaren Funktionen $\Omega=[0,1]\to\mathbb{C}$ mit Randwerten
+\[
+f(0)=f(1)=0
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\uncover<3->{%
+\begin{block}{Selbstadjungiert}
+\begin{align*}
+\langle f,Ag \rangle
+&\uncover<4->{=
+\langle f,-D^2 g\rangle + \langle f,qg\rangle
+=
+-
+\int_0^1 \overline{f}(t) \frac{d^2}{dt^2}g(t)\,dt
++\langle f,qg\rangle}
+\\
+&\uncover<5->{=-\underbrace{[\overline{f}(t)g'(t)]_0^1}_{\displaystyle=0}
++\int_0^1 \overline{f}'(t)g'(t)\,dt
++\langle f,qg\rangle}
+\uncover<6->{=-\int_0^1 \overline{f}''(t)g(t)\,dt
++\langle qf,g\rangle}
+\\
+&\uncover<7->{=\langle Af,g\rangle}
+\end{align*}
+\end{block}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/4/Makefile.inc b/vorlesungen/slides/4/Makefile.inc
index ad1081e..5aac429 100644
--- a/vorlesungen/slides/4/Makefile.inc
+++ b/vorlesungen/slides/4/Makefile.inc
@@ -17,6 +17,20 @@ chapter4 = \
../slides/4/euklidpoly.tex \
../slides/4/polynomefp.tex \
../slides/4/schieberegister.tex \
+ ../slides/4/charakteristik.tex \
+ ../slides/4/char2.tex \
+ ../slides/4/frobenius.tex \
+ ../slides/4/qundr.tex \
../slides/4/alpha.tex \
+ ../slides/4/galois/erweiterung.tex \
+ ../slides/4/galois/automorphismus.tex \
+ ../slides/4/galois/konstruktion.tex \
+ ../slides/4/galois/wuerfel.tex \
+ ../slides/4/galois/winkeldreiteilung.tex \
+ ../slides/4/galois/quadratur.tex \
+ ../slides/4/galois/radikale.tex \
+ ../slides/4/galois/aufloesbarkeit.tex \
+ ../slides/4/galois/sn.tex \
../slides/4/chapter.tex
+
diff --git a/vorlesungen/slides/4/chapter.tex b/vorlesungen/slides/4/chapter.tex
index a10712a..0691e39 100644
--- a/vorlesungen/slides/4/chapter.tex
+++ b/vorlesungen/slides/4/chapter.tex
@@ -16,3 +16,16 @@
\folie{4/polynomefp.tex}
\folie{4/alpha.tex}
\folie{4/schieberegister.tex}
+\folie{4/charakteristik.tex}
+\folie{4/char2.tex}
+\folie{4/frobenius.tex}
+\folie{4/qundr.tex}
+\folie{4/galois/erweiterung.tex}
+\folie{4/galois/automorphismus.tex}
+\folie{4/galois/konstruktion.tex}
+\folie{4/galois/wuerfel.tex}
+\folie{4/galois/winkeldreiteilung.tex}
+\folie{4/galois/quadratur.tex}
+\folie{4/galois/radikale.tex}
+\folie{4/galois/aufloesbarkeit.tex}
+\folie{4/galois/sn.tex}
diff --git a/vorlesungen/slides/4/char2.tex b/vorlesungen/slides/4/char2.tex
new file mode 100644
index 0000000..2b5709a
--- /dev/null
+++ b/vorlesungen/slides/4/char2.tex
@@ -0,0 +1,48 @@
+%
+% char2.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Charakteristik 2}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Plus und Minus}
+\[
+x+x = 2x = 0
+\uncover<2->{\Rightarrow
+-x=x}
+\]
+\end{block}
+\uncover<3->{%
+\begin{block}{Quadrieren}
+In $\mathbb{F}_2$ ist $2=0$, d.h
+\[
+(x+y)^2
+=
+x^2 + 2xy + y^2
+\uncover<4->{=
+x^2 + y^2}
+\]
+für alle $x,y\in\Bbbk$
+\end{block}}
+\uncover<6->{%
+\begin{block}{Frobenius-Automorphismus}
+\[
+(x+y)^{2^n} = x^{2^n}+y^{2^n}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Pascal-Dreieck}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/30-endlichekoerper/images/binomial2.pdf}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/charakteristik.tex b/vorlesungen/slides/4/charakteristik.tex
new file mode 100644
index 0000000..a0d6d3e
--- /dev/null
+++ b/vorlesungen/slides/4/charakteristik.tex
@@ -0,0 +1,71 @@
+%
+% charakteristisk.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Primkörper und Charakteristik}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Primkörper}
+$1\in\Bbbk$
+\begin{enumerate}
+\item<2->
+$n\cdot 1\ne 0\;\forall n\in\mathbb{N}$\uncover<3->{:
+$\Rightarrow$
+$\mathbb{Z}\subset \Bbbk$}
+\uncover<4->{%
+$\Rightarrow$
+$\mathbb{Q}\subset \Bbbk$}
+\item<5->
+$\{n\mathbb{Z}\;|\;
+\text{$n\cdot 1 = 0$ in $\Bbbk$}\}
+=
+p\mathbb{Z}$
+\uncover<6->{
+$\Rightarrow$
+$\mathbb{F}_p\subset \Bbbk$}
+\end{enumerate}
+\end{block}
+\uncover<7->{%
+\begin{block}{Primkörper}
+Der Primkörper $\operatorname{Prim}(\Bbbk)$
+eines Körpers $\Bbbk$ ist der kleinste in $\Bbbk$
+enthaltene Körper
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{block}{Charakteristik}
+\vspace{-10pt}
+\[
+\operatorname{char}(\Bbbk)
+=
+\begin{cases}
+\uncover<9->{p&\qquad \operatorname{Prim}(\Bbbk) = \mathbb{F}_p}\\
+\uncover<10->{0&\qquad \operatorname{Prim}(\Bbbk) = \mathbb{Q}}
+\end{cases}
+\]
+\vspace{-10pt}
+\end{block}}
+\uncover<11->{%
+\begin{block}{Vektorraum}
+$\Bbbk$ ist ein Vektorraum über $\operatorname{Prim}(\Bbbk)$
+durch Einschränkung der Multiplikation auf $\operatorname{Prim}(\Bbbk)$
+(Körperstruktur vergessen)
+\end{block}}
+\uncover<12->{%
+\begin{block}{Endliche Körper}
+\begin{itemize}
+\item<13->
+Endliche Körper haben immer Charakteristik $p\ne 0$
+\item<14->
+$\Bbbk$ ist eine endlichdimensionaler $\mathbb{F}_p$-Vektorraum
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/euklidmatrix.tex b/vorlesungen/slides/4/euklidmatrix.tex
index be5b3ca..c63afec 100644
--- a/vorlesungen/slides/4/euklidmatrix.tex
+++ b/vorlesungen/slides/4/euklidmatrix.tex
@@ -18,7 +18,7 @@ a_k = b_kq_k + r_k
\;\Rightarrow\;
\left\{
\begin{aligned}
-a_{k+1} &= b_k = \phantom{a_k-q_k}\llap{$-\mathstrut$}b_k \\
+a_{k+1} &= b_k = \phantom{a_k-q_k}b_k \\
b_{k+1} &= \phantom{b_k}\llap{$r_k$} = a_k - q_kb_k
\end{aligned}
\right.}
diff --git a/vorlesungen/slides/4/frobenius.tex b/vorlesungen/slides/4/frobenius.tex
new file mode 100644
index 0000000..56fd78f
--- /dev/null
+++ b/vorlesungen/slides/4/frobenius.tex
@@ -0,0 +1,54 @@
+%
+% frobenius.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Frobenius-Automorphismus}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+$\operatorname{Prim}(\Bbbk) = \mathbb{F}_p$
+\uncover<2->{%
+\begin{block}{Binomial-Koeffizienten}
+\vspace{-10pt}
+\begin{align*}
+\binom{p}{k}
+&=
+\frac{
+{\color{red}p}\cdot(p-1)\cdot(p-2)\cdot\dots\cdot (p-k+1)
+}{
+1\cdot2\cdot3\cdot\dots\cdot k
+}
+\intertext{{\color{red}$p$} wird nicht gekürzt wegen}
+\uncover<3->{1&\not\equiv 0 \mod p}\\
+\uncover<3->{2&\not\equiv 0 \mod p}\\
+\uncover<3->{ &\phantom{a}\vdots}\\
+\uncover<3->{k&\not\equiv 0 \mod p}
+\end{align*}
+\vspace{-10pt}
+\end{block}}
+\vspace{-5pt}
+\uncover<4->{%
+\begin{block}{Frobenius-Authomorphismus}
+\vspace{-10pt}
+\begin{align*}
+\uncover<5->{(x+y)^{p\phantom{\mathstrut^n}}
+&=
+x^{p\phantom{\mathstrut}^n}+y^{p\phantom{mathstrut^n}}}
+\\
+\uncover<6->{(x+y)^{p^n} &= x^{p^n}+y^{p^n}}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Pascal-Dreieck}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/30-endlichekoerper/images/binomial5.pdf}
+\end{center}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/aufloesbarkeit.tex b/vorlesungen/slides/4/galois/aufloesbarkeit.tex
new file mode 100644
index 0000000..ef5902b
--- /dev/null
+++ b/vorlesungen/slides/4/galois/aufloesbarkeit.tex
@@ -0,0 +1,120 @@
+%
+% aufloesbarkeit.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Auflösbarkeit}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Radikalerweiterung}
+Automorphismen $f\in \operatorname{Gal}(\Bbbk(\alpha)/\Bbbk)$
+einer Radikalerweiterung
+\[
+\Bbbk \subset \Bbbk(\alpha)
+\]
+sind festgelegt durch Wahl von $f(\alpha)$.
+
+\begin{itemize}
+\item<3-> Warum: Alle $f(\alpha^k)$ sind auch festgelegt
+\item<4-> $f(\alpha)$ muss eine andere Nullstelle des Minimalpolynoms sein
+\end{itemize}
+
+\end{block}}
+\uncover<8->{%
+\begin{block}{Irreduzibles Polynom $m(X)\in\mathbb{Q}[X]$}
+$\mathbb{Q}\subset \Bbbk$,
+$n$ verschiedene Nullstellen $\mathbb{C}$:
+\[
+\uncover<9->{
+\operatorname{Gal}(\Bbbk/\mathbb{Q})
+\cong
+S_n}
+\uncover<10->{
+\quad
+\text{auflösbar?}}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{\uncover<5->{Galois-Gruppen}}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\s{1.2}
+
+\uncover<2->{
+\fill[color=blue!20] (-1.1,-0.3) rectangle (0.3,{5*\s+0.3});
+\node[color=blue] at (-0.7,{2.5*\s}) [rotate=90] {Radikalerweiterungen};
+}
+
+\node at (0,0) {$\mathbb{Q}$};
+\node at (0,{1*\s}) {$E_1$};
+\node at (0,{2*\s}) {$E_2$};
+\node at (0,{3*\s}) {$E_3$};
+\node at (0,{4*\s}) {$\vdots\mathstrut$};
+\node at (0,{5*\s}) {$\Bbbk$};
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{0*\s}) -- (0,{1*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{1*\s}) -- (0,{2*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{2*\s}) -- (0,{3*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{3*\s}) -- (0,{4*\s});
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{4*\s}) -- (0,{5*\s});
+
+\begin{scope}[xshift=0.5cm]
+\uncover<7->{
+\fill[color=red!20] (0,{0*\s-0.3}) rectangle (4.8,{5*\s+0.3});
+\node[color=red] at (4.5,{2.5*\s}) [rotate=90] {Auflösung der Galois-Gruppe};
+}
+\uncover<5->{
+\node at (0,{0*\s}) [right] {$\operatorname{Gal}(\Bbbk/\mathbb{Q})$};
+\node at (0,{1*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_1)$};
+\node at (0,{2*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_2)$};
+\node at (0,{3*\s}) [right] {$\operatorname{Gal}(\Bbbk/E_3)$};
+\node at (1,{4*\s}) {$\vdots\mathstrut$};
+\node at (0,{5*\s}) [right] {$\operatorname{Gal}(\Bbbk/\Bbbk)$};
+\node at (1,{0.5*\s}) {$\cap\mathstrut$};
+\node at (1,{1.5*\s}) {$\cap\mathstrut$};
+\node at (1,{2.5*\s}) {$\cap\mathstrut$};
+\node at (1,{3.5*\s}) {$\cap\mathstrut$};
+\node at (1,{4.5*\s}) {$\cap\mathstrut$};
+}
+
+\uncover<6->{
+\begin{scope}[xshift=2.5cm]
+\node at (0,{0*\s}) {$G_n$};
+\node at (0,{1*\s}) {$G_{n-1}$};
+\node at (0,{2*\s}) {$G_{n-2}$};
+\node at (0,{3*\s}) {$G_{n-3}$};
+\node at (0,{5*\s}) {$G_0=\{e\}$};
+\node at (0,{0.5*\s}) {$\cap\mathstrut$};
+\node at (0,{1.5*\s}) {$\cap\mathstrut$};
+\node at (0,{2.5*\s}) {$\cap\mathstrut$};
+\node at (0,{3.5*\s}) {$\cap\mathstrut$};
+\node at (0,{4.5*\s}) {$\cap\mathstrut$};
+}
+
+\uncover<7->{
+\node[color=red] at (0.2,{0.5*\s+0.1}) [right] {\tiny $G_n/G_{n-1}$};
+\node[color=red] at (0.2,{0.5*\s-0.1}) [right] {\tiny abelsch};
+
+\node[color=red] at (0.2,{1.5*\s+0.1}) [right] {\tiny $G_{n-1}/G_{n-2}$};
+\node[color=red] at (0.2,{1.5*\s-0.1}) [right] {\tiny abelsch};
+
+\node[color=red] at (0.2,{2.5*\s+0.1}) [right] {\tiny $G_{n-2}/G_{n-3}$};
+\node[color=red] at (0.2,{2.5*\s-0.1}) [right] {\tiny abelsch};
+}
+
+\end{scope}
+\end{scope}
+
+
+
+\end{tikzpicture}
+\end{center}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/automorphismus.tex b/vorlesungen/slides/4/galois/automorphismus.tex
new file mode 100644
index 0000000..6051813
--- /dev/null
+++ b/vorlesungen/slides/4/galois/automorphismus.tex
@@ -0,0 +1,118 @@
+%
+% automorphismus.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{4pt}
+\setlength{\belowdisplayskip}{4pt}
+\frametitle{Galois-Gruppe}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\s{3.0}
+\begin{scope}[xshift=-1.5cm]
+\node at (0,{\s+0.1}) [above] {Körpererweiterung\strut};
+\node at (0,{\s}) {$G$};
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{-\s}) -- (0,0);
+\draw[shorten >= 0.3cm,shorten <= 0.3cm] (0,{\s}) -- (0,0);
+\node at (0,{-0.5*\s}) [left] {$[F:E]$};
+\node at (0,{0.5*\s}) [left] {$[G:F]$};
+\node at (0,0) {$F$};
+\node at (0,{-\s}) {$E$};
+\end{scope}
+\uncover<3->{
+\begin{scope}[xshift=1.8cm]
+\node at (0,{\s+0.1}) [above] {Gruppe\strut};
+\fill (0,{-\s}) circle[radius=0.06];
+\fill (0,0) circle[radius=0.06];
+\fill (0,{\s}) circle[radius=0.06];
+\draw[shorten >= 0.1cm,shorten <= 0.1cm]
+ (0,{-\s}) to[out=100,in=-100] (0,{\s});
+\draw[shorten >= 0.1cm,shorten <= 0.1cm]
+ (0,{-\s}) to[out=80,in=-80] (0,0);
+\draw[shorten >= 0.1cm,shorten <= 0.1cm]
+ (0,0) to[out=80,in=-80] (0,{\s});
+\node at (-0.6,0) [rotate=90] {$\operatorname{Gal}(G/E)$};
+\node at (0.45,{0.5*\s}) [rotate=90] {$\operatorname{Gal}(G/F)$};
+\node at (0.45,{-0.5*\s}) [rotate=90] {$\operatorname{Gal}(F/E)$};
+\end{scope}
+\draw[->,color=red!20,line width=14pt] (-1.4,{0.6*\s}) -- (1.4,{0.6*\s});
+\node[color=red] at (0,{0.6*\s}) {$\operatorname{Gal}$};
+}
+\uncover<4->{
+\draw[<-,color=blue!20,line width=14pt] (-1.4,{-0.6*\s}) -- (1.4,{-0.6*\s});
+\node[color=blue] at (0,{-0.6*\s}) {$\operatorname{Fix}, F^H$};
+}
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.56\textwidth}
+\uncover<2->{%
+\begin{block}{Automorphismus}
+\vspace{-10pt}
+\[
+\operatorname{Aut}(F)
+=
+\left\{
+f\colon F\to F
+\left|
+\begin{aligned}
+f(x+y)&=f(x)+f(y)\\
+f(xy)&=f(x)f(y)
+\end{aligned}
+\right.
+\right\}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<3->{%
+\begin{block}{Galois-Gruppe}
+Automorphismen, die $E$ festlassen
+\[
+{\color{red}
+\operatorname{Gal}(F/E)
+}
+=
+\left\{
+\varphi\in\operatorname{Aut}(F)\;|\; \varphi(x)=x\forall x\in E
+\right\}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<4->{%
+\begin{block}{Fixkörper}
+$H\subset \operatorname{Aut}(F)$:
+\begin{align*}
+{\color{blue}F^H}
+&=
+\{x\in F\;|\; hx = x\forall h\in H\}
+=\operatorname{Fix}(H)
+\end{align*}
+\end{block}}
+\vspace{-13pt}
+\uncover<5->{%
+\begin{block}{Beispiel}
+\begin{itemize}
+\item<6->
+\(
+\operatorname{Gal}(\mathbb{C}/\mathbb{R})
+=
+\{
+\operatorname{id}_{\mathbb{C}},
+\operatorname{conj}\colon z\mapsto\overline{z}
+\}
+\)
+\item<7->
+\(
+\mathbb{C}^{\operatorname{conj}}
+=
+\mathbb{R}
+\)
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/erweiterung.tex b/vorlesungen/slides/4/galois/erweiterung.tex
new file mode 100644
index 0000000..6909849
--- /dev/null
+++ b/vorlesungen/slides/4/galois/erweiterung.tex
@@ -0,0 +1,65 @@
+%
+% erweiterung.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Körpererweiterungen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Körpererweiterung}
+$E,F$ Körper: $E\subset F$
+\end{block}
+\uncover<6->{%
+\begin{block}{Vektorraum}
+$F$ ist ein Vektorraum über $E$
+\end{block}}
+\uncover<7->{%
+\begin{block}{Endliche Körpererweiterung}
+$\dim_E F < \infty$
+\end{block}}
+\uncover<8->{%
+\begin{block}{Adjunktion eines $\alpha$}
+$\Bbbk(\alpha)$ kleinster Körper, der $\Bbbk$ und
+$\alpha$ enthält.
+\end{block}}
+\uncover<9->{%
+\begin{block}{Algebraische Erweiterung}
+$\alpha$ algebraisch über $\Bbbk$, i.~e.~Nullstelle von
+$m(X)\in\Bbbk[X]$
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Beispiele}
+\begin{enumerate}
+\item<3->
+$\mathbb{R} \subset \mathbb{R}(i) = \mathbb{C}$
+\item<4->
+$\mathbb{Q}\subset \mathbb{Q}(\sqrt{2})$
+\item<5->
+$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2})$
+\end{enumerate}
+\end{block}}
+\uncover<7->{%
+\begin{block}{Grad}
+$E\subset F$ heisst Körpererweiterung vom Grad $n$, falls
+\[
+\dim_E F = n =: [F:E]
+\]
+\uncover<8->{%
+Gleichbedeutend: $\deg m(X) = n$}
+\uncover<10->{%
+\[
+E\subset F\subset G
+\Rightarrow
+[G:E] = [G:F]\cdot [F:E]
+\]
+(in unseren Fällen)}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/images/Makefile b/vorlesungen/slides/4/galois/images/Makefile
new file mode 100644
index 0000000..444944e
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/Makefile
@@ -0,0 +1,12 @@
+#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: wuerfel2.png wuerfel.png
+
+wuerfel.png: wuerfel.pov common.inc
+ povray +A0.1 -W1080 -H1080 -Owuerfel.png wuerfel.pov
+
+wuerfel2.png: wuerfel2.pov common.inc
+ povray +A0.1 -W1080 -H1080 -Owuerfel2.png wuerfel2.pov
diff --git a/vorlesungen/slides/4/galois/images/common.inc b/vorlesungen/slides/4/galois/images/common.inc
new file mode 100644
index 0000000..6cfcabe
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/common.inc
@@ -0,0 +1,89 @@
+//
+// common.inc
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+#include "textures.inc"
+#include "stones.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.133;
+#declare O = <0, 0, 0>;
+#declare E = <1, 1, 1>;
+#declare a = pow(2, 1/3);
+#declare at = 0.02;
+
+camera {
+ location <3, 2, 12>
+ look_at E * (a / 2) * 0.93
+ right x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <11, 20, 16> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro wuerfelgitter(A, AT)
+ cylinder { O, <A, 0, 0>, AT }
+ cylinder { O, <0, A, 0>, AT }
+ cylinder { O, <0, 0, A>, AT }
+ cylinder { <A, 0, 0>, <A, A, 0>, AT }
+ cylinder { <A, 0, 0>, <A, 0, A>, AT }
+ cylinder { <0, A, 0>, <A, A, 0>, AT }
+ cylinder { <0, A, 0>, <0, A, A>, AT }
+ cylinder { <0, 0, A>, <A, 0, A>, AT }
+ cylinder { <0, 0, A>, <0, A, A>, AT }
+ cylinder { <A, A, 0>, <A, A, A>, AT }
+ cylinder { <A, 0, A>, <A, A, A>, AT }
+ cylinder { <0, A, A>, <A, A, A>, AT }
+ sphere { <0, 0, 0>, AT }
+ sphere { <A, 0, 0>, AT }
+ sphere { <0, A, 0>, AT }
+ sphere { <0, 0, A>, AT }
+ sphere { <A, A, 0>, AT }
+ sphere { <A, 0, A>, AT }
+ sphere { <0, A, A>, AT }
+ sphere { <A, A, A>, AT }
+#end
+
+#macro wuerfel()
+ union {
+ box { O, E }
+ wuerfelgitter(1, 0.5*at)
+ texture {
+ T_Grnt24
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+ }
+#end
+
+#macro wuerfel2()
+ union {
+ wuerfelgitter(a, at)
+ pigment {
+ color rgb<0.8,0.4,0.4>
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+ }
+#end
diff --git a/vorlesungen/slides/4/galois/images/wuerfel.png b/vorlesungen/slides/4/galois/images/wuerfel.png
new file mode 100644
index 0000000..ff6fc14
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/wuerfel.png
Binary files differ
diff --git a/vorlesungen/slides/4/galois/images/wuerfel.pov b/vorlesungen/slides/4/galois/images/wuerfel.pov
new file mode 100644
index 0000000..a5db465
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/wuerfel.pov
@@ -0,0 +1,9 @@
+//
+// wuerfel.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#include "common.inc"
+
+wuerfel()
+
diff --git a/vorlesungen/slides/4/galois/images/wuerfel2.png b/vorlesungen/slides/4/galois/images/wuerfel2.png
new file mode 100644
index 0000000..68919cc
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/wuerfel2.png
Binary files differ
diff --git a/vorlesungen/slides/4/galois/images/wuerfel2.pov b/vorlesungen/slides/4/galois/images/wuerfel2.pov
new file mode 100644
index 0000000..ac32b2f
--- /dev/null
+++ b/vorlesungen/slides/4/galois/images/wuerfel2.pov
@@ -0,0 +1,9 @@
+//
+// wuerfel.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#include "common.inc"
+
+wuerfel()
+wuerfel2()
diff --git a/vorlesungen/slides/4/galois/konstruktion.tex b/vorlesungen/slides/4/galois/konstruktion.tex
new file mode 100644
index 0000000..094b570
--- /dev/null
+++ b/vorlesungen/slides/4/galois/konstruktion.tex
@@ -0,0 +1,147 @@
+%
+% konstruktion.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\frametitle{Konstruktion mit Zirkel und Lineal}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Strahlensatz}
+\uncover<6->{%
+Jedes beliebige rationale Streckenverhältnis $\frac{p}{q}$
+kann mit Zirkel und Lineal konstruiert werden.}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Kreis--Gerade}
+Aus $c$ und $a$ konstruiere $b=\sqrt{c^2-a^2}$
+\uncover<13->{%
+$\Rightarrow$ jede beliebige Quadratwurzel kann konstruiert werden}
+\end{block}}
+\end{column}
+\end{columns}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\s{0.5}
+\def\t{0.45}
+
+\coordinate (A) at (0,0);
+\coordinate (B) at ({10*\t},0);
+
+\uncover<2->{
+ \draw (0,0) -- (30:{10.5*\s});
+}
+
+\uncover<3->{
+ \foreach \x in {0,...,10}{
+ \fill (30:{\x*\s}) circle[radius=0.03];
+ }
+ \foreach \x in {0,1,2,3,4,7,8,9}{
+ \node at (30:{\x*\s}) [above] {\tiny $\x$};
+ }
+ \node at (30:{10*\s}) [above right] {$q=10$};
+}
+
+\uncover<4->{
+ \foreach \x in {1,...,10}{
+ \fill (0:{\x*\t}) circle[radius=0.03];
+ \draw[->,line width=0.2pt] (30:{\x*\s}) -- (0:{\x*\t});
+ }
+}
+
+\draw (A) -- (0:{10.5*\t});
+\node at (A) [below left] {$A$};
+\node at (B) [below right] {$B$};
+\fill (A) circle[radius=0.05];
+\fill (B) circle[radius=0.05];
+
+\uncover<5->{
+ \node at (30:{6*\s}) [above left] {$p=6$};
+ \draw[line width=0.2pt] (0,0) -- (0,-0.4);
+ \draw[line width=0.2pt] ({6*\t},0) -- ({6*\t},-0.4);
+ \draw[<->] (0,-0.3) -- ({6*\t},-0.3);
+ \node at ({3*\t},-0.4) [below]
+ {$\displaystyle\frac{p}{q}\cdot\overline{AB}$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+%\foreach \x in {8,...,14}{
+% \only<\x>{\node at (4,4) {$\x$};}
+%}
+
+\def\r{4}
+\def\a{50}
+
+\coordinate (A) at ({\r*cos(\a)},0);
+
+\uncover<10->{
+ \fill[color=gray] (\r,0) -- (\r,0.3) arc (90:180:0.3) -- cycle;
+ \fill[color=gray]
+ (95:\r) -- ($(95:\r)+(185:0.3)$) arc (185:275:0.3) -- cycle;
+}
+
+\draw[->] (0,0) -- (95:\r);
+\node at (95:{0.5*\r}) [left] {$c$};
+
+\begin{scope}
+ \clip (-1,-0.3) rectangle (4.5,4.1);
+ \uncover<10->{
+ \draw (-1,0) -- (5,0);
+ \draw[->] (0,0) -- (\r,0);
+ \draw (0,0) circle[radius=\r];
+ \draw ({\r*cos(\a)},-1) -- ({\r*cos(\a)},5);
+ }
+\end{scope}
+
+\uncover<11->{
+ \fill[color=blue!20] (0,0) -- (A) -- (\a:\r) -- cycle;
+}
+
+\uncover<9->{
+ \fill[color=gray!80] (A) -- ($(A)+(0,0.5)$) arc (90:180:0.5) -- cycle;
+ \fill[color=gray!120] ($(A)+(-0.2,0.2)$) circle[radius=0.07];
+ \draw ({\r*cos(\a)},-0.3) -- ({\r*cos(\a)},4.1);
+}
+
+\uncover<11->{
+ \draw[color=blue,line width=1.4pt] (0,0) -- (\a:\r);
+ \node[color=blue] at (\a:{0.5*\r}) [above left] {$c$};
+}
+
+\draw[color=blue,line width=1.4pt] (0,0) -- ({\r*cos(\a)},0);
+\fill[color=blue] (0,0) circle[radius=0.04];
+\fill[color=blue] (A) circle[radius=0.04];
+\node[color=blue] at ({0.5*\r*cos(\a)},0) [below] {$a$};
+
+\uncover<12->{
+ \fill[color=white,opacity=0.8]
+ ({\r*cos(\a)+0.1},{0.5*\r*sin(\a)-0.25})
+ rectangle
+ ({\r*cos(\a)+2},{0.5*\r*sin(\a)+0.25});
+
+ \node[color=red] at ({\r*cos(\a)},{0.5*\r*sin(\a)}) [right]
+ {$b=\sqrt{c^2-a^2}$};
+ \draw[color=red,line width=1.4pt] ({\r*cos(\a)},0) -- (\a:\r);
+ \fill[color=red] (\a:\r) circle[radius=0.05];
+ \fill[color=red] (A) circle[radius=0.05];
+}
+
+\end{tikzpicture}
+\end{center}}
+\end{column}
+\end{columns}
+\uncover<14->{{\usebeamercolor[fg]{title}Folgerung:}
+Konstruierbar sind Körpererweiterungen $[F:E] = 2^l$}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/quadratur.tex b/vorlesungen/slides/4/galois/quadratur.tex
new file mode 100644
index 0000000..f5763b9
--- /dev/null
+++ b/vorlesungen/slides/4/galois/quadratur.tex
@@ -0,0 +1,66 @@
+%
+% quadratur.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\frametitle{Quadratur des Kreises}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.44\textwidth}
+\begin{center}
+\uncover<2->{%
+\begin{tikzpicture}[>=latex,thick]
+
+\def\r{2.8}
+\pgfmathparse{sqrt(3.14159)*\r/2}
+\xdef\s{\pgfmathresult}
+
+\fill[color=blue!20] (-\s,-\s) rectangle (\s,\s);
+\fill[color=red!40,opacity=0.5] (0,0) circle[radius=\r];
+
+\uncover<3->{
+ \draw[->,color=red] (0,0) -- (50:\r);
+ \fill[color=red] (0,0) circle[radius=0.04];
+ \node[color=red] at (50:{0.5*\r}) [below right] {$r$};
+}
+
+\uncover<4->{
+ \draw[line width=0.3pt] (-\s,-\s) -- (-\s,{-\s-0.7});
+ \draw[line width=0.3pt] (\s,-\s) -- (\s,{-\s-0.7});
+ \draw[<->,color=blue] (-\s,{-\s-0.6}) -- (\s,{-\s-0.6});
+ \node[color=blue] at (0,{-\s-0.6}) [below] {$l$};
+}
+
+\uncover<5->{
+ \node at (0,{-\s/2}) {${\color{red}\pi r^2}={\color{blue}l^2}
+ \;\Rightarrow\;
+ {\color{blue}l}={\color{red}\sqrt{\pi}r}$};
+}
+
+\end{tikzpicture}}
+\end{center}
+\end{column}
+\begin{column}{0.52\textwidth}
+\begin{block}{Aufgabe}
+Konstruiere ein zu einem Kreis flächengleiches Quadrat
+\end{block}
+\uncover<6->{%
+\begin{block}{Modifizierte Aufgabe}
+Konstruiere eine Strecke, deren Länge Lösung der Gleichung
+$x^2-\pi=0$ ist.
+\end{block}}
+\uncover<7->{%
+\begin{proof}[Unmöglichkeitsbeweis mit Widerspruch]
+\begin{itemize}
+\item<8-> Lösung in einem Erweiterungskörper
+\item<9-> Lösung ist Nullstelle eines Polynoms
+\item<10-> Lösung ist algebraisch
+\item<11-> $\pi$ ist {\bf nicht} algebraisch
+\uncover<12->{(Lindemann 1882\only<13>{, Weierstrass 1885})}
+\qedhere
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/radikale.tex b/vorlesungen/slides/4/galois/radikale.tex
new file mode 100644
index 0000000..e9e4ce8
--- /dev/null
+++ b/vorlesungen/slides/4/galois/radikale.tex
@@ -0,0 +1,69 @@
+%
+% radikale.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lösung durch Radikale}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Problemstellung}
+Finde Nullstellen eines Polynomes
+\[
+p(X)
+=
+a_nX^n + a_{n-1}X^{n-1}
++\dots+
+a_1X+a_0
+\]
+$p\in\mathbb{Q}[X]$
+\end{block}
+\uncover<2->{%
+\begin{block}{Radikale}
+Geschachtelte Wurzelausdrücke
+\[
+\sqrt[3]{
+-\frac{q}2 +\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}
+}
++
+\sqrt[3]{
+-\frac{q}2 -\sqrt{\frac{q^2}{4}+\frac{p^3}{27}}
+}
+\]
+\uncover<3->{(Lösung von $x^3+px+q=0$)}
+\end{block}}
+\uncover<4->{%
+\begin{block}{Lösbar durch Radikale}
+Nullstelle von $p(X)$ ist ein Radikal
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Algebraische Formulierung}
+Gegeben ein irreduzibles Polynom $p\in\mathbb{Q}[X]$,
+finde eine Körpererweiterung $\mathbb{Q}\subset\Bbbk$, derart,
+dass $p$ in $\Bbbk$ eine Nullstelle hat\uncover<6->{:
+$\Bbbk = \mathbb{Q}[X]/(p)$}
+\end{block}}
+\uncover<7->{%
+\begin{block}{Radikalerweiterung}
+Körpererweiterung $\Bbbk\subset\Bbbk'$ um $\alpha$ mit einer der Eigenschaften
+\begin{itemize}
+\item<8-> $\alpha$ ist eine Einheitswurzel
+\item<9-> $\alpha^k\in\Bbbk$
+\end{itemize}
+\end{block}}
+\vspace{-5pt}
+\uncover<10->{%
+\begin{block}{Lösbar durch Radikale}
+Radikalerweiterungen
+\[
+\mathbb{Q} \subset \Bbbk \subset \Bbbk' \subset \dots \subset \Bbbk'' \ni \alpha
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/sn.tex b/vorlesungen/slides/4/galois/sn.tex
new file mode 100644
index 0000000..1cae3fa
--- /dev/null
+++ b/vorlesungen/slides/4/galois/sn.tex
@@ -0,0 +1,87 @@
+%
+% sn.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Nichtauflösbarkeit von $S_n$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Die symmetrische Gruppe $S_n$}
+Permutationen auf $n$ Elementen
+\[
+\sigma
+=
+\begin{pmatrix}
+1&2&3&\dots&n\\
+\sigma(1)&\sigma(2)&\sigma(3)&\dots&\sigma(n)
+\end{pmatrix}
+\]
+\end{block}
+\vspace{-10pt}
+\uncover<2->{%
+\begin{block}{Signum}
+$t(\sigma)=\mathstrut$ Anzahl Transpositionen
+\[
+\operatorname{sgn}(\sigma)
+=
+(-1)^{t(\sigma)}
+=
+\begin{cases}
+\phantom{-}1&\text{$t(\sigma)$ gerade}
+\\
+-1&\text{$t(\sigma)$ ungerade}
+\end{cases}
+\]
+Homomorphismus!
+\end{block}}
+\uncover<3->{%
+\begin{block}{Die alternierende Gruppe $A_n$}
+\vspace{-12pt}
+\[
+A_n = \ker \operatorname{sgn}
+=
+\{\sigma\in S_n\;|\;\operatorname{sgn}(\sigma)=1\}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Normale Untergruppe}
+\begin{itemize}
+\item
+$H\triangleleft G$ wenn $gHg^{-1}\subset G\;\forall g\in G$
+\item
+$G/N$ ist wohldefiniert
+\end{itemize}
+\end{block}}
+\vspace{-10pt}
+\uncover<5->{%
+\begin{block}{Einfache Gruppe}
+$G$ einfach $\Leftrightarrow$
+\[
+H\triangleleft G
+\;
+\Rightarrow
+\;
+\text{$H=\{e\}$ oder $H=G$}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<6->{%
+\begin{block}{$n\ge 5 \Rightarrow A_n \text{ einfach}$}
+\begin{enumerate}
+\item<7-> Zeigen, dass $A_5$ einfach ist
+\item<8-> Vollständige Induktion: $A_n$ einfach $\Rightarrow A_{n+1}$ einfach
+\end{enumerate}
+\uncover<9->{%
+$\Rightarrow$ i.~A.~keine Lösung der
+einer Polynomgleichung vom Grad $\ge 5$ durch Radikale
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/winkeldreiteilung.tex b/vorlesungen/slides/4/galois/winkeldreiteilung.tex
new file mode 100644
index 0000000..54b941b
--- /dev/null
+++ b/vorlesungen/slides/4/galois/winkeldreiteilung.tex
@@ -0,0 +1,94 @@
+%
+% winkeldreiteilung.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Winkeldreiteilung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.43\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\r{5}
+\def\a{25}
+
+\uncover<3->{
+ \draw[line width=0.7pt] (\r,0) arc (0:90:\r);
+}
+
+\fill[color=blue!20] (0,0) -- (\r,0) arc(0:{3*\a}:\r) -- cycle;
+\node[color=blue] at ({1.5*\a}:{1.05*\r}) {$\alpha$};
+
+\draw[color=blue,line width=1.3pt] (\r,0) arc (0:{3*\a}:\r);
+
+\uncover<2->{
+ \fill[color=red!40,opacity=0.5] (0,0) -- (\r,0) arc(0:\a:\r) -- cycle;
+ \draw[color=red,line width=1.4pt] (\r,0) arc (0:\a:\r);
+ \node[color=red] at ({0.5*\a}:{0.7*\r})
+ {$\displaystyle\frac{\alpha}{3}$};
+}
+
+\uncover<3->{
+ \fill[color=blue] ({3*\a}:\r) circle[radius=0.05];
+ \draw[color=blue] ({3*\a}:\r) -- ({\r*cos(3*\a)},-0.1);
+
+ \fill[color=red] ({\a}:\r) circle[radius=0.05];
+ \draw[color=red] ({\a}:\r) -- ({\r*cos(\a)},-0.1);
+
+ \draw[->] (-0.1,0) -- ({\r+0.4},0) coordinate[label={$x$}];
+ \draw[->] (0,-0.1) -- (0,{\r+0.4}) coordinate[label={right:$y$}];
+}
+
+
+\uncover<4->{
+\node at ({0.5*\r},-0.5) [below] {$\displaystyle
+\cos{\color{blue}\alpha}
+=
+4\cos^3{\color{red}\frac{\alpha}3} -3 \cos {\color{red}\frac{\alpha}3}
+$};
+}
+
+\uncover<5->{
+ \node[color=blue] at ({\r*cos(3*\a)},0) [below] {$a\mathstrut$};
+ \node[color=red] at ({\r*cos(\a)},0) [below] {$x\mathstrut$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.53\textwidth}
+\begin{block}{Aufgabe}
+Teile einen Winkel in drei gleiche Teile
+\end{block}
+\vspace{-2pt}
+\uncover<6->{%
+\begin{block}{Algebraisierte Aufgabe}
+Konstruiere $x$ aus $a$ derart, dass
+\[
+p(x)
+=
+x^3-\frac34 x -a = 0
+\]
+\uncover<7->{%
+$a=0$:}
+\uncover<8->{$p(x) = x(x^2-\frac{3}{4})\uncover<9->{\Rightarrow x = \frac{\sqrt{3}}2}$}
+\end{block}}
+\vspace{-2pt}
+\uncover<10->{%
+\begin{proof}[Unmöglichkeitsbeweis]
+\begin{itemize}
+\item<11->
+$a\ne 0$ $\Rightarrow$ $p(x)$ irreduzibel
+\item<12->
+$p(x)$ definiert eine Körpererweiterung vom Grad $3$
+\item<13->
+Konstruierbar sind nur Körpererweiterungen vom Grad $2^l$
+\qedhere
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/galois/wuerfel.tex b/vorlesungen/slides/4/galois/wuerfel.tex
new file mode 100644
index 0000000..ada6079
--- /dev/null
+++ b/vorlesungen/slides/4/galois/wuerfel.tex
@@ -0,0 +1,64 @@
+%
+% wuerfel.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\begin{frame}[t]
+\frametitle{Würfelverdoppelung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\node at (0,0) {\includegraphics[width=6.0cm]{../slides/4/galois/images/wuerfel.png}};
+\uncover<2->{
+\node at (0,0) {\includegraphics[width=6.0cm]{../slides/4/galois/images/wuerfel2.png}};
+}
+
+\uncover<3->{
+ \draw[<->,color=blue] (-1.25,-2.4) -- (2.55,-2.25);
+ \node[color=blue] at (0.75,-2.3) [above] {$a$};
+}
+
+\uncover<4->{
+ \begin{scope}[yshift=0.03cm]
+ \draw[color=red] (-2.13,-2.89) -- (-2.13,-3.19);
+ \draw[color=red] (2.85,-2.7) -- (2.85,-3.0);
+ \draw[<->,color=red] (-2.13,-3.09) -- (2.85,-2.9);
+ \end{scope}
+ \node[color=red] at (0.36,-2.9) [below] {$b$};
+}
+
+\uncover<5->{
+\node at (0,-4) {$
+ 2{\color{blue}a}^3={\color{red}b}^3
+ \uncover<6->{\;\Rightarrow\;
+ \frac{b}{a} = \sqrt[3]{2}}$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.52\textwidth}
+\begin{block}{Aufgabe}
+Konstruiere einen Würfel mit doppeltem Volumen
+\end{block}
+\uncover<7->{%
+\begin{block}{Algebraisierte Aufgabe}
+Konstruiere eine Nullstelle von $p(x)=x^3-2$
+\end{block}}
+\uncover<8->{%
+\begin{proof}[Unmöglichkeitsbeweis]
+\begin{itemize}
+\item<9->
+$p(x)$ irreduzibel
+\item<10->
+$p(x)$ definiert eine Körpererweiterung vom Grad $3$
+\item<11->
+Nur Körpererweiterungen vom Grad $2^l$ sind konstruierbar
+\qedhere
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/4/qundr.tex b/vorlesungen/slides/4/qundr.tex
new file mode 100644
index 0000000..a6f89bd
--- /dev/null
+++ b/vorlesungen/slides/4/qundr.tex
@@ -0,0 +1,138 @@
+%
+% qundr.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkred}{rgb}{0.8,0,0}
+\definecolor{darkblue}{rgb}{0,0,0.8}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (ll) at (-6,-3.6);
+\coordinate (lr) at (6,-3.6);
+\coordinate (ur) at (6,3.6);
+\coordinate (ul) at (-6,3.6);
+
+\def\d{0.6}
+\def\D{0.5}
+
+\coordinate (q) at (0,{-2.25+\d});
+\coordinate (r) at (-1.5,{\d+\D});
+\coordinate (a) at (1.5,{\d-\D});
+\coordinate (c) at (0,{2.25+\d});
+
+\coordinate (m1) at ($0.5*(q)+0.5*(r)$);
+\coordinate (m2) at ($0.5*(q)+0.5*(a)$);
+\coordinate (m3) at ($0.5*(c)+0.5*(r)$);
+\coordinate (m4) at ($0.5*(c)+0.5*(a)$);
+
+\def\t{1.5}
+\coordinate (M1) at ($(m1)+\t*(m1)-\t*(m4)$);
+\coordinate (M2) at ($(m2)+\t*(m2)-\t*(m3)$);
+\coordinate (M4) at ($(m4)+\t*(m4)-\t*(m1)$);
+\coordinate (M3) at ($(m3)+\t*(m3)-\t*(m2)$);
+
+\begin{scope}
+\clip (ll) rectangle (ur);
+
+\uncover<3->{
+ \fill[color=blue!30]
+ ($0.9*(m1)+0.1*(M1)+(-6,0)$) -- ($0.9*(m1)+0.1*(M1)$)
+ -- (M4) -- (ul) -- cycle;
+}
+
+\uncover<4->{
+ \fill[color=red!60,opacity=0.5]
+ ($0.9*(m2)+0.1*(M2)$) -- ($0.9*(m2)+0.1*(M2)+(6,0)$)
+ -- (ur) -- (M3) -- cycle;
+}
+
+\uncover<2->{
+ \fill[color=darkgreen!60,opacity=0.5]
+ ($1.09*(m3)-0.09*(M3)$) -- ($1.09*(m3)-0.09*(M3)+(-6,0)$)
+ -- (ll) -- (M2) -- cycle;
+}
+
+\uncover<6->{
+ \fill[color=gray,opacity=0.5]
+ ({6-0.1},{\d+0.22}) rectangle ({6-2.4},{\d+0.62});
+ \node[color=yellow] at (6,\d) [above left] {überabzählbar\strut};
+
+ \fill[color=gray,opacity=0.5]
+ ({-6+0.1},{\d-0.15}) rectangle ({-6+1.75},{\d-0.55});
+ \node[color=yellow] at (-6,\d) [below right] {abzählbar\strut};
+
+ \draw[color=yellow,line width=2pt] (-7,\d) -- (7,\d);
+}
+
+\end{scope}
+
+\node at (q) {$\mathbb{Q}$\strut};
+\node at ($(q)+(0,-0.2)$) [below] {Primkörper};
+
+\uncover<3->{
+ \node at (r) {$\mathbb{R}$\strut};
+ \node at (r) [left] {$\text{reelle Zahlen}=\mathstrut$};
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (q) -- (r);
+ \node at ($0.5*(q)+0.5*(r)$)
+ [below,rotate={atan((-2.25-\D)/1.5)}] {index $\infty$};
+ \node[color=blue] at (ul)
+ [above right] {topologische Vervollständigung};
+}
+
+\uncover<4->{
+ \node at (a) {$\mathbb{A}$\strut};
+ \node at (a) [right] {$\mathstrut = \text{algebraische Zahlen}$};
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (q) -- (a);
+ \node at ($0.5*(q)+0.5*(a)$)
+ [below,rotate={atan((2.25-\D)/1.5)}] {index $\infty$};
+ \node[color=red] at (ur)
+ [above left] {algebraische Vervollständigung};
+}
+
+\uncover<5->{
+ \node at (c) {$\mathbb{C}$\strut};
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (r) -- (c);
+ \draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (a) -- (c);
+ \node at ($(c)+(0,0.2)$) [above] {komplexe Zahlen};
+ \node at ($0.5*(r)+0.5*(c)$)
+ [above,rotate={atan((2.25-\D)/1.5)}] {index 2};
+ \node at ($0.5*(a)+0.5*(c)$)
+ [above,rotate={atan((-2.25-\D)/1.5)}] {index $\infty$};
+}
+
+\uncover<3->{
+ \node[color=darkblue] at (ul) [below right]
+ {\begin{minipage}{0.3\textwidth}\raggedright
+ Grenzwerte von Cauchy-Folgen in $\mathbb{Q}$ hinzufügen
+ \end{minipage}};
+}
+
+\uncover<4->{
+ \node[color=darkred] at (ur) [below left]
+ {\begin{minipage}{0.3\textwidth}\raggedleft
+ Nullstellen von Polynomen in $\mathbb{Q}[X]$ hinzufügen
+ \end{minipage}};
+}
+
+\uncover<2->{
+ \node[color=darkgreen] at (ll) [above right]
+ {\begin{minipage}{0.4\textwidth}\raggedright
+ \begin{block}{Archimedische Eigenschaft}
+ Für $a>b >0$ gibt es $n\in\mathbb{N}$ mit
+ $n\cdot b > a$
+ \end{block}
+ \end{minipage}};
+
+ \node[color=darkgreen] at (ll) [below right]
+ {geordneter Körper, nötig für die Definition von Cauchy-Folgen};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/5/Makefile.inc b/vorlesungen/slides/5/Makefile.inc
index 4ca3de4..5b849ec 100644
--- a/vorlesungen/slides/5/Makefile.inc
+++ b/vorlesungen/slides/5/Makefile.inc
@@ -5,6 +5,8 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
chapter5 = \
+ ../slides/5/plan.tex \
+ ../slides/5/planbeispiele.tex \
../slides/5/verzerrung.tex \
../slides/5/motivation.tex \
../slides/5/charpoly.tex \
@@ -27,6 +29,8 @@ chapter5 = \
\
../slides/5/spektrum.tex \
../slides/5/normal.tex \
+ ../slides/5/normalbeispiel.tex \
+ ../slides/5/normalbeispiel34.tex \
../slides/5/unitaer.tex \
\
../slides/5/konvergenzradius.tex \
@@ -36,9 +40,12 @@ chapter5 = \
../slides/5/satzvongelfand.tex \
\
../slides/5/stoneweierstrass.tex \
+ ../slides/5/swbeweis.tex \
../slides/5/potenzreihenmethode.tex \
../slides/5/logarithmusreihe.tex \
../slides/5/exponentialfunktion.tex \
../slides/5/hyperbolisch.tex \
+ \
+ ../slides/5/approximation.tex \
../slides/5/chapter.tex
diff --git a/vorlesungen/slides/5/approximation.tex b/vorlesungen/slides/5/approximation.tex
new file mode 100644
index 0000000..a35bae7
--- /dev/null
+++ b/vorlesungen/slides/5/approximation.tex
@@ -0,0 +1,56 @@
+%
+% approximation.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+\begin{frame}[t]
+\frametitle{Approximation einer reellen Funktion}
+\vspace{-18pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.5\textwidth}
+\begin{block}{Gegeben}
+Eine stetige Funktion $f\colon[a,b]\to\mathbb{R}$
+\end{block}
+\end{column}
+\begin{column}{0.5\textwidth}
+\uncover<2->{%
+\begin{block}{Gesucht}
+Approximationspolynome $p_n\to f$ gleichmässig auf $[a,b]$
+\end{block}}
+\end{column}
+\end{columns}
+\uncover<3->{%
+\begin{block}{Lösungsmöglichkeiten}
+\vspace{-3pt}
+\begin{center}
+\renewcommand{\arraystretch}{1.3}
+\begin{tabular}{|p{4.2cm}|l|}
+\hline
+Familie&Approximationspolynom für $[a,b]=[0,1]$
+\\
+\hline
+\uncover<4->{%
+\raggedright
+Lagrange-Interpolationspolynom}
+&\uncover<5->{%
+$\displaystyle\begin{aligned}
+l(x)&=(x-x_0)(x-x_1)\dots(x-x_n),\quad x_k = \frac{k}{n}
+\\
+p_n(x)&= \sum_{k=0}^n f(x_k)\frac{l(x)}{x-x_k}
+\end{aligned}$}
+\\
+\hline\uncover<6->{%
+\raggedright
+Approximation mit Bernstein-Polynomen}
+&\uncover<7->{$\displaystyle \begin{aligned}
+B_{k,n}(t) &= \frac{1}{(b-a)^n}\binom{n}{k}(t-a)^k(b-t)^{n-k}
+\\
+B_n(f)(t) &= \sum_{k=0}^n B_{k,n}(t) \cdot f\biggl(\frac{k}{n}\biggr)
+\end{aligned}$}
+\\
+\hline
+\end{tabular}
+\end{center}
+\end{block}}
+\end{frame}
diff --git a/vorlesungen/slides/5/beispiele/kombiniert.jpg b/vorlesungen/slides/5/beispiele/kombiniert.jpg
index 9cb789c..bebc36f 100644
--- a/vorlesungen/slides/5/beispiele/kombiniert.jpg
+++ b/vorlesungen/slides/5/beispiele/kombiniert.jpg
Binary files differ
diff --git a/vorlesungen/slides/5/beispiele/kombiniert.pov b/vorlesungen/slides/5/beispiele/kombiniert.pov
index c187d08..d17adb7 100644
--- a/vorlesungen/slides/5/beispiele/kombiniert.pov
+++ b/vorlesungen/slides/5/beispiele/kombiniert.pov
@@ -18,5 +18,6 @@ ebene(k21, k22, gruen2)
arrow(O, j11, at, orange1)
arrow(O, j12, at, orange1)
arrow(O, k11, at, gruen1)
+gerade(k11, gruen1)
ebene(j11, j12, orange1)
diff --git a/vorlesungen/slides/5/chapter.tex b/vorlesungen/slides/5/chapter.tex
index 96eea29..cdf2ea5 100644
--- a/vorlesungen/slides/5/chapter.tex
+++ b/vorlesungen/slides/5/chapter.tex
@@ -3,6 +3,8 @@
%
% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi
%
+\folie{5/plan.tex}
+\folie{5/planbeispiele.tex}
\folie{5/verzerrung.tex}
\folie{5/motivation.tex}
\folie{5/charpoly.tex}
@@ -28,9 +30,13 @@
\folie{5/Aiteration.tex}
\folie{5/satzvongelfand.tex}
\folie{5/stoneweierstrass.tex}
+\folie{5/swbeweis.tex}
\folie{5/potenzreihenmethode.tex}
\folie{5/logarithmusreihe.tex}
\folie{5/exponentialfunktion.tex}
\folie{5/hyperbolisch.tex}
\folie{5/spektrum.tex}
\folie{5/normal.tex}
+\folie{5/normalbeispiel.tex}
+\folie{5/normalbeispiel34.tex}
+\folie{5/approximation.tex}
diff --git a/vorlesungen/slides/5/normalbeispiel.tex b/vorlesungen/slides/5/normalbeispiel.tex
new file mode 100644
index 0000000..e130c15
--- /dev/null
+++ b/vorlesungen/slides/5/normalbeispiel.tex
@@ -0,0 +1,108 @@
+%
+% normalbeispiel.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkred}{rgb}{0.8,0,0}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beispiele für normale Matrizen}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.49\textwidth}
+\uncover<3->{%
+\begin{block}{Symmetrisch und Antisymmetrisch}
+$A\in M_n(\mathbb{C})$
+\begin{align*}
+A&=\pm A^t &&\Rightarrow &AA^* &=A\overline{A^t} =\pm A\overline{A}
+\\
+ & && & &=\pm\overline{A}A =\overline{A^t}A
+\\
+ & && & &=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.49\textwidth}
+\uncover<4->{%
+\begin{block}{Orthogonal}
+$A\in M_n(\mathbb{R})\;\Rightarrow\; A^*=A^t$
+\begin{align*}
+AA^t&=I &&\Rightarrow& AA^*&=AA^t=I\\
+ & && & &=A^tA=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.49\textwidth}
+\uncover<1->{%
+\begin{block}{Hermitesch und Antihermitesch}
+$A\in M_n(\mathbb{C})$
+\begin{align*}
+A&=\pm A^* &&\Rightarrow &AA^* &=\pm A^2=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.49\textwidth}
+\uncover<2->{%
+\begin{block}{Unitär}
+$A\in M_n(\mathbb{C})$
+\begin{align*}
+AA^*&=I &&\Rightarrow& AA^*=I=A^*A
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+%\uncover<5->{%
+%\begin{block}{Weitere}
+%$N\in M_n(\mathbb{C})$ nilpotent, $N^k=0$\uncover<11->{
+%$\Rightarrow$
+%normal für $l=k-l\Rightarrow l=\frac{k}{2}$}
+%\uncover<6->{%
+%\[
+%\left.
+%\begin{aligned}
+%A &=N^l+(N^t)^{k-l}
+%\\
+%A^t&=(N^t)^l+N^{k-1}
+%\end{aligned}
+%\right\}
+%\uncover<7->{%
+%\Rightarrow
+%\left\{
+%\begin{aligned}
+%\mathstrut
+%A^t A
+%&\only<8>{=
+%((N^t)^l+N^{k-l}) (N^l+(N^t)^{k-l})}
+%\uncover<9->{=
+%{\color<10>{darkgreen}(N^t)^lN^l}
+%\only<9>{+
+%{\color{orange}(N^t)^k}}
+%+
+%{\color<10>{darkred}N^{k-l}(N^t)^{k-l}}
+%\only<9>{+
+%{\color{orange}N^k}}}
+%\\
+%\mathstrut
+%A A^t
+%&\only<8>{=
+%(N^l+(N^t)^{k-l})((N^t)^l+N^{k-l})}
+%\uncover<9->{=
+%{\color<10>{darkred}N^l(N^t)^l}
+%+
+%\only<9>{{\color{orange}N^k}
+%+
+%{\color{orange}(N^t)^k}
+%+}
+%{\color<10>{darkgreen}(N^t)^{k-l}N^{k-l}}}
+%\end{aligned}
+%\right.}
+%\hspace{20cm}
+%\]}
+%\end{block}}
+\end{frame}
diff --git a/vorlesungen/slides/5/normalbeispiel34.tex b/vorlesungen/slides/5/normalbeispiel34.tex
new file mode 100644
index 0000000..f2647b0
--- /dev/null
+++ b/vorlesungen/slides/5/normalbeispiel34.tex
@@ -0,0 +1,80 @@
+%
+% normalbeispiel34.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkred}{rgb}{0.8,0,0}
+\begin{frame}[t]
+\frametitle{Beispiele normaler Matrizen für $n=3$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.49\textwidth}
+\begin{align*}
+A
+&=
+\begin{pmatrix}
+\alpha&\beta & 0 \\
+ 0 &\alpha&\beta \\
+\beta & 0 &\alpha
+\end{pmatrix},
+\;
+A^t=
+\begin{pmatrix}
+\alpha& 0 &\beta \\
+\beta &\alpha& 0 \\
+ 0 &\beta &\alpha
+\end{pmatrix}
+&
+\uncover<2->{%
+&\Rightarrow\left\{
+\begin{aligned}
+AA^t&=\begin{pmatrix}
+\alpha^2+\beta^2 & \alpha\beta & \alpha\beta \\
+\alpha\beta & \alpha^2+\beta^2 & \alpha\beta \\
+\alpha\beta & \alpha\beta & \alpha^2+\beta^2
+\end{pmatrix}
+\\
+&\phantom{ooooooooooooooo}\|
+\\
+A^tA&=\begin{pmatrix}
+\alpha^2+\beta^2 & \alpha\beta & \alpha\beta \\
+\alpha\beta & \alpha^2+\beta^2 & \alpha\beta \\
+\alpha\beta & \alpha\beta & \alpha^2+\beta^2
+\end{pmatrix}
+\end{aligned}\right.}
+\\
+\uncover<3->{
+A&=\alpha I + \beta O}\uncover<4->{, O=\begin{pmatrix}0&1&0\\0&0&1\\1&0&0\end{pmatrix}\in \operatorname{O}(3)}
+&
+\uncover<5->{
+&\Rightarrow
+\left\{
+\begin{aligned}
+AA^*&= \alpha^2I^2 + \beta^2
+\ifthenelse{\boolean{presentation}}{ \only<6->{I} }{} \only<-5>{OO^*}
++ \alpha\beta(O+O^*)\\
+A^*A&= \alpha^2I^2 + \beta^2
+\ifthenelse{\boolean{presentation}}{ \only<6->{I} }{} \only<-5>{O^*O}
++ \alpha\beta(O^*+O)
+\end{aligned}
+\right.}
+\\
+\uncover<7->{A&=U+V^*,\text{normal}}\uncover<10->{\text{, }
+{\color{darkgreen}UV}={\color{darkgreen}VU}}
+&
+&\uncover<8->{\Rightarrow
+\left\{
+\begin{aligned}
+AA^* &= UU^* + {\color<9->{darkgreen}UV} + {\color<9->{darkred}V^*U^*} + V^*V
+\\
+A^*A &= U^*U + {\color<9->{darkred}U^*V^*} + {\color<9->{darkgreen}VU} + VV^*
+\end{aligned}
+\right.}
+\end{align*}
+\end{column}
+\begin{column}{0.49\textwidth}
+\end{column}
+\end{columns}
+\end{frame}
diff --git a/vorlesungen/slides/5/plan.tex b/vorlesungen/slides/5/plan.tex
new file mode 100644
index 0000000..23b1b93
--- /dev/null
+++ b/vorlesungen/slides/5/plan.tex
@@ -0,0 +1,198 @@
+%
+% plan.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.5,0}
+\definecolor{darkred}{rgb}{0.8,0.0,0}
+\begin{frame}[t]
+\frametitle{Was ist $f(A)$?}
+\vspace{-5pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\uncover<7->{
+ \fill[color=blue!20] (-1.5,0.7) rectangle (11.5,3.8);
+}
+
+\uncover<4->{
+ \fill[color=darkgreen!20] (-1.5,-0.7) rectangle (11.5,0.7);
+}
+
+\uncover<12->{
+ \fill[color=darkred!20] (-1.5,-0.7) rectangle (11.5,-3.8);
+}
+
+\begin{scope}[xshift=-1cm]
+\node at (0,0) [left] {$A$};
+\end{scope}
+
+%\foreach \x in {1,...,20}{
+% \only<\x>{ \node at (-1,3) {\x}};
+%}
+
+%
+% Blauer Ast
+%
+
+\uncover<2->{
+ \draw[->,color=blue,shorten <= 0.3cm, shorten >= 0.0cm]
+ (-1.2,0) -- (0,1.3);
+
+ \begin{scope}[xshift=0cm,yshift=1.5cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (3.4,0.6);
+ \draw[color=blue] (0,-0.6) rectangle (3.4,0.6);
+ \node at (0,0) [right] {$\begin{aligned}
+ f&=p\in\mathbb{R}[X]\\
+ f(A)&=p(A)
+ \end{aligned}
+ $};
+ \end{scope}
+}
+
+\uncover<7->{
+ \draw[->,color=blue] (1.8,2.1) -- (3.6,3);
+
+ \begin{scope}[xshift=3.6cm,yshift=3cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (3.7,0.6);
+ \draw[color=blue] (0,-0.6) rectangle (3.7,0.6);
+ \node at (0,0) [right] {\begin{minipage}{3cm}\raggedright
+ $f$ durch $p_n\in\mathbb{R}[X]$\\
+ approximieren
+ \end{minipage}};
+ \end{scope}
+}
+
+\uncover<8->{
+ \draw[->,color=blue] (7.3,3) -- (9.5,1.9);
+
+ \begin{scope}[xshift=7.6cm,yshift=1.5cm]
+ \fill[color=white,opacity=0.7] (0,-0.35) rectangle (3.8,0.4);
+ \draw[color=blue] (0,-0.35) rectangle (3.8,0.4);
+ \node at (0,0) [right] {$\displaystyle f(A) = \lim_{n\to\infty}p_n(A)$};
+ \end{scope}
+}
+
+\uncover<9->{
+ \node[color=blue] at (3.6,1.6) [right] {\begin{minipage}{4cm}
+ \raggedright
+ Konvergenz $p_n\to f$\\
+ auf Spektrum $\operatorname{Sp}(A)\subset\mathbb{R}$
+ \end{minipage}};
+}
+
+\uncover<11->{
+ \node[color=blue] at (-1.5,3.8) [below right]
+ {$A$ symmetrisch: $A=A^*$};
+}
+\uncover<10->{
+ \node[color=blue] at (11.5,3.8) [below left] {$A$ diagonalisierbar};
+}
+
+%
+% Roter Ast
+%
+
+\uncover<12->{
+ \draw[->,color=darkred,shorten <= 0.3cm, shorten >= 0.0cm] (-1.2,0) -- (0,-1.3);
+
+ \begin{scope}[xshift=0cm,yshift=-1.5cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (3.4,0.6);
+ \draw[color=darkred] (0,-0.6) rectangle (3.4,0.6);
+ \node at (0,0) [right] {$\begin{aligned}
+ f&=p\in\mathbb{C}[Z,\overline{Z}]\\
+ f(A)&=p(A,A^*)
+ \end{aligned}$};
+ \end{scope}
+}
+
+\uncover<13->{
+ \node[color=darkred] at (1.7,-2.1) [below left]
+ {Für $|Z|^2 = Z\overline{Z}$};
+}
+
+\uncover<14->{
+ \draw[->,color=darkred] (1.8,-2.1) -- (3.6,-3);
+
+ \begin{scope}[xshift=3.6cm,yshift=-3cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (3.7,0.6);
+ \draw[color=darkred] (0,-0.6) rectangle (3.7,0.6);
+ \node at (0,0) [right] {\begin{minipage}{3.5cm}\raggedright
+ $f$ durch $q_n\in\mathbb{C}[Z,\overline{Z}]$\\
+ approximieren
+ \end{minipage}};
+ \end{scope}
+}
+
+\uncover<15->{
+ \draw[->,color=darkred] (7.3,-3) -- (9.5,-1.85);
+
+ \begin{scope}[xshift=7.6cm,yshift=-1.5cm]
+ \fill[color=white,opacity=0.7] (0,-0.35) rectangle (3.8,0.4);
+ \draw[color=darkred] (0,-0.35) rectangle (3.8,0.4);
+ \node at (0,0) [right]
+ {$\displaystyle f(A) = \lim_{n\to\infty}q_n(A,A^*)$};
+ \end{scope}
+}
+
+\uncover<16->{
+ \node[color=darkred] at (3.6,-1.8) [right] {\begin{minipage}{4cm}
+ \raggedright
+ Konvergenz $p_n\to f$\\
+ auf $\operatorname{Sp}(A)\cup\operatorname{Sp}(A^*)$
+ \end{minipage}};
+}
+
+\uncover<17->{
+ \node[color=darkred] at (11.5,-3.8) [above left] {%
+ \begin{minipage}{3.5cm}\raggedleft
+ nur sinnvoll definiert wenn
+ $AA^*=A^*A$
+ \end{minipage}};
+}
+
+\uncover<18->{
+ \node[color=darkred] at (-1.5,-3.8) [above right]
+ {$A$ normal: $AA^*=A^*A$};
+}
+
+%
+% Grüner Ast
+%
+
+\uncover<3->{
+ \draw[->,color=darkgreen,shorten <= 0.0cm, shorten >= 0.0cm]
+ (-1,0) -- (0,0);
+
+ \begin{scope}[xshift=0cm,yshift=0cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (2.9,0.6);
+ \draw[color=darkgreen] (0,-0.6) rectangle (2.9,0.6);
+ \node at (0,0) [right] {$\displaystyle
+ f(z)=\sum_{k=0}^\infty a_kz^k$};
+ \end{scope}
+}
+
+\uncover<5->{
+ \node[color=darkgreen] at (5.9,0) [above] {$f(z)$ analytisch!};
+}
+\uncover<6->{
+ \node[color=darkgreen] at (5.9,0) [below]
+ {$\varrho(A)<\text{Konvergenzradius}$};
+}
+
+\uncover<4->{
+ \draw[->,color=darkgreen] (2.9,0) -- (8.5,0);
+
+ \begin{scope}[xshift=8.5cm]
+ \fill[color=white,opacity=0.7] (0,-0.6) rectangle (2.9,0.6);
+ \draw[color=darkgreen] (0,-0.6) rectangle (2.9,0.6);
+ \node at (0,0) [right] {$\displaystyle
+ f(A)=\sum_{k=0}^\infty a_kA^k$};
+ \end{scope}
+}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/5/planbeispiele.tex b/vorlesungen/slides/5/planbeispiele.tex
new file mode 100644
index 0000000..7b98a95
--- /dev/null
+++ b/vorlesungen/slides/5/planbeispiele.tex
@@ -0,0 +1,103 @@
+%
+% planbeispiele.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkred}{rgb}{0.8,0,0}
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\begin{frame}[t]
+\frametitle{Beispiele}
+\vspace{-15pt}
+\begin{columns}[t]
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=blue!20}
+\setbeamercolor{block title}{bg=blue!20}
+\uncover<2->{%
+\begin{block}{$A$ diagonal, $\operatorname{Sp}(A)\subset\mathbb{R}$\strut}
+Beispiele:
+\begin{align*}
+f(x)
+&=
+x^k,
+\\
+f(x)&=
+\sqrt{x},
+\sqrt[k]{x}
+\\
+f(x)&=|x|
+\end{align*}
+\vspace{43pt}
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=darkgreen!20}
+\setbeamercolor{block title}{bg=darkgreen!20}
+\uncover<1->{%
+\begin{block}{$f(z)$ analytisch\strut}
+Beispiele:
+\begin{align*}
+e^z
+&=
+\sum_{k=0}^\infty \frac{z^k}{k!}
+\\
+\cos z
+&=
+\sum_{k=0}^\infty (-1)^k\frac{z^{2k}}{2k!}
+\\
+\sin z
+&=
+\sum_{k=0}^\infty (-1)^k\frac{z^{2k+1}}{(2k+1)!}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=darkred!20}
+\setbeamercolor{block title}{bg=darkred!20}
+\uncover<3->{%
+\begin{block}{$A$ normal, $AA^*=A^*A$\strut}
+Beispiele:
+\begin{align*}
+f(z)&=\sqrt{z\overline{z}}=|z|
+\end{align*}
+\vspace{76pt}
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-10pt}
+\begin{columns}[t]
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=blue!20}
+\setbeamercolor{block title}{bg=blue!20}
+\uncover<5->{%
+\begin{block}{}
+\vspace{-6pt}
+$f(A)$ wohldefiniert für {\color{blue}diagonalisierbare}
+Matrizen $A\in M_n(\mathbb{R})$
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=darkgreen!20}
+\setbeamercolor{block title}{bg=darkgreen!20}
+\uncover<4->{%
+\begin{block}{}
+\vspace{-6pt}
+$f(A)$ wohldefiniert für {\color{darkgreen}jedes} $A\in M_n(\mathbb{C})$
+\vspace{14pt}
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\setbeamercolor{block body}{bg=darkred!20}
+\setbeamercolor{block title}{bg=darkred!20}
+\uncover<6->{%
+\begin{block}{}
+\vspace{-6pt}
+$f(A)$ wohldefiniert für {\color{darkred}normale}
+Matrizen $A\in M_n(\mathbb{C})$
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/5/potenzreihenmethode.tex b/vorlesungen/slides/5/potenzreihenmethode.tex
index 0c3503d..12d3fa5 100644
--- a/vorlesungen/slides/5/potenzreihenmethode.tex
+++ b/vorlesungen/slides/5/potenzreihenmethode.tex
@@ -79,7 +79,7 @@ a_k=\frac1{k!}a^kC}
\\
\uncover<4->{
\Rightarrow y(x) &= C}\uncover<8->{+Cax}\uncover<9->{ + C\frac12(ax)^2}
-\uncover<10->{ + C \frac16(ac)^3}
+\uncover<10->{ + C \frac16(ax)^3}
\uncover<11->{ + \dots+C\frac{1}{k!}(ax)^k+\dots}
\ifthenelse{\boolean{presentation}}{
\only<12>{
diff --git a/vorlesungen/slides/5/stoneweierstrass.tex b/vorlesungen/slides/5/stoneweierstrass.tex
index 3f9cab5..e2e9e30 100644
--- a/vorlesungen/slides/5/stoneweierstrass.tex
+++ b/vorlesungen/slides/5/stoneweierstrass.tex
@@ -3,9 +3,64 @@
%
% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
\begin{frame}[t]
-\frametitle{Stone-Weierstrass}
-
-TODO XXX
-
+\frametitle{Allgemeiner Approximationssatz}
+\vspace{-20pt}
+\begin{columns}[t]
+\begin{column}{0.5\textwidth}
+\begin{theorem}[Stone-Weierstrass, $\mathbb{R}$]
+$A$ eine {\color{darkgreen}$\mathbb{R}$}-Algebra
+von stetigen Funktionen auf einem
+%abgeschlossenen und beschränkten
+kompakten
+Definitionsgebiet $D\subset {\color{darkgreen}\mathbb{R}}$,
+\begin{itemize}
+\item<2-> konstante Funktion $c\in A$,
+\item<3-> für $d_1,d_2\in D$ gibt es ein $s\in A$ mit
+$s(d_1)\ne s(d_2)$.
+\end{itemize}
+\uncover<4->{%
+Dann lässt sich jede stetige Funktion durch Funktionen aus $A$
+approximieren}
+\end{theorem}
+\uncover<5->{
+\begin{block}{Anwendung}
+\uncover<6->{$A={\color{darkgreen}\mathbb{R}}[X]$}\uncover<7->{,
+$s(X)=X$}\uncover<8->{,
+jede stetige Funktion kann durch
+Polynome in $X$ approximiert werden}
+\end{block}}
+\end{column}
+\begin{column}{0.5\textwidth}
+\uncover<9->{%
+\begin{theorem}[Stone-Weierstrass, $\mathbb{C}$]
+$A$ eine {\color<10->{red}$\mathbb{C}$}-Algebra von stetigen Funktionen
+auf einem
+%abgeschlossenen und beschränkten
+kompakten
+Definitionsgebiet $D\subset {\color<10->{red}\mathbb{C}}$,
+\begin{itemize}
+\item konstante Funktion $c\in A$,
+\item für $d_1,d_2\in D$ gibt es ein $s\in A$ mit
+$s(d_1)\ne s(d_2)$.
+\only<11->{
+\item {\color{red}$f\in A\Rightarrow \overline{f}\in A$}
+}
+\end{itemize}
+Dann lässt sich jede stetige Funktion durch Funktionen aus $A$
+approximieren
+\end{theorem}}
+\vspace{-5pt}
+\uncover<12->{%
+\begin{block}{Anwendung}
+$A={\color{red}\mathbb{C}}[Z,\overline{Z}]$\uncover<13->{,
+$s(Z{\color{red},\overline{Z}})=Z$}\uncover<14->{,
+jede stetige Funktion
+lässt sich durch Polynome in $Z{\color{red},\overline{Z}}$ approximieren}
+\end{block}}
+\end{column}
+\end{columns}
\end{frame}
+\egroup
diff --git a/vorlesungen/slides/5/swbeweis.tex b/vorlesungen/slides/5/swbeweis.tex
new file mode 100644
index 0000000..927322b
--- /dev/null
+++ b/vorlesungen/slides/5/swbeweis.tex
@@ -0,0 +1,56 @@
+%
+% swbeweis.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beweisidee Stone-Weierstrass}
+\vspace{-15pt}
+\begin{columns}[t]
+\begin{column}{0.5\textwidth}
+\begin{enumerate}
+\item<1->
+$\exists$ eine monoton wachsende Folge von Polynomen $u_n(t)\to \sqrt{t}$
+gleichmässig auf $[0,1]\subset{\color{darkgreen}\mathbb{R}}$
+\item<2->
+$f\in A$, dann kann man $|f| = \sqrt{f^2}$ beliebig genau approximieren
+durch Funktionen
+in $A$
+\item<3->
+$f,g\in A$, dann kann
+\begin{align*}
+\max(a,b)&={\textstyle\frac12}(f+g+|f-g|)\\
+\min(a,b)&={\textstyle\frac12}(f+g-|f-g|)
+\end{align*}
+in $A$ beliebig genau approximiert werden.
+\end{enumerate}
+\end{column}
+\begin{column}{0.5\textwidth}
+\begin{enumerate}
+\setcounter{enumi}{3}
+\item<4->
+Für $x,y\in D$ und $\alpha,\beta\in\mathbb{R}$ gibt es $f\in A$ mit
+$f(x)=\alpha$ und $f(y)=\beta$
+\item<5->
+Zu
+$f\colon D\to\mathbb{R}$ stetig und $x\in D$ gibt es $g\in A$ mit $g(x)=f(x)$
+und $g(y) \le f(y)+\varepsilon$ für $y\ne x$
+\item<6->
+Für $f$ gibt es endlich viele Approximationen $g_i$ mit Punkten $x_i$
+wie in Schritt~4.
+Dann ist $\max_i g_i$ eine Approximation von $f$, die beliebig genau in
+$A$ approximiert werden kann.
+\end{enumerate}
+\end{column}
+\end{columns}
+
+\vspace{10pt}
+\uncover<7->{%
+Schritt~2 braucht in {\color{red}$\mathbb{C}$} die komplex Konjugierte:
+$|f|^2=f\overline{f}$}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/Makefile.inc b/vorlesungen/slides/6/Makefile.inc
new file mode 100644
index 0000000..bc6882a
--- /dev/null
+++ b/vorlesungen/slides/6/Makefile.inc
@@ -0,0 +1,32 @@
+#
+# Makefile.inc -- additional depencencies
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+chapter6 = \
+ ../slides/6/punktgruppen/ebene.tex \
+ ../slides/6/punktgruppen/semidirekt.tex \
+ ../slides/6/punktgruppen/c.tex \
+ ../slides/6/punktgruppen/d.tex \
+ ../slides/6/punktgruppen/p.tex \
+ ../slides/6/punktgruppen/chemie.tex \
+ ../slides/6/punktgruppen/aufspaltung.tex \
+ \
+ ../slides/6/produkte/frei.tex \
+ ../slides/6/produkte/direkt.tex \
+ \
+ ../slides/6/normalteiler/normal.tex \
+ ../slides/6/normalteiler/konjugation.tex \
+ \
+ ../slides/6/permutationen/matrizen.tex \
+ \
+ ../slides/6/darstellungen/definition.tex \
+ ../slides/6/darstellungen/charakter.tex \
+ ../slides/6/darstellungen/summe.tex \
+ ../slides/6/darstellungen/irreduzibel.tex \
+ ../slides/6/darstellungen/schur.tex \
+ ../slides/6/darstellungen/skalarprodukt.tex \
+ ../slides/6/darstellungen/zyklisch.tex \
+ \
+ ../slides/6/chapter.tex
+
diff --git a/vorlesungen/slides/6/chapter.tex b/vorlesungen/slides/6/chapter.tex
new file mode 100644
index 0000000..e1711d7
--- /dev/null
+++ b/vorlesungen/slides/6/chapter.tex
@@ -0,0 +1,30 @@
+%
+% chapter.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi
+%
+
+\folie{6/punktgruppen/ebene.tex}
+\folie{6/punktgruppen/semidirekt.tex}
+\folie{6/punktgruppen/c.tex}
+\folie{6/punktgruppen/d.tex}
+\folie{6/punktgruppen/p.tex}
+\folie{6/punktgruppen/chemie.tex}
+\folie{6/punktgruppen/aufspaltung.tex}
+
+\folie{6/produkte/frei.tex}
+\folie{6/produkte/direkt.tex}
+
+\folie{6/normalteiler/normal.tex}
+\folie{6/normalteiler/konjugation.tex}
+
+\folie{6/permutationen/matrizen.tex}
+
+\folie{6/darstellungen/definition.tex}
+\folie{6/darstellungen/charakter.tex}
+\folie{6/darstellungen/summe.tex}
+\folie{6/darstellungen/irreduzibel.tex}
+\folie{6/darstellungen/schur.tex}
+\folie{6/darstellungen/skalarprodukt.tex}
+\folie{6/darstellungen/zyklisch.tex}
+
diff --git a/vorlesungen/slides/6/darstellungen/charakter.tex b/vorlesungen/slides/6/darstellungen/charakter.tex
new file mode 100644
index 0000000..ea90b6d
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/charakter.tex
@@ -0,0 +1,108 @@
+%
+% chrakter.tex -- Charakter einer Darstellung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Charakter einer Darstellung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.44\textwidth}
+\begin{block}{Definition}
+$\varrho\colon G\to\operatorname{GL}_n(\mathbb{C})$ eine Darstellung.
+\\
+Der {\em Charakter} von $\varrho$ ist die Abbildung
+\[
+\chi_{\varrho}
+\colon
+G\to \mathbb{C}^n
+:
+g\mapsto \chi_{\varrho}(g)=\operatorname{Spur}\varrho(g)
+\]
+\end{block}
+\uncover<2->{%
+\begin{block}{Eigenschaften}
+\begin{enumerate}
+\item
+$\chi_{\varrho}(e) = n$
+\item<6->
+$\chi_{\varrho}(g^{-1}) = \overline{\chi_{\varrho}(g)}$
+\item<15->
+$\chi_{\varrho}(hgh^{-1}) = \chi_{\varrho}(g)$
+\end{enumerate}
+\uncover<21->{%
+Aus 3. folgt, dass Charaktere {\em Klassenfunktionen} sind}
+\end{block}}
+\end{column}
+\begin{column}{0.52\textwidth}
+\uncover<2->{%
+\begin{block}{Begründung}
+\begin{enumerate}
+\item<3->
+$\chi_{\varrho}(e)
+=
+\operatorname{Spur}\varrho(e)
+\uncover<4->{=
+\operatorname{Spur}I_n}
+\uncover<5->{=
+n}
+$
+\item<6->
+$g$ hat endliche Ordnung, d.~h.~$g^k=e$
+\\
+\uncover<7->{%
+$\lambda_i$ in der Jordan-NF erfüllen $\lambda_i^k=1$}
+\\
+$\uncover<8->{\Rightarrow|\lambda_i|=1}
+\uncover<9->{\Rightarrow \lambda_i^{-1} = \overline{\lambda_i}}$
+\begin{align*}
+\uncover<10->{
+\llap{$\chi_{\varrho}(g^{-1})$}
+&=
+\operatorname{Spur}(\varrho(g^{-1}))}
+\uncover<11->{=
+\sum_{i} n_i\overline{\lambda_i}}
+\\[-4pt]
+&\uncover<12->{=
+\overline{
+\sum_{i} n_i\lambda_i
+}}
+\uncover<13->{=
+\operatorname{Spur}\varrho(g)}
+\uncover<14->{=
+\chi_{\varrho}(g)}
+\end{align*}
+\item<16->
+Durch Nachrechnen:
+\begin{align*}
+\chi_{\varrho}(hgh^{-1})
+&\uncover<17->{=
+\operatorname{Spur}
+(
+\varrho(h)
+\varrho(g)
+\varrho(h^{-1})
+)}
+\\
+&\uncover<18->{=
+\operatorname{Spur}
+(
+\varrho(h^{-1})
+\varrho(h)
+\varrho(g)
+)}
+\\
+&\uncover<19->{=
+\operatorname{Spur}\varrho(g)}
+\uncover<20->{=
+\chi_{\varrho}(g)}
+\end{align*}
+\end{enumerate}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/definition.tex b/vorlesungen/slides/6/darstellungen/definition.tex
new file mode 100644
index 0000000..9d93e7f
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/definition.tex
@@ -0,0 +1,59 @@
+%
+% definition.tex -- Definition einer Darstellung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Darstellung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+$G$ eine Gruppe, $V$ ein $\Bbbk$-Vektorraum.
+\\
+\uncover<2->{%
+Ein Homomorphismus
+\[
+\varrho
+\colon
+G\to \operatorname{GL}(V)
+\]
+heisst {\em $n$-dimensionale Darstellung} der Gruppe $G$.}
+\end{block}
+\uncover<3->{%
+\begin{block}{Idee}
+Algebra und Analysis in $\operatorname{GL}_n(\Bbbk)$ nutzen, um
+mehr über $G$ herauszufinden
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Beispiel $S_n$}
+$S_n$ die symmetrische Gruppe,
+$\sigma\mapsto A_{\tilde{f}}$ die
+Abbildung auf die zugehörige Permutationsmatrix
+ist eine $n$-dimensionale Darstellung von $S_n$
+\end{block}}
+\uncover<5->{%
+\begin{block}{Beispiel Matrizengruppe}
+Eine Matrizengruppe $G$ ist eine Teilmenge von $M_n(\Bbbk)$.
+\\
+\uncover<6->{%
+$g\in G \Rightarrow g^{-1}\in G$, daher $G\subset\operatorname{GL}_n(\Bbbk)$}
+\\
+\uncover<7->{%
+Die Einbettung
+\[
+G\to\operatorname{GL}_n(\Bbbk)
+:
+g \mapsto g
+\]
+ist eine Darstellung}\uncover<8->{, die sog.~{\em reguläre Darstellung}}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/irreduzibel.tex b/vorlesungen/slides/6/darstellungen/irreduzibel.tex
new file mode 100644
index 0000000..91d8a18
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/irreduzibel.tex
@@ -0,0 +1,47 @@
+%
+% irreduzibel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Irreduzible Darstellungen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Eine Darstellung $\varrho\colon G\to\operatorname{GL}(V)$ heisst
+irreduzibel, wenn es keine Zerlegung von $\varrho$ in zwei
+Darstellungen $\varrho_i\colon G\to\operatorname{GL}(U_i)$ ($i=1,2$)
+gibt derart, dass $\varrho = \varrho_1\oplus\varrho_2$
+\end{block}
+\uncover<2->{%
+\begin{block}{Isomorphe Darstellungen}
+$\varrho_i$ sind {\em isomorphe} Darstellungen in $V_i$ wenn es
+$f\colon V_1\overset{\cong}{\to} V_2$ gibt mit
+\begin{align*}
+f \circ \varrho_i(g)\circ f^{-1} &= \varrho_2(g)
+\\
+\uncover<3->{%
+f \circ \varrho_i(g)\phantom{\mathstrut\circ f^{-1}}&= \varrho_2(g)\circ f
+}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Lemma von Schur}
+$\varrho_i$ zwei irreduzible Darstellungen und $f$ so, dass
+$f\circ \varrho_1(g)=\varrho_2(g)\circ f$ für alle $g$.
+Dann gilt
+\begin{enumerate}
+\item<5-> $\varrho_i$ nicht isomorph $\Rightarrow$ $f=0$
+\item<6-> $V_1=V_2,\varrho_1=\varrho_2$ $\Rightarrow$ $f=\lambda I$
+\end{enumerate}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/schur.tex b/vorlesungen/slides/6/darstellungen/schur.tex
new file mode 100644
index 0000000..144de4c
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/schur.tex
@@ -0,0 +1,47 @@
+%
+% schur.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Folgerungen aus Schurs Lemma}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Mittelung einer Abbildung}
+$h\colon V_1\to V_2$
+\[
+h^G = \frac{1}{|G|} \sum_{g\in G} \varrho_2(g)^{-1} \circ h \circ \varrho_1(g)
+\]
+\begin{enumerate}
+\item<2-> $\varrho_i$ nicht isomorph $\Rightarrow$ $h^G=0$
+\item<3-> $V_1=V_2,\varrho_1=\varrho_2$, $h^G = \frac1n\operatorname{Spur}h$
+\end{enumerate}
+\end{block}
+\uncover<4->{%
+\begin{block}{Matrixelemente für $\varrho_i$ nicht isomorph}
+$\varrho_i$ nicht isomorph, dann ist
+\[
+\frac{1}{|G|} \sum_{g\in G} \varrho_1(g^{-1})_{kl}\varrho_2(g)_{uv}=0
+\]
+für alle $k,l,u,v$
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Matrixelemente $V_1=V_2$, $\varrho_i$ iso}
+Für $k=v$ und $l=u$ gilt
+\[
+\frac{1}{|G|} \sum_{g\in G} \varrho_1(g^{-1})_{kl} \varrho_2(g)_{uv}
+=
+\frac1n
+\]
+und $=0$ sonst
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/skalarprodukt.tex b/vorlesungen/slides/6/darstellungen/skalarprodukt.tex
new file mode 100644
index 0000000..46cc8e9
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/skalarprodukt.tex
@@ -0,0 +1,42 @@
+%
+% skalarprodukt.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Skalarprodukt}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition des Skalarproduktes}
+$\varphi$, $\psi$ komplexe Funktionen auf $G$:
+\[
+\langle \varphi,\psi\rangle
+=
+\frac{1}{|G|} \sum_{g\in G} \overline{\varphi(g)} \psi(g)
+\]
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Satz}
+\begin{enumerate}
+\item
+$\chi$ der Charakter einer irrediziblen Darstellung
+$\Rightarrow$ $\langle \chi,\chi\rangle=1$.
+\item<3->
+$\chi$ und $\chi'$ Charaktere nichtisomorpher Darstellungen
+$\Rightarrow$
+$\langle \chi,\chi'\rangle=0$
+\end{enumerate}
+\uncover<4->{%
+D.~h.~Charaktere irreduzibler Darstellungen sind orthonormiert
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/summe.tex b/vorlesungen/slides/6/darstellungen/summe.tex
new file mode 100644
index 0000000..b0d193f
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/summe.tex
@@ -0,0 +1,89 @@
+%
+% Summe.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Direkte Summe}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Gegeben}
+Gegeben zwei Darstellungen
+\begin{align*}
+\varrho_1&\colon G \to \mathbb{C}^{n_1}
+\\
+\varrho_2&\colon G \to \mathbb{C}^{n_2}
+\end{align*}
+\end{block}
+\vspace{-12pt}
+\uncover<2->{%
+\begin{block}{Direkte Summe der Darstellungen}
+%\vspace{-12pt}
+\begin{align*}
+\varrho_1\oplus\varrho_2
+&\colon
+G\to \mathbb{C}^{n_1+n_2}
+\only<3|handout:0>{
+= \mathbb{C}^{n_1}\times\mathbb{C}^{n_2}}
+\uncover<4->{=:
+\mathbb{C}^{n_1}\oplus\mathbb{C}^{n_2}}
+\hspace*{5cm}
+\\
+&\colon g\mapsto (\varrho_1(g),\varrho_2(g))
+\end{align*}
+\end{block}}
+\vspace{-12pt}
+\uncover<5->{%
+\begin{block}{Charakter}
+%\vspace{-12pt}
+\begin{align*}
+\chi_{\varrho_1\oplus\varrho_2}(g)
+&=
+\operatorname{Spur}(\varrho_1\oplus\varrho_2)(g)
+\\
+&\uncover<6->{=
+\operatorname{Spur}{\varrho_1(g)}
++
+\operatorname{Spur}{\varrho_1(g)}}
+\\
+&\uncover<7->{=
+\chi_{\varrho_1}(g)
++
+\chi_{\varrho_2}(g)}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{block}{Tensorprodukt}
+$n_1\times n_2$-dimensionale
+Darstellung $\varrho_1\otimes\varrho_2$ mit Matrix
+\[
+\begin{pmatrix}
+\varrho_1(g)_{11} \varrho_2(g)
+ &\dots
+ &\varrho_1(g)_{1n_1} \varrho_2(g)\\
+\vdots&\ddots&\vdots\\
+\varrho_1(g)_{n_11} \varrho_2(g)
+ &\dots
+ &\varrho_1(g)_{n_1n_1} \varrho_2(g)
+\end{pmatrix}
+\]
+\uncover<9->{Die ``Einträge'' sind $n_2\times n_2$-Blöcke}
+\end{block}}
+\uncover<10->{%
+\begin{block}{Darstellungsring}
+Die Menge der Darstellungen $R(G)$ einer Gruppe hat
+einer Ringstruktur mit $\oplus$ und $\otimes$
+\\
+\uncover<11->{$\Rightarrow$
+Algebra zum Studium der möglichen Darstellungen von $G$ verwenden}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/darstellungen/zyklisch.tex b/vorlesungen/slides/6/darstellungen/zyklisch.tex
new file mode 100644
index 0000000..312d0e8
--- /dev/null
+++ b/vorlesungen/slides/6/darstellungen/zyklisch.tex
@@ -0,0 +1,84 @@
+%
+% zyklisch.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beispiel: Zyklische Gruppen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Gruppe}
+\(
+C_n = \mathbb{Z}/n\mathbb{Z}
+\)
+\end{block}
+\uncover<2->{%
+\begin{block}{Darstellungen von $C_n$}
+Gegeben durch $\varrho_k(1)=e^{2\pi i k/n}$,
+\[
+\varrho_k(l) = e^{2\pi ikl/n}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<3->{
+\begin{block}{Charaktere}
+%\vspace{-10pt}
+\[
+\chi_k(l) = e^{2\pi ikl/n}
+\]
+haben Skalarprodukte
+\[
+\langle \chi_k,\chi_{k'}\rangle
+=
+\begin{cases}
+1&\quad k= k'\\
+0&\quad\text{sonst}
+\end{cases}
+\]
+Die Darstellungen $\chi_k$ sind nicht isomorph
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Orthonormalbasis}
+Die Funktionen $\chi_k$ bilden eine Orthonormalbasis von $L^2(C_n)$
+\end{block}}
+\vspace{-4pt}
+\uncover<6->{%
+\begin{block}{Analyse einer Darstellung}
+$\varrho\colon C_n\to \mathbb{C}^n$ eine Darstellung,
+$\chi_\varrho$ der Charakter lässt zerlegen:
+\begin{align*}
+c_k
+&=
+\langle \chi_k, \chi\rangle = \frac{1}{n} \sum_{l} \chi_k(l) e^{-2\pi ilk/n}
+\\
+\uncover<7->{
+\chi(l)
+&=
+\sum_{k} c_k \chi_k
+=
+\sum_{k} c_k e^{2\pi ikl/n}
+}
+\end{align*}
+\end{block}}
+\vspace{-13pt}
+\uncover<8->{%
+\begin{block}{Fourier-Theorie}
+\vspace{-3pt}
+\begin{center}
+\begin{tabular}{>{$}l<{$}l}
+\uncover<9->{C_n&Diskrete Fourier-Theorie}\\
+\uncover<10->{U(1)&Fourier-Reihen}\\
+\uncover<11->{\mathbb{R}&Fourier-Integral}
+\end{tabular}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/normalteiler/konjugation.tex b/vorlesungen/slides/6/normalteiler/konjugation.tex
new file mode 100644
index 0000000..70ce01f
--- /dev/null
+++ b/vorlesungen/slides/6/normalteiler/konjugation.tex
@@ -0,0 +1,77 @@
+%
+% konjugation.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Konjugation}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{``Basiswechsel''}
+In der Gruppe $\operatorname{GL}_n(\Bbbk)$
+\[
+A' = TAT^{-1}
+\]
+$T\in\operatorname{GL}_n(\Bbbk)$
+\\
+$A$ und $A'$ sind ``gleichwertig''
+\end{block}
+\uncover<2->{%
+\begin{block}{Definition}
+$g_1,g_2\in G$ sind {\em konjugiert}, wenn es
+$h\in G$ gibt mit
+\[
+g_1 = hg_2h^{-1}
+\]
+\end{block}}
+\uncover<3->{%
+\begin{block}{Beispiel}
+Konjugierte Elemente in $\operatorname{GL}_n(\Bbbk)$ haben die
+gleiche Spur und Determinante
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Konjugationsklasse}
+Die Konjugationsklasse von $g$ ist
+\[
+\llbracket g\rrbracket
+=
+\{h\in G\;|\; \text{$h$ konjugiert zu $g$}\}
+\]
+\end{block}}
+\vspace{-7pt}
+\uncover<5->{%
+\begin{block}{Klassenzerlegung}
+\begin{align*}
+G
+&=
+\{e\}
+\cup
+\llbracket g_1\rrbracket
+\cup
+\llbracket g_2\rrbracket
+\cup
+\dots
+\\
+&\uncover<6->{=
+C_e\cup C_1 \cup C_2\cup\dots}
+\end{align*}
+\end{block}}
+\vspace{-7pt}
+\uncover<7->{%
+\begin{block}{Klassenfunktionen}
+Funktionen, die auf Konjugationsklassen konstant sind
+\end{block}}
+\uncover<8->{%
+\begin{block}{Beispiele}
+Spur, Determinante
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/normalteiler/normal.tex b/vorlesungen/slides/6/normalteiler/normal.tex
new file mode 100644
index 0000000..42336b9
--- /dev/null
+++ b/vorlesungen/slides/6/normalteiler/normal.tex
@@ -0,0 +1,79 @@
+%
+% normal.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Normalteiler}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Gegeben}
+Eine Gruppe $G$ mit Untergruppe $N\subset G$
+\end{block}
+\uncover<2->{%
+\begin{block}{Bedingung}
+Welche Eigenschaft muss $N$ zusätzlich haben,
+damit
+\[
+G/N
+=
+\{ gN \;|\; g\in G\}
+\]
+eine Gruppe wird.
+
+\uncover<3->{Wähle Repräsentaten $g_1N=g_2N$}
+\uncover<4->{%
+\begin{align*}
+g_1g_2N
+&\uncover<5->{=
+g_1g_2NN}
+\uncover<6->{=
+g_1g_2Ng_2^{-1}g_2N}
+\\
+&\uncover<7->{=
+g_1(g_2Ng_2^{-1})g_2N}
+\\
+&\uncover<8->{\stackrel{?}{=} g_1Ng_2N}
+\end{align*}}
+\uncover<9->{Funktioniert nur wenn $g_2Ng_2^{-1}=N$ ist}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<10->{%
+\begin{block}{Universelle Eigenschaft}
+Ist $\varphi\colon G\to G'$ ein Homomorphismus mit $\varphi(N)=\{e\}$%
+\uncover<11->{, dann gibt es einen Homomorphismus $G/N\to G'$:}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (N) at (-2.5,0);
+\coordinate (G) at (0,0);
+\coordinate (quotient) at (2.5,0);
+\coordinate (Gprime) at (0,-2.5);
+\coordinate (e) at (-2.5,-2.5);
+\node at (N) {$N$};
+\node at (e) {$\{e\}$};
+\node at (G) {$G$};
+\node at (Gprime) {$G'$};
+\node at (quotient) {$G/N$};
+\draw[->,shorten >= 0.3cm,shorten <= 0.4cm] (N) -- (G);
+\draw[->,shorten >= 0.3cm,shorten <= 0.4cm] (N) -- (e);
+\draw[->,shorten >= 0.3cm,shorten <= 0.4cm] (e) -- (Gprime);
+\draw[->,shorten >= 0.3cm,shorten <= 0.4cm] (G) -- (Gprime);
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (G) -- (quotient);
+\uncover<11->{
+\draw[->,shorten >= 0.3cm,shorten <= 0.4cm,color=red] (quotient) -- (Gprime);
+\node[color=red] at ($0.5*(quotient)+0.5*(Gprime)$) [below right] {$\exists!$};
+}
+\node at ($0.5*(quotient)$) [above] {$\pi$};
+\node at ($0.5*(Gprime)$) [left] {$\varphi$};
+\end{tikzpicture}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/permutationen/matrizen.tex b/vorlesungen/slides/6/permutationen/matrizen.tex
new file mode 100644
index 0000000..d40c396
--- /dev/null
+++ b/vorlesungen/slides/6/permutationen/matrizen.tex
@@ -0,0 +1,79 @@
+%
+% matrizen.tex -- Darstellung der Permutationen als Matrizen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Permutationsmatrizen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Permutationsabbildung}
+$\sigma\in S_n$ eine Permutation, definiere
+\[
+f
+\colon
+e_i \mapsto e_{\sigma(i)}
+\]
+($e_i$ Standardbasisvektor)
+\end{block}
+\uncover<2->{%
+\begin{block}{Lineare Abbildung}
+$f$ kann erweitert werden zu einer linearen Abbildung
+\[
+\tilde{f}
+\colon
+\Bbbk^n \to \Bbbk^n
+:
+\sum_{k=1}^n a_i e_i
+\mapsto
+\sum_{k=1}^n a_i f(e_i)
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Permutationsmatrix}
+Matrix $A_{\tilde{f}}$ der linearen Abbildung $\tilde{f}$
+hat die Matrixelemente
+\[
+a_{ij}
+=
+\begin{cases}
+1&\qquad i=\sigma(j)\\
+0&\qquad\text{sonst}
+\end{cases}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<4->{%
+\begin{block}{Beispiel}
+\vspace{-10pt}
+\[
+\begin{pmatrix}
+1&2&3&4\\
+3&2&4&1
+\end{pmatrix}
+\mapsto
+\begin{pmatrix}
+0&0&0&1\\
+0&1&0&0\\
+1&0&0&0\\
+0&0&1&0
+\end{pmatrix}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<5->{%
+\begin{block}{Homomorphismus}
+Die Abbildung
+$S_n\to\operatorname{GL}(\Bbbk)\colon \sigma \mapsto A_{\tilde{f}}$
+ist ein Homomorphismus
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/produkte/direkt.tex b/vorlesungen/slides/6/produkte/direkt.tex
new file mode 100644
index 0000000..c851335
--- /dev/null
+++ b/vorlesungen/slides/6/produkte/direkt.tex
@@ -0,0 +1,66 @@
+%
+% direkt.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Direktes Produkt}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Zwei Gruppen $H_1$ und $H_2$
+\\
+Gruppe $G=H_1\times H_2$ mit
+\begin{itemize}
+\item<2-> Elemente $(h_1,h_2)\in H_1\times H_2$
+\item<3-> Neutrales Element $(e_1,e_2)$
+\item<4-> Inverses Elemente $(h_1,h_2)^{-1}=(h_1^{-1},h_2^{-1})$
+\end{itemize}
+heisst {\em direktes Produkt}
+\end{block}
+\uncover<5->{%
+\begin{block}{Vertauschbarkeit}
+Das direkte Produkt ist ein Produkt, in dem Elemente von $H_1$ und
+$H_2$ vollständig vertauschbar sind
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Universelle Eigenschaft}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (S) at (0,2.5);
+\coordinate (H1) at (-2.5,0);
+\coordinate (H2) at (2.5,0);
+
+\node at (H1) {$H_1$};
+\node at (H2) {$H_2$};
+\node at (0,0) {$H_1\times H_2$};
+\node at (S) {$S$};
+
+\draw[->,shorten >= 0.25cm,shorten <= 0.8cm] (0,0) -- (H1);
+\draw[->,shorten >= 0.25cm,shorten <= 0.8cm] (0,0) -- (H2);
+
+\draw[->,shorten >= 0.25cm,shorten <= 0.25cm] (S) -- (H1);
+\draw[->,shorten >= 0.25cm,shorten <= 0.25cm] (S) -- (H2);
+
+\node at ($0.5*(S)+0.5*(H1)$) [above left] {$f_1$};
+\node at ($0.5*(S)+0.5*(H2)$) [above right] {$f_2$};
+
+\uncover<7->{
+\draw[->,shorten >= 0.25cm,shorten <= 0.25cm,color=red] (S) -- (0,0);
+\node[color=red] at ($0.36*(S)$) [left] {$f_1\times f_2$};
+\node[color=red] at ($0.36*(S)$) [right] {$\exists!$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/produkte/frei.tex b/vorlesungen/slides/6/produkte/frei.tex
new file mode 100644
index 0000000..6c23e6b
--- /dev/null
+++ b/vorlesungen/slides/6/produkte/frei.tex
@@ -0,0 +1,79 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Freie Gruppen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Gruppe aus Symbolen}
+Erzeugende Elemente $\{a,b,c,\dots\}$
+\\
+\uncover<2->{%
+Wörter =
+Folgen von Symbolen $a$, $a^{-1}$, $b$, $b^{-1}$}
+\\
+\uncover<3->{
+{\em freie Gruppe}:
+\begin{align*}
+F&=\langle a,b,c,\dots\rangle
+\\
+&=
+\{\text{Wörter}\}
+/\text{Kürzungsregel}
+\end{align*}}
+\vspace{-10pt}
+\begin{itemize}
+\item<4-> neutrales Element: $e = \text{leere Symbolfolge}$
+\item<5-> Gruppenoperation: Verkettung
+\item<6-> Kürzungsregel:
+\begin{align*}
+xx^{-1}&\to e,
+&
+x^{-1}x&\to e
+\end{align*}
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Universelle Eigenschaft}
+$g_i\in G$, dann gibt es genau einen Homomorphismus
+\[
+\varphi
+\colon
+\langle g_i| 1\le i\le k\rangle
+\to
+G
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<8->{%
+\begin{block}{Quotient einer freien Gruppe}
+Jede endliche Gruppe ist Quotient einer freien Gruppe
+\[
+N
+\xhookrightarrow{}
+\langle g_i\rangle
+\twoheadrightarrow
+G
+\]
+oder
+\[
+G = \langle g_i\rangle / N
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<11->{%
+\begin{block}{Maximal nichtkommutativ}
+Die freie Gruppe ist die ``maximal nichtkommutative'' Gruppe
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/punktgruppen/WasserstoffAufspaltung.pdf b/vorlesungen/slides/6/punktgruppen/WasserstoffAufspaltung.pdf
new file mode 100644
index 0000000..56cbf7b
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/WasserstoffAufspaltung.pdf
Binary files differ
diff --git a/vorlesungen/slides/6/punktgruppen/aufspaltung.tex b/vorlesungen/slides/6/punktgruppen/aufspaltung.tex
new file mode 100644
index 0000000..633f700
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/aufspaltung.tex
@@ -0,0 +1,15 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Aufspaltung}
+\begin{center}
+\includegraphics[width=0.66\textwidth]{../slides/6/punktgruppen/WasserstoffAufspaltung.pdf}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/punktgruppen/c.tex b/vorlesungen/slides/6/punktgruppen/c.tex
new file mode 100644
index 0000000..80790b1
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/c.tex
@@ -0,0 +1,49 @@
+%
+% c.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Drehgruppen}
+\vspace{-25pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.33\textwidth}
+\begin{block}{$C_n$}
+\begin{center}
+\includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/cn.jpg}
+\end{center}
+\begin{itemize}
+\item Eine $n$-zählige Achse
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.33\textwidth}
+\uncover<2->{%
+\begin{block}{$C_{nv}$}
+\begin{center}
+\includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/cnv.jpg}
+\end{center}
+\begin{itemize}
+\item Eine $n$-zählige Achse
+\item $n$ dazu senkrechte Symmetrieebenen
+\end{itemize}
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\uncover<3->{%
+\begin{block}{$C_{nh}$}
+\begin{center}
+\includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/cnh.jpg}
+\end{center}
+\begin{itemize}
+\item Eine $n$-zählige Achse
+\item Eine dazu senkrechte Spiegelebene
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/punktgruppen/chemie.tex b/vorlesungen/slides/6/punktgruppen/chemie.tex
new file mode 100644
index 0000000..7f8b7a8
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/chemie.tex
@@ -0,0 +1,63 @@
+%
+% chemie.tex -- Anwendung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Anwendung: Energieniveaus eines Atoms}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Schrödingergleichung}
+Partielle Differentialgleichung für die Wellenfunktion
+eines Teilchens im Potential $V(x)$
+\[
+-\frac{\hbar^2}{2m}\Delta \Psi
++
+V(x)\Psi
+=
+E\Psi
+\]
+$V(x)$ = Potential der Atomkerne eines Molekuls
+\end{block}
+\uncover<2->{%
+\begin{block}{Symmetrien}
+$g\in\operatorname{O}(3)$ wirkt auf $V$ und $\Psi$
+\begin{align*}
+(g\cdot V)(x) &= V(g\cdot x)
+\\
+(g\cdot \Psi)(x) &= \Psi(g\cdot x)
+\end{align*}
+Symmetrie von $V$: $g\cdot V=V$
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Lösungen}
+Eigenfunktionen $\Psi$ zum Eigenwert $E$
+\[
+g\cdot V=V
+\Rightarrow
+g\cdot \Psi
+\text{ Lösung}
+\]
+mit gleichem Eigenwert!
+\end{block}}
+\uncover<4->{%
+\begin{block}{Eigenräume}
+Die Symmetriegruppe $G\subset \operatorname{O}(3)$ eines Moleküls
+operiert auf dem Eigenraum
+\end{block}}
+\uncover<5->{%
+\begin{block}{Externe Felder}
+Externe Felder zerstören die Symmetrie
+$\Rightarrow$
+die Energieniveaus/Spektrallinien spalten sich auf
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/punktgruppen/d.tex b/vorlesungen/slides/6/punktgruppen/d.tex
new file mode 100644
index 0000000..9dd0a7a
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/d.tex
@@ -0,0 +1,53 @@
+%
+% d.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Diedergruppen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.33\textwidth}
+\begin{block}{$D_n$}
+\begin{center}
+\includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/dn.jpg}
+\end{center}
+\vspace{-8pt}
+\begin{itemize}
+\item $C_n$ Achse
+\item $n$ $C_2$ Achse senkrecht dazu
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.33\textwidth}
+\uncover<2->{%
+\begin{block}{$D_{nd}$}
+\begin{center}
+\includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/dnd.jpg}
+\end{center}
+\vspace{-8pt}
+\begin{itemize}
+\item $D_n$ Achse
+\item $n$ winkelhalbierende Spiegelebenen der $C_2$-Achsen
+\end{itemize}
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\uncover<3->{%
+\begin{block}{$D_{nh}$}
+\begin{center}
+\includegraphics[width=\textwidth]{../slides/6/punktgruppen/images/dnh.jpg}
+\end{center}
+\vspace{-8pt}
+\begin{itemize}
+\item $D_n$ Achse
+\item Spiegelbene senkrecht dazu
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/punktgruppen/ebene.tex b/vorlesungen/slides/6/punktgruppen/ebene.tex
new file mode 100644
index 0000000..3b715e4
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/ebene.tex
@@ -0,0 +1,79 @@
+%
+% ebene.tex -- Punktgruppen in der Ebene
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Punktgruppen in der Ebene}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Zyklische Gruppen}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\a{40}
+\def\r{2}
+\def\R{2.5}
+\fill[color=blue!20] (0,0) -- (0:{1.1*\R}) arc (0:\a:{1.1*\R}) -- cycle;
+\node[color=blue] at ({0.5*\a}:{0.8*\r}) {$\displaystyle\frac{2\pi}n$};
+\fill (0,0) circle[radius=0.08];
+\draw[color=red] (0:\r) -- (0:\R)
+ -- ({1*\a}:\r) -- ({1*\a}:\R)
+ -- ({2*\a}:\r) -- ({2*\a}:\R)
+ -- ({3*\a}:\r) -- ({3*\a}:\R)
+ -- ({4*\a}:\r) -- ({4*\a}:\R)
+ -- ({5*\a}:\r) -- ({5*\a}:\R)
+ -- ({6*\a}:\r) -- ({6*\a}:\R)
+ -- ({7*\a}:\r) -- ({7*\a}:\R)
+ -- ({8*\a}:\r) %-- ({8*\a}:\R)
+;
+\end{tikzpicture}
+\end{center}
+\[
+C_n
+=
+\{\text{Drehungen um Winkel $2\pi/n$}\}
+\]
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Diedergruppen}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\a{40}
+\def\r{2}
+\def\R{2.5}
+\fill[color=blue!20] (0,0) -- (0:{1.1*\R}) arc (0:\a:{1.1*\R}) -- cycle;
+\node[color=blue] at ({0.5*\a}:{0.8*\r}) {$\displaystyle\frac{2\pi}n$};
+\fill (0,0) circle[radius=0.08];
+\draw[color=red] (0:\r) -- ({0.5*\a}:\R)
+ -- ({1*\a}:\r) -- ({1.5*\a}:\R)
+ -- ({2*\a}:\r) -- ({2.5*\a}:\R)
+ -- ({3*\a}:\r) -- ({3.5*\a}:\R)
+ -- ({4*\a}:\r) -- ({4.5*\a}:\R)
+ -- ({5*\a}:\r) -- ({5.5*\a}:\R)
+ -- ({6*\a}:\r) -- ({6.5*\a}:\R)
+ -- ({7*\a}:\r) -- ({7.5*\a}:\R)
+ -- ({8*\a}:\r) %-- ({8.5*\a}:\R)
+;
+\end{tikzpicture}
+\end{center}
+\begin{align*}
+D_n
+&=
+\langle\text{Spiegelung},
+\text{Drehungen}\rangle
+\\
+&=
+C_2
+\ltimes
+C_n
+\end{align*}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/punktgruppen/images/Makefile b/vorlesungen/slides/6/punktgruppen/images/Makefile
new file mode 100644
index 0000000..e909884
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/Makefile
@@ -0,0 +1,40 @@
+#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: cn.jpg cnv.jpg cnh.jpg dn.jpg dnd.jpg dnh.jpg
+
+cn.png: common.inc cn.pov
+ povray +A0.1 -W1920 -H1080 -Ocn.png cn.pov
+cn.jpg: cn.png
+ convert -extract 1050x1050+450+4 cn.png cn.jpg
+
+cnv.png: common.inc cnv.pov
+ povray +A0.1 -W1920 -H1080 -Ocnv.png cnv.pov
+cnv.jpg: cnv.png
+ convert -extract 1050x1050+450+4 cnv.png cnv.jpg
+
+cnh.png: common.inc cnh.pov
+ povray +A0.1 -W1920 -H1080 -Ocnh.png cnh.pov
+cnh.jpg: cnh.png
+ convert -extract 1050x1050+450+4 cnh.png cnh.jpg
+
+dn.png: common.inc dn.pov
+ povray +A0.1 -W1920 -H1080 -Odn.png dn.pov
+dn.jpg: dn.png
+ convert -extract 1050x1050+450+4 dn.png dn.jpg
+
+dnd.png: common.inc dnd.pov
+ povray +A0.1 -W1920 -H1080 -Odnd.png dnd.pov
+dnd.jpg: dnd.png
+ convert -extract 1050x1050+450+4 dnd.png dnd.jpg
+
+dnh.png: common.inc dnh.pov
+ povray +A0.1 -W1920 -H1080 -Odnh.png dnh.pov
+dnh.jpg: dnh.png
+ convert -extract 1050x1050+450+4 dnh.png dnh.jpg
+
+
+
+
diff --git a/vorlesungen/slides/6/punktgruppen/images/cn.jpg b/vorlesungen/slides/6/punktgruppen/images/cn.jpg
new file mode 100644
index 0000000..4ea4e92
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/cn.jpg
Binary files differ
diff --git a/vorlesungen/slides/6/punktgruppen/images/cn.pov b/vorlesungen/slides/6/punktgruppen/images/cn.pov
new file mode 100644
index 0000000..39d65be
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/cn.pov
@@ -0,0 +1,10 @@
+//
+// cn.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+
+#include "common.inc"
+
+koerper(0.4,0.6,0.6,0.5,0.8,-0.6,0.0)
+Vachse()
diff --git a/vorlesungen/slides/6/punktgruppen/images/cnh.jpg b/vorlesungen/slides/6/punktgruppen/images/cnh.jpg
new file mode 100644
index 0000000..72181e8
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/cnh.jpg
Binary files differ
diff --git a/vorlesungen/slides/6/punktgruppen/images/cnh.pov b/vorlesungen/slides/6/punktgruppen/images/cnh.pov
new file mode 100644
index 0000000..65d27a4
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/cnh.pov
@@ -0,0 +1,11 @@
+//
+// cnh.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+
+#include "common.inc"
+
+koerper(0.6,0.8,0.6,0.6,0.8,-0.6,0.0)
+Vachse()
+Hebene()
diff --git a/vorlesungen/slides/6/punktgruppen/images/cnv.jpg b/vorlesungen/slides/6/punktgruppen/images/cnv.jpg
new file mode 100644
index 0000000..fd81513
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/cnv.jpg
Binary files differ
diff --git a/vorlesungen/slides/6/punktgruppen/images/cnv.pov b/vorlesungen/slides/6/punktgruppen/images/cnv.pov
new file mode 100644
index 0000000..a87e075
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/cnv.pov
@@ -0,0 +1,11 @@
+//
+// cnv.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+
+#include "common.inc"
+
+koerper(0.4,0.6,0.6,0.5,0.8,-0.6,0.5)
+Vachse()
+Vebene()
diff --git a/vorlesungen/slides/6/punktgruppen/images/common.inc b/vorlesungen/slides/6/punktgruppen/images/common.inc
new file mode 100644
index 0000000..ffd9e79
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/common.inc
@@ -0,0 +1,200 @@
+//
+// common.inc
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.22;
+#declare O = <0, 0, 0>;
+#declare at = 0.015;
+
+camera {
+ location <3, 3.2, -10>
+ look_at <0, 0, 0>
+ right 16/9 * x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <-21, 20, -50> color 0.7*White
+ area_light <10,0,0> <0,0,10>, 10, 10
+ adaptive 1
+ jitter
+}
+
+light_source {
+ <8, 80, -5> color 0.6*White
+ area_light <10,0,0> <0,0,10>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro arrow(from, to, arrowthickness, c)
+#declare arrowdirection = vnormalize(to - from);
+#declare arrowlength = vlength(to - from);
+union {
+ sphere {
+ from, 1.0 * arrowthickness
+ }
+ cylinder {
+ from,
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ arrowthickness
+ }
+ cone {
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ 2 * arrowthickness,
+ to,
+ 0
+ }
+ pigment {
+ color c
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+#end
+#declare r = 1.2;
+
+arrow(< -r, 0, 0 >, < r, 0, 0 >, at, Gray)
+arrow(< 0, 0, -r >, < 0, 0, r >, at, Gray)
+arrow(< 0, -r, 0 >, < 0, r, 0 >, at, Gray)
+
+#macro kranzpunkt(r, winkel, h)
+ < r * cos(winkel), h, r * sin(winkel) >
+#end
+
+#declare N = 13;
+#declare h = 0.6;
+
+#macro deckel(r, R, scherwinkel, h)
+ #declare phi = 0;
+ #declare phistep = 2 * pi / N;
+ #while (phi < (2 * pi) - phistep/2)
+ triangle {
+ <0, h, 0>,
+ kranzpunkt(r, phi, h),
+ kranzpunkt(R, phi + scherwinkel, h)
+ }
+ triangle {
+ <0, h, 0>,
+ kranzpunkt(R, phi + scherwinkel, h)
+ kranzpunkt(r, phi + phistep, h)
+ }
+ #declare phi = phi + phistep;
+ #end
+#end
+
+
+#macro mantel(roben, Roben, hoben, runten, Runten, hunten, scherwinkel)
+ #declare phi = 0;
+ #declare phistep = 2 * pi / N;
+ #while (phi < 2 * pi - phistep/2)
+ triangle {
+ kranzpunkt(runten, phi, hunten),
+ kranzpunkt(Runten, phi + scherwinkel, hunten),
+ kranzpunkt(roben, phi, hoben)
+ }
+ triangle {
+ kranzpunkt(Runten, phi + scherwinkel, hunten),
+ kranzpunkt(Roben, phi + scherwinkel, hoben),
+ kranzpunkt(roben, phi, hoben)
+ }
+ triangle {
+ kranzpunkt(Runten, phi + scherwinkel, hunten),
+ kranzpunkt(runten, phi + phistep, hunten),
+ kranzpunkt(Roben, phi + scherwinkel, hoben)
+ }
+ triangle {
+ kranzpunkt(runten, phi + phistep, hunten),
+ kranzpunkt(roben, phi + phistep, hoben),
+ kranzpunkt(Roben, phi + scherwinkel, hoben)
+ }
+ #declare phi = phi + phistep;
+ #end
+#end
+
+#declare scherwinkel = function(scherfaktor) { (scherfaktor * 2 * pi / N) };
+
+#macro koerper(roben, Roben, hoben, runten, Runten, hunten, scherfaktor)
+mesh {
+ deckel(roben, Roben, scherwinkel(scherfaktor), hoben)
+ deckel(runten, Runten, scherwinkel(scherfaktor), hunten)
+ mantel(roben, Roben, hoben, runten, Runten, hunten, scherwinkel(scherfaktor))
+ pigment {
+ color Gray
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+#end
+
+#macro Hvektor(a)
+ <cos(a*2*pi/N),0,sin(a*2*pi/N)>
+#end
+
+#declare VachseFarbe = rgb<1,0.6,0>;
+#declare HachseFarbe = rgb<0.8,0.2,0.8>;
+#declare VebeneFarbe = rgbf<0.2,0.8,1.0,0.7>;
+#declare HebeneFarbe = rgbf<0.2,0.4,0.2,0.7>;
+
+#macro ebene(richtung, farbe)
+intersection {
+ cylinder { <0, -1, 0>, <0, 1, 0>, 1.0 }
+ plane { vnormalize(richtung), 0.003 }
+ plane { -vnormalize(richtung), 0.003 }
+ pigment {
+ color farbe
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+#end
+
+#macro Vebene()
+ ebene(Hvektor(-1.25), VebeneFarbe)
+#end
+
+#macro Hebene()
+ ebene(<0,1,0>, HebeneFarbe)
+#end
+
+#macro achse(richtung, farbe)
+ cylinder { 1.1 * vnormalize(richtung),
+ -1.1 * vnormalize(richtung),
+ 1.5 * at
+ pigment {
+ color farbe
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+ }
+#end
+
+#macro Vachse()
+ achse(<0,1,0>, VachseFarbe)
+#end
+
+#macro Hachse()
+ achse(Hvektor(-1.5), HachseFarbe)
+#end
diff --git a/vorlesungen/slides/6/punktgruppen/images/dn.jpg b/vorlesungen/slides/6/punktgruppen/images/dn.jpg
new file mode 100644
index 0000000..f895d44
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/dn.jpg
Binary files differ
diff --git a/vorlesungen/slides/6/punktgruppen/images/dn.pov b/vorlesungen/slides/6/punktgruppen/images/dn.pov
new file mode 100644
index 0000000..36eed3e
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/dn.pov
@@ -0,0 +1,12 @@
+//
+// dn.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+
+#include "common.inc"
+
+koerper(0.5,0.7,0.6,0.6,0.8,0,0.0)
+koerper(0.6,0.8,0,0.5,0.7,-0.6,1.0)
+Vachse()
+Hachse()
diff --git a/vorlesungen/slides/6/punktgruppen/images/dnd.jpg b/vorlesungen/slides/6/punktgruppen/images/dnd.jpg
new file mode 100644
index 0000000..089e24f
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/dnd.jpg
Binary files differ
diff --git a/vorlesungen/slides/6/punktgruppen/images/dnd.pov b/vorlesungen/slides/6/punktgruppen/images/dnd.pov
new file mode 100644
index 0000000..f0ec115
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/dnd.pov
@@ -0,0 +1,13 @@
+//
+// dnd.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+
+#include "common.inc"
+
+koerper(0.5,0.7,0.6,0.6,0.8,0,0.25)
+koerper(0.6,0.8,0,0.5,0.7,-0.6,0.75)
+Vachse()
+Hachse()
+ebene(Hvektor(2.25), VebeneFarbe)
diff --git a/vorlesungen/slides/6/punktgruppen/images/dnh.jpg b/vorlesungen/slides/6/punktgruppen/images/dnh.jpg
new file mode 100644
index 0000000..c62dbbb
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/dnh.jpg
Binary files differ
diff --git a/vorlesungen/slides/6/punktgruppen/images/dnh.pov b/vorlesungen/slides/6/punktgruppen/images/dnh.pov
new file mode 100644
index 0000000..6f14271
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/images/dnh.pov
@@ -0,0 +1,13 @@
+//
+// dnh.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+
+#include "common.inc"
+
+koerper(0.5,0.7,0.6,0.6,0.8,0,0.5)
+koerper(0.6,0.8,0,0.5,0.7,-0.6,0.5)
+Vachse()
+Hachse()
+Hebene()
diff --git a/vorlesungen/slides/6/punktgruppen/p.tex b/vorlesungen/slides/6/punktgruppen/p.tex
new file mode 100644
index 0000000..ea51e93
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/p.tex
@@ -0,0 +1,38 @@
+%
+% p.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Platonische Körper}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.33\textwidth}
+\begin{block}{$T = T_h \cap \operatorname{SO(3)}$}
+\begin{center}
+\includegraphics[width=0.8\textwidth]{../slides/6/punktgruppen/toi/T.jpg}
+\end{center}
+\end{block}
+\end{column}
+\begin{column}{0.33\textwidth}
+\uncover<2->{%
+\begin{block}{$O = O_h \cap \operatorname{SO(3)}$}
+\begin{center}
+\includegraphics[width=0.8\textwidth]{../slides/6/punktgruppen/toi/O.jpg}
+\end{center}
+\end{block}}
+\end{column}
+\begin{column}{0.33\textwidth}
+\uncover<3->{%
+\begin{block}{$I = I_h \cap \operatorname{SO(3)}$}
+\begin{center}
+\includegraphics[width=0.8\textwidth]{../slides/6/punktgruppen/toi/I.jpg}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/punktgruppen/semidirekt.tex b/vorlesungen/slides/6/punktgruppen/semidirekt.tex
new file mode 100644
index 0000000..69c1173
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/semidirekt.tex
@@ -0,0 +1,80 @@
+%
+% semidirekt.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Semidirektes Produkt}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Gegeben $H$ eine Gruppe, eine abelsche Gruppe $A$,
+$\vartheta\colon H\to\operatorname{Aut}(A)$.
+\[
+G
+=
+G\ltimes A
+=
+\{(h,a) \;|\; h\in H,a\in A\}
+\]
+heisst {\em semidirektes Produkt}.
+\begin{itemize}
+\item<2->
+Neutrales Element: $(e,0)$
+\item<3->
+Gruppenoperation
+\[
+(h_1,a_1)\cdot(h_2,a_2)
+=
+(h_1h_2, a_1 + \vartheta(h_1)a_2)
+\]
+\item<4->
+Inverse:
+$(h,a)^{-1}
+=
+(h^{-1},-\vartheta(h)^{-1}a)
+$
+\uncover<5->{%
+Kontrolle:
+\begin{align*}
+&\phantom{\mathstrut=\mathstrut}
+(h,a)\cdot (h^{-1},-\vartheta(h)^{-1}a)
+\\
+&\uncover<6->{=(hh^{-1},a-\vartheta(h)\vartheta(h)^{-1}a)}
+\uncover<7->{=(e,0)}
+\end{align*}}
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{block}{Drehungen und Spiegelungen von $\mathbb{R}^2$}
+Spiegelung: $C_2$
+Drehungen der: $\operatorname{SO}(2)$
+Drehungen und Spiegelungen:
+$C_2\ltimes \operatorname{SO}(2)=O(2)$
+\end{block}}
+\uncover<9->{%
+\begin{block}{Drehungen und Translationen}
+Drehungen: $H=\operatorname{SO}(2)$
+\\
+Translationen: $A=\mathbb{R}^2$
+\\
+Bewegungen der Ebene: $\operatorname{SO}(2)\ltimes \mathbb{R}^2$
+\end{block}}
+\uncover<10->{%
+\begin{block}{Dopplereffekt und Laufzeit}
+Dopplereffekt: $\mathbb{R}^+$ (Skalierung)
+\\
+Laufzeit: $\mathbb{R}$ (Verschiebung)
+\\
+Skalierung und Verschiebung: $\mathbb{R}^+\ltimes \mathbb{R}$
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/6/punktgruppen/toi/I.jpg b/vorlesungen/slides/6/punktgruppen/toi/I.jpg
new file mode 100644
index 0000000..70d2c17
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/toi/I.jpg
Binary files differ
diff --git a/vorlesungen/slides/6/punktgruppen/toi/O.jpg b/vorlesungen/slides/6/punktgruppen/toi/O.jpg
new file mode 100644
index 0000000..45307c5
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/toi/O.jpg
Binary files differ
diff --git a/vorlesungen/slides/6/punktgruppen/toi/T.jpg b/vorlesungen/slides/6/punktgruppen/toi/T.jpg
new file mode 100644
index 0000000..f710696
--- /dev/null
+++ b/vorlesungen/slides/6/punktgruppen/toi/T.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/Makefile.inc b/vorlesungen/slides/7/Makefile.inc
new file mode 100644
index 0000000..ffd5091
--- /dev/null
+++ b/vorlesungen/slides/7/Makefile.inc
@@ -0,0 +1,35 @@
+#
+# Makefile.inc -- additional depencencies
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+chapter5 = \
+ ../slides/7/symmetrien.tex \
+ ../slides/7/algebraisch.tex \
+ ../slides/7/parameter.tex \
+ ../slides/7/mannigfaltigkeit.tex \
+ ../slides/7/sl2.tex \
+ ../slides/7/drehung.tex \
+ ../slides/7/drehanim.tex \
+ ../slides/7/semi.tex \
+ ../slides/7/kurven.tex \
+ ../slides/7/einparameter.tex \
+ ../slides/7/ableitung.tex \
+ ../slides/7/liealgebra.tex \
+ ../slides/7/liealgbeispiel.tex \
+ ../slides/7/vektorlie.tex \
+ ../slides/7/kommutator.tex \
+ ../slides/7/bch.tex \
+ ../slides/7/dg.tex \
+ ../slides/7/interpolation.tex \
+ ../slides/7/exponentialreihe.tex \
+ ../slides/7/logarithmus.tex \
+ ../slides/7/zusammenhang.tex \
+ ../slides/7/quaternionen.tex \
+ ../slides/7/qdreh.tex \
+ ../slides/7/ueberlagerung.tex \
+ ../slides/7/hopf.tex \
+ ../slides/7/haar.tex \
+ ../slides/7/integration.tex \
+ ../slides/7/chapter.tex
+
diff --git a/vorlesungen/slides/7/ableitung.tex b/vorlesungen/slides/7/ableitung.tex
new file mode 100644
index 0000000..12f9084
--- /dev/null
+++ b/vorlesungen/slides/7/ableitung.tex
@@ -0,0 +1,68 @@
+%
+% ableitung.tex -- Ableitung in der Lie-Gruppe
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Ableitung in der Matrix-Gruppe}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Ableitung in $\operatorname{O}(n)$}
+\uncover<2->{%
+$s \mapsto A(s)\in\operatorname{O}(n)$
+}
+\begin{align*}
+\uncover<3->{I
+&=
+A(s)^tA(s)}
+\\
+\uncover<4->{0
+=
+\frac{d}{ds} I
+&=
+\frac{d}{ds} (A(s)^t A(s))}
+\\
+&\uncover<5->{=
+\dot{A}(s)^tA(s) + A(s)^t \dot{A}(s)}
+\intertext{\uncover<6->{An der Stelle $s=0$, d.~h.~$A(0)=I$}}
+\uncover<7->{0
+&=
+\dot{A}(0)^t
++
+\dot{A}(0)}
+\\
+\uncover<8->{\Leftrightarrow
+\qquad
+\dot{A}(0)^t &= -\dot{A}(0)}
+\end{align*}
+\uncover<9->{%
+``Tangentialvektoren'' sind antisymmetrische Matrizen
+}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Ableitung in $\operatorname{SL}_2(\mathbb{R})$}
+\uncover<2->{%
+$s\mapsto A(s)\in\operatorname{SL}_n(\mathbb{R})$
+}
+\begin{align*}
+\uncover<3->{1 &= \det A(t)}
+\\
+\uncover<10->{0
+=
+\frac{d}{dt}1
+&=
+\frac{d}{dt} \det A(t)}
+\intertext{\uncover<11->{mit dem Entwicklungssatz kann man nachrechnen:}}
+\uncover<12->{0&=\operatorname{Spur}\dot{A}(0)}
+\end{align*}
+\uncover<13->{``Tangentialvektoren'' sind spurlose Matrizen}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/algebraisch.tex b/vorlesungen/slides/7/algebraisch.tex
new file mode 100644
index 0000000..31d209a
--- /dev/null
+++ b/vorlesungen/slides/7/algebraisch.tex
@@ -0,0 +1,115 @@
+%
+% algebraisch.tex -- algebraische Definition der Symmetrien
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Erhaltungsgrössen und Algebra}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Längen und Winkel}
+Längenmessung mit Skalarprodukt
+\begin{align*}
+\|\vec{v}\|^2
+&=
+\langle \vec{v},\vec{v}\rangle
+=
+\vec{v}\cdot \vec{v}
+\uncover<2->{=
+\vec{v}^t\vec{v}}
+\end{align*}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Flächeninhalt/Volumen}
+$n$ Vektoren $V=(\vec{v}_1,\dots,\vec{v}_n)$
+\\
+Volumen des Parallelepipeds: $\det V$
+\end{block}}
+\end{column}
+\end{columns}
+%
+\vspace{-7pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Längenerhaltende Transformationen}
+$A\in\operatorname{GL}_n(\mathbb{R})$
+\begin{align*}
+\vec{x}^t\vec{y}
+&=
+(A\vec{x})
+\cdot
+(A\vec{y})
+\uncover<5->{=
+(A\vec{x})^t
+(A\vec{y})}
+\\
+\uncover<6->{
+\vec{x}^tI\vec{y}
+&=
+\vec{x}^tA^tA\vec{y}}
+\uncover<7->{
+\Rightarrow I=A^tA}
+\end{align*}
+\uncover<8->{Begründung: $\vec{e}_i^t B \vec{e}_j = b_{ij}$}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<9->{%
+\begin{block}{Volumenerhaltende Transformationen}
+$A\in\operatorname{GL}_n(\mathbb{R})$
+\begin{align*}
+\det(V)
+&=
+\det(AV)
+\uncover<10->{=
+\det(A)\det(V)}
+\\
+\uncover<11->{
+1&=\det(A)}
+\end{align*}
+\uncover<10->{
+(Produktsatz für Determinante)
+}
+\end{block}}
+\end{column}
+\end{columns}
+%
+\vspace{-3pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<12->{%
+\begin{block}{Orthogonale Matrizen}
+Längentreue Abbildungen = orthogonale Matrizen:
+\[
+O(n)
+=
+\{
+A \in \operatorname{GL}_n(\mathbb{R})
+\;|\;
+A^tA=I
+\}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<13->{%
+\begin{block}{``Spezielle'' Matrizen}
+Volumen-/Orientierungserhaltende Transformationen:
+\[
+\operatorname{SL}_n(\mathbb R)
+=
+\{ A \in \operatorname{GL}_n(\mathbb{R}) \;|\; \det A = 1\}
+\]
+\end{block}}
+\end{column}
+\end{columns}
+
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/bch.tex b/vorlesungen/slides/7/bch.tex
new file mode 100644
index 0000000..0148dc4
--- /dev/null
+++ b/vorlesungen/slides/7/bch.tex
@@ -0,0 +1,76 @@
+%
+% bch.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Baker-Campbell-Hausdorff-Formel}
+$g(t),h(t)\in G
+\uncover<2->{\Rightarrow \exists A,B\in LG\text{ mit }
+g(t)=\exp At, h(t)=\exp Bt}$
+\uncover<3->{%
+\begin{align*}
+g(t)
+&=
+I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \dots,
+&
+h(t)
+&=
+I + Bt + \frac{B^2t^2}{2!} + \frac{B^3t^3}{3!} + \dots
+\end{align*}}
+\uncover<5->{%
+\begin{block}{Kommutator in G: $c(t) = g(t)h(t)g(t)^{-1}h(t)^{-1}$}
+\begin{align*}
+\uncover<6->{c(t)
+&=
+\biggl(
+ {\color<7,9-11,13-15,19-21>{red}I}
+ + {\color<8,16-19>{red}A}t
+ + \frac{{\color<12>{red}A^2}t^2}{2!}
+ + \dots
+\biggr)
+\biggl(
+ {\color<7,8,10-12,14-15,17-18,21>{red}I}
+ + {\color<9,16,19-20>{red}B}t
+ + \frac{{\color<13>{red}B^2}t^2}{2!}
+ + \dots
+\biggr)
+\exp(-{\color<10,14,17,19,21>{red}A}t)
+\exp(-{\color<11,15,18,20-21>{red}B}t)
+}
+\\
+&\uncover<7->{={\color<7>{red}I}}
+\uncover<8->{+t(
+ \uncover<8->{ {\color<8>{red}A}}
+ \uncover<9->{+ {\color<9>{red}B}}
+ \uncover<10->{- {\color<10>{red}A}}
+ \uncover<11->{- {\color<11>{red}B}}
+)}
+\uncover<12->{+\frac{t^2}{2!}(
+ \uncover<12->{ {\color<12>{red}A^2}}
+ \uncover<13->{+ {\color<13>{red}B^2}}
+ \uncover<14->{+ {\color<14>{red}A^2}}
+ \uncover<15->{+ {\color<15>{red}B^2}}
+)}
+\\
+&\phantom{\mathstrut=I}
+\uncover<12->{+t^2(
+ \uncover<16->{ {\color<16>{red}AB}}
+ \uncover<17->{- {\color<17>{red}A^2}}
+ \uncover<18->{- {\color<18>{red}AB}}
+ \uncover<19->{- {\color<19>{red}BA}}
+ \uncover<20->{- {\color<20>{red}B^2}}
+ \uncover<21->{+ {\color<21>{red}AB}}
+)}
+\uncover<22->{+t^3(\dots)+\dots}
+\\
+&\uncover<23->{=
+I + \frac{t^2}{2}[A,B] + o(t^3)
+}
+\end{align*}}
+\end{block}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/chapter.tex b/vorlesungen/slides/7/chapter.tex
new file mode 100644
index 0000000..3736e0f
--- /dev/null
+++ b/vorlesungen/slides/7/chapter.tex
@@ -0,0 +1,32 @@
+%
+% chapter.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi
+%
+\folie{7/symmetrien.tex}
+\folie{7/algebraisch.tex}
+\folie{7/parameter.tex}
+\folie{7/mannigfaltigkeit.tex}
+\folie{7/sl2.tex}
+\folie{7/drehung.tex}
+\folie{7/drehanim.tex}
+\folie{7/semi.tex}
+\folie{7/kurven.tex}
+\folie{7/einparameter.tex}
+\folie{7/ableitung.tex}
+\folie{7/liealgebra.tex}
+\folie{7/liealgbeispiel.tex}
+\folie{7/vektorlie.tex}
+\folie{7/kommutator.tex}
+\folie{7/bch.tex}
+\folie{7/dg.tex}
+\folie{7/interpolation.tex}
+\folie{7/exponentialreihe.tex}
+\folie{7/logarithmus.tex}
+\folie{7/zusammenhang.tex}
+\folie{7/quaternionen.tex}
+\folie{7/qdreh.tex}
+\folie{7/ueberlagerung.tex}
+\folie{7/hopf.tex}
+\folie{7/haar.tex}
+\folie{7/integration.tex}
diff --git a/vorlesungen/slides/7/dg.tex b/vorlesungen/slides/7/dg.tex
new file mode 100644
index 0000000..f9528a4
--- /dev/null
+++ b/vorlesungen/slides/7/dg.tex
@@ -0,0 +1,92 @@
+%
+% dg.tex -- Differentialgleichung für die Exponentialabbildung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Zurück zur Lie-Gruppe}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Tangentialvektor im Punkt $\gamma(t)$}
+Ableitung von $\gamma(t)$ an der Stelle $t$:
+\begin{align*}
+\dot{\gamma}(t)
+&\uncover<2->{=
+\frac{d}{d\tau}\gamma(\tau)\bigg|_{\tau=t}
+}
+\\
+&\uncover<3->{=
+\frac{d}{ds}
+\gamma(t+s)
+\bigg|_{s=0}
+}
+\\
+&\uncover<4->{=
+\frac{d}{ds}
+\gamma(t)\gamma(s)
+\bigg|_{s=0}
+}
+\\
+&\uncover<5->{=
+\gamma(t)
+\frac{d}{ds}
+\gamma(s)
+\bigg|_{s=0}
+}
+\uncover<6->{=
+\gamma(t) \dot{\gamma}(0)
+}
+\end{align*}
+\end{block}
+\vspace{-10pt}
+\uncover<7->{%
+\begin{block}{Differentialgleichung}
+%\vspace{-10pt}
+\[
+\dot{\gamma}(t) = \gamma(t) A
+\quad
+\text{mit}
+\quad
+A=\dot{\gamma}(0)\in LG
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.50\textwidth}
+\uncover<8->{%
+\begin{block}{Lösung}
+Exponentialfunktion
+\[
+\exp\colon LG\to G : A \mapsto \exp(At) = \sum_{k=0}^\infty \frac{t^k}{k!}A^k
+\]
+\end{block}}
+\vspace{-5pt}
+\uncover<9->{%
+\begin{block}{Kontrolle: Tangentialvektor berechnen}
+%\vspace{-10pt}
+\begin{align*}
+\frac{d}{dt}e^{At}
+&\uncover<10->{=
+\sum_{k=1}^\infty A^k \frac{d}{dt} \frac{t^k}{k!}
+}
+\\
+&\uncover<11->{=
+\sum_{k=1}^\infty A^{k-1}\frac{t^{k-1}}{(k-1)!} A
+}
+\\
+&\uncover<12->{=
+\sum_{k=0} A^k\frac{t^k}{k!}
+A
+}
+\uncover<13->{=
+e^{At} A
+}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/drehanim.tex b/vorlesungen/slides/7/drehanim.tex
new file mode 100644
index 0000000..ac136f1
--- /dev/null
+++ b/vorlesungen/slides/7/drehanim.tex
@@ -0,0 +1,155 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\def\punkt#1#2{ ({\A*(#1)+\B*(#2)},{\C*(#1)+\D*(#2)}) }
+
+\makeatletter
+\hoffset=-2cm
+\advance\textwidth2cm
+\hsize\textwidth
+\columnwidth\textwidth
+\makeatother
+
+\begin{frame}[t,plain]
+\vspace{-5pt}
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\fill[color=white] (-4,-4) rectangle (9,4.5);
+
+\def\a{60}
+
+\pgfmathparse{tan(\a)}
+\xdef\T{\pgfmathresult}
+
+\pgfmathparse{-sin(\a)*cos(\a)}
+\xdef\S{\pgfmathresult}
+
+\pgfmathparse{1/cos(\a)}
+\xdef\E{\pgfmathresult}
+
+\def\N{20}
+\pgfmathparse{2*\N}
+\xdef\Nzwei{\pgfmathresult}
+\pgfmathparse{3*\N}
+\xdef\Ndrei{\pgfmathresult}
+
+\node at (4.2,4.2) [below right] {\begin{minipage}{7cm}
+\begin{block}{$\operatorname{SO}(2)\subset\operatorname{SL}_2(\mathbb{R})$}
+\begin{itemize}
+\item Thus most $A\in\operatorname{SL}_2(\mathbb{R})$ can be parametrized
+as shear mappings and axis rescalings
+\[
+A=
+\begin{pmatrix}d&0\\0&d^{-1}\end{pmatrix}
+\begin{pmatrix}1&s\\0&1\end{pmatrix}
+\begin{pmatrix}1&0\\t&1\end{pmatrix}
+\]
+\item Most rotations can be decomposed into a product of
+shear mappings and axis rescalings
+\end{itemize}
+\end{block}
+\end{minipage}};
+
+\foreach \d in {1,2,...,\Ndrei}{
+ % Scherung in Y-Richtung
+ \ifnum \d>\N
+ \pgfmathparse{\T}
+ \else
+ \pgfmathparse{\T*(\d-1)/(\N-1)}
+ \fi
+ \xdef\t{\pgfmathresult}
+
+ % Scherung in X-Richtung
+ \ifnum \d>\Nzwei
+ \xdef\s{\S}
+ \else
+ \ifnum \d<\N
+ \xdef\s{0}
+ \else
+ \ifnum \d=\N
+ \xdef\s{0}
+ \else
+ \pgfmathparse{\S*(\d-\N-1)/(\N-1)}
+ \xdef\s{\pgfmathresult}
+ \fi
+ \fi
+ \fi
+
+ % Reskalierung der Achsen
+ \ifnum \d>\Nzwei
+ \pgfmathparse{exp(ln(\E)*(\d-2*\N-1)/(\N-1))}
+ \else
+ \pgfmathparse{1}
+ \fi
+ \xdef\e{\pgfmathresult}
+
+ % Matrixelemente
+ \pgfmathparse{(\e)*((\s)*(\t)+1)}
+ \xdef\A{\pgfmathresult}
+
+ \pgfmathparse{(\e)*(\s)}
+ \xdef\B{\pgfmathresult}
+
+ \pgfmathparse{(\t)/(\e)}
+ \xdef\C{\pgfmathresult}
+
+ \pgfmathparse{1/(\e)}
+ \xdef\D{\pgfmathresult}
+
+ \only<\d>{
+ \node at (5.0,-0.9) [below right] {$
+ \begin{aligned}
+ t &= \t \\
+ s &= \s \\
+ d &= \e \\
+ D &= \begin{pmatrix}
+ \A&\B\\
+ \C&\D
+ \end{pmatrix}
+ \qquad
+ \only<60>{\checkmark}
+ \end{aligned}
+ $};
+ }
+
+ \begin{scope}
+ \clip (-4.05,-4.05) rectangle (4.05,4.05);
+ \only<\d>{
+ \foreach \x in {-6,...,6}{
+ \draw[color=blue,line width=0.5pt]
+ \punkt{\x}{-12} -- \punkt{\x}{12};
+ }
+ \foreach \y in {-12,...,12}{
+ \draw[color=darkgreen,line width=0.5pt]
+ \punkt{-6}{\y} -- \punkt{6}{\y};
+ }
+
+ \foreach \r in {1,2,3,4}{
+ \draw[color=red] plot[domain=0:359,samples=360]
+ ({\r*(\A*cos(\x)+\B*sin(\x))},{\r*(\C*cos(\x)+\D*sin(\x))})
+ --
+ cycle;
+ }
+ }
+ \end{scope}
+
+% \uncover<\d>{
+% \node at (5,4) {\d};
+% }
+}
+
+\draw[->] (-4,0) -- (4.2,0) coordinate[label={$x$}];
+\draw[->] (0,-4) -- (0,4.2) coordinate[label={right:$y$}];
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/drehung.tex b/vorlesungen/slides/7/drehung.tex
new file mode 100644
index 0000000..02201d4
--- /dev/null
+++ b/vorlesungen/slides/7/drehung.tex
@@ -0,0 +1,132 @@
+%
+% drehung.tex -- Drehung aus streckungen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Drehung aus Streckungen und Scherungen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.38\textwidth}
+\begin{block}{Drehung}
+{\color{blue}Längen}, {\color<2->{blue}Winkel},
+{\color<2->{darkgreen}Orientierung}
+erhalten
+\uncover<2->{
+\[
+\operatorname{SO}(2)
+=
+{\color{blue}\operatorname{O}(2)}
+\cap
+{\color{darkgreen}\operatorname{SL}_2(\mathbb{R})}
+\]}
+\vspace{-20pt}
+\end{block}
+\uncover<3->{%
+\begin{block}{Zusammensetzung}
+Eine Drehung muss als Zusammensetzung geschrieben werden können:
+\[
+D_{\alpha}
+=
+\begin{pmatrix}
+\cos\alpha & -\sin\alpha\\
+\sin\alpha &\phantom{-}\cos\alpha
+\end{pmatrix}
+=
+DST
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<12->{%
+\begin{block}{Beispiel}
+\vspace{-12pt}
+\[
+D_{60^\circ}
+=
+{\tiny
+\begin{pmatrix}2&0\\0&\frac12\end{pmatrix}
+\begin{pmatrix}1&-\frac{\sqrt{3}}4\\0&1\end{pmatrix}
+\begin{pmatrix}1&0\\\sqrt{3}&1\end{pmatrix}
+}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.58\textwidth}
+\uncover<4->{%
+\begin{block}{Ansatz}
+%\vspace{-12pt}
+\begin{align*}
+DST
+&=
+\begin{pmatrix}
+c^{-1}&0\\
+ 0 &c
+\end{pmatrix}
+\begin{pmatrix}
+1&-s\\
+0&1
+\end{pmatrix}
+\begin{pmatrix}
+1&0\\
+t&1
+\end{pmatrix}
+\\
+&\uncover<5->{=
+\begin{pmatrix}
+c^{-1}&0\\
+ 0 &c
+\end{pmatrix}
+\begin{pmatrix}
+1-st&-s\\
+ t& 1
+\end{pmatrix}
+}
+\\
+&\uncover<6->{=
+\begin{pmatrix}
+{\color<11->{orange}(1-st)c^{-1}}&{\color<10->{darkgreen}sc^{-1}}\\
+{\color<9->{blue}ct}&{\color<8->{red}c}
+\end{pmatrix}}
+\uncover<7->{=
+\begin{pmatrix}
+{\color<11->{orange}\cos\alpha} & {\color<10->{darkgreen}- \sin\alpha} \\
+{\color<9->{blue}\sin\alpha} & \phantom{-} {\color<8->{red}\cos\alpha}
+\end{pmatrix}}
+\end{align*}
+\end{block}}
+\vspace{-10pt}
+\uncover<7->{%
+\begin{block}{Koeffizientenvergleich}
+%\vspace{-15pt}
+\begin{align*}
+\uncover<8->{
+{\color{red} c}
+&=
+{\color{red}\cos\alpha }}
+&&
+&
+\uncover<9->{
+{\color{blue}
+t}&=\rlap{$\displaystyle\frac{\sin\alpha}{c} = \tan\alpha$}}\\
+\uncover<10->{
+{\color{darkgreen}sc^{-1}}&={\color{darkgreen}-\sin\alpha}
+&
+&\Rightarrow&
+{\color{darkgreen}s}&={\color{darkgreen}-\sin\alpha}\cos\alpha
+}
+\\
+\uncover<11->{
+{\color{orange} (1-st)c^{-t}}
+&=
+\rlap{$\displaystyle\frac{(1-\sin^2\alpha)}{\cos\alpha} = \cos\alpha $}
+}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/einparameter.tex b/vorlesungen/slides/7/einparameter.tex
new file mode 100644
index 0000000..a32affd
--- /dev/null
+++ b/vorlesungen/slides/7/einparameter.tex
@@ -0,0 +1,93 @@
+%
+% einparameter.tex -- Einparameter Untergruppen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Einparameter-Untergruppen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Eine Kurve $\gamma\colon \mathbb{R}\to G\subset\operatorname{GL}_n(\mathbb{R})$,
+die {\color<2->{red}gleichzeitig eine Untergruppe von $G$} ist \uncover<3->{mit}
+\[
+\uncover<3->{
+\gamma(t+s) = \gamma(t)\gamma(s)\quad\forall t,s\in\mathbb{R}
+}
+\]
+\end{block}
+\uncover<4->{%
+\begin{block}{Drehungen}
+Drehmatrizen bilden Einparameter- Untergruppen
+\begin{align*}
+t \mapsto D_{x,t}
+&=
+\begin{pmatrix}
+1&0&0\\
+0&\cos t&-\sin t\\
+0&\sin t& \cos t
+\end{pmatrix}
+\\
+D_{x,t}D_{x,s}
+&=
+D_{x,t+s}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Scherungen in $\operatorname{SL}_2(\mathbb{R})$}
+%\vspace{-12pt}
+\[
+\begin{pmatrix}
+1&s\\
+0&1
+\end{pmatrix}
+\begin{pmatrix}
+1&t\\
+0&1
+\end{pmatrix}
+=
+\begin{pmatrix}
+1&s+t\\
+0&1
+\end{pmatrix}
+\]
+\end{block}}
+\vspace{-12pt}
+\uncover<6->{%
+\begin{block}{Skalierungen in $\operatorname{SL}_2(\mathbb{R})$}
+%\vspace{-12pt}
+\[
+\begin{pmatrix}
+e^s&0\\0&e^{-s}
+\end{pmatrix}
+\begin{pmatrix}
+e^t&0\\0&e^{-t}
+\end{pmatrix}
+=
+\begin{pmatrix}
+e^{t+s}&0\\0&e^{-(t+s)}
+\end{pmatrix}
+\]
+\end{block}}
+\vspace{-12pt}
+\uncover<7->{%
+\begin{block}{Gemischt}
+%\vspace{-12pt}
+\begin{gather*}
+A_t = I \cosh t + \begin{pmatrix}1&a\\0&-1\end{pmatrix}\sinh t
+\\
+\text{dank}\quad
+\begin{pmatrix}1&s\\0&-1\end{pmatrix}^2
+=I
+\end{gather*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/exponentialreihe.tex b/vorlesungen/slides/7/exponentialreihe.tex
new file mode 100644
index 0000000..b1aeda6
--- /dev/null
+++ b/vorlesungen/slides/7/exponentialreihe.tex
@@ -0,0 +1,24 @@
+%
+% exponentialreihe.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Exponentialreihe}
+\begin{align*}
+h(s) &= \exp(tA_0 + sB) = \sum_{k=0}^\infty \frac{1}{k!} (tA_0 + sB)^k
+\\
+&=
+I + (tA_0 + sB) + \frac{1}{2!}(t^2A_0^2 + ts(A_0B + BA_0) + s^2B^2)
++ \frac{1}{3!}(t^3A_0^3 + t^2s(A_0^2B + A_0BA_0 + BA_0^2) + \dots)
++ \dots
+\\
+\frac{dg(s)}{ds}
+&=
+B + \frac1{2!}t(A_0B+BA_0) + \frac{1}{3!}t^2(A_0^2B+A_0BA_0+BA_0^2) + \dots
+\end{align*}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/haar.tex b/vorlesungen/slides/7/haar.tex
new file mode 100644
index 0000000..454dd69
--- /dev/null
+++ b/vorlesungen/slides/7/haar.tex
@@ -0,0 +1,84 @@
+%
+% haar.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Haar-Mass}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Invariantes Mass}
+Auf jeder lokalkompakten Gruppe $G$ gibt es ein \only<2->{invariantes }%
+Integral
+\begin{align*}
+\uncover<2->{\text{rechts:}}&&
+\int_G f(g)\,d\mu(g)
+&\uncover<2->{=
+\int_G f(gh)\,d\mu(g)}
+\\
+\uncover<3->{
+\text{links:}&&
+\int_G f(g)\,d\mu(g)
+&=
+\int_G f(hg)\,d\mu(g)}
+\end{align*}
+
+\end{block}
+\uncover<7->{%
+\begin{block}{Modulus-Funktion}
+$\mu$ linksinvariant, dann ist die Rechtsverschiebung ebenfalls
+linksinvariant
+\[
+\int_G f(gh) \, d\mu(g)
+\uncover<8->{
+=
+\int_G f(g) \Delta(h)\, d\mu(g)
+}
+\]
+\uncover<9->{$\Delta(h)$ heisst Modulus-Funktion}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Beispiel: $G=\mathbb{R}$}
+\[
+\int_Gf(g)\,d\mu(g)
+=
+\int_{-\infty}^{\infty} f(x)\,dx
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<5->{%
+\begin{block}{Beispiel: $\operatorname{SO}(2)$}
+\[
+\int_{\operatorname{SO}(2)}
+f(g)\,d\mu(g)
+=
+\frac{1}{2\pi}
+\int_{0}^{2\pi} f(D_{\alpha})\,d\alpha
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<6->{%
+\begin{block}{Beispiel: $G$ endlich}
+\[
+\int_G f(g)\,d\mu(g) = \frac{1}{|G|}\sum_{g\in G}f(g)
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<10->{%
+\begin{block}{Unimodular}
+$\Delta(h)=1$ heisst rechtsinvariant = linksinvariant
+\\
+\uncover<11->{%
+$G$ kompakt $\Rightarrow$ unimodular
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/hopf.tex b/vorlesungen/slides/7/hopf.tex
new file mode 100644
index 0000000..a90737f
--- /dev/null
+++ b/vorlesungen/slides/7/hopf.tex
@@ -0,0 +1,69 @@
+%
+% hopf.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Orbit-Räume}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Aktion von $\operatorname{SO}(3)$ auf $S^2$}
+\begin{align*}
+S^2 &= \{x\in\mathbb{R}^3\;|\; |x|=1\}
+\\
+\operatorname{SO}(3) \times S^2 &\to S^2: (g, x) \mapsto gx
+\end{align*}
+\uncover<2->{%
+Allgemein: Aktion von $G$ auf $X$
+\begin{align*}
+\text{links:}&&
+G\times X \to X &: (g,x) \mapsto gx
+\\
+\text{rechts:}&&
+X\times G \to X &: (x,g) \mapsto xg
+\end{align*}}
+\end{block}
+\vspace{-10pt}
+\uncover<3->{%
+\begin{block}{Stabilisator}
+Zu $x\in X$ gibt es eine Untergruppe
+\begin{align*}
+G_x = \{g\in G\;|\; gx=x\},
+\end{align*}
+der {\em Stabilisator} von $x$.
+
+\uncover<4->{%
+Der Stabilisator von $v\in S^2$ ist die Gruppe der Drehungen um
+die Achse $v$}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{Quotient}
+$G$ operiert von rechts auf $X$
+\[
+X/G = \{ xG \;|\; x\in X\}
+\]
+heisst Quotient
+\end{block}}
+\uncover<6->{
+\begin{block}{$\operatorname{SO}(3)/\operatorname{SO}(2)$}
+Wähle $\operatorname{SO}(2)$ als Drehungen um die $z$-Achse:
+\[
+\operatorname{SO}(3) \to S^2
+:
+g \mapsto \text{letzte Spalte von $g$}
+\]
+\uncover<7->{Daher
+\[
+S^2 \cong \operatorname{SO}(3) / \operatorname{SO}(2)
+\]}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/images/Makefile b/vorlesungen/slides/7/images/Makefile
new file mode 100644
index 0000000..6f99bc3
--- /dev/null
+++ b/vorlesungen/slides/7/images/Makefile
@@ -0,0 +1,29 @@
+#
+# Makefile -- Illustrationen zu
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+# 
+all: rodriguez.jpg test.png
+
+rodriguez.png: rodriguez.pov
+ povray +A0.1 -W1920 -H1080 -Orodriguez.png rodriguez.pov
+
+rodriguez.jpg: rodriguez.png
+ convert -extract 1740x1070+135+10 rodriguez.png rodriguez.jpg
+
+commutator: commutator.ini commutator.pov common.inc
+ povray +A0.1 -W1920 -H1080 -Oc/c.png commutator.ini
+jpg:
+ for f in c/c*.png; do convert $${f} c/`basename $${f} .png`.jpg; done
+
+dreibein/timestamp: interpolation.m
+ octave interpolation.m
+ touch dreibein/timestamp
+
+test.png: test.pov drehung.inc dreibein/d025.inc dreibein/timestamp
+ povray +A0.1 -W1080 -H1080 -Otest.png test.pov
+
+dreibein/d025.inc: dreibein/timestamp
+
+animation:
+ povray +A0.1 -W1080 -H1080 -Ointerpolation/i.png interpolation.ini
diff --git a/vorlesungen/slides/7/images/c/c01.jpg b/vorlesungen/slides/7/images/c/c01.jpg
new file mode 100644
index 0000000..b2dbdb2
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c01.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c02.jpg b/vorlesungen/slides/7/images/c/c02.jpg
new file mode 100644
index 0000000..9b45ba3
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c02.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c03.jpg b/vorlesungen/slides/7/images/c/c03.jpg
new file mode 100644
index 0000000..882be40
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c03.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c04.jpg b/vorlesungen/slides/7/images/c/c04.jpg
new file mode 100644
index 0000000..5d26572
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c04.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c05.jpg b/vorlesungen/slides/7/images/c/c05.jpg
new file mode 100644
index 0000000..458f565
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c05.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c06.jpg b/vorlesungen/slides/7/images/c/c06.jpg
new file mode 100644
index 0000000..cd40cda
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c06.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c07.jpg b/vorlesungen/slides/7/images/c/c07.jpg
new file mode 100644
index 0000000..3349795
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c07.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c08.jpg b/vorlesungen/slides/7/images/c/c08.jpg
new file mode 100644
index 0000000..65048cf
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c08.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c09.jpg b/vorlesungen/slides/7/images/c/c09.jpg
new file mode 100644
index 0000000..000d502
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c09.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c10.jpg b/vorlesungen/slides/7/images/c/c10.jpg
new file mode 100644
index 0000000..064c96b
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c10.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c11.jpg b/vorlesungen/slides/7/images/c/c11.jpg
new file mode 100644
index 0000000..c67bc5d
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c11.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c12.jpg b/vorlesungen/slides/7/images/c/c12.jpg
new file mode 100644
index 0000000..f2174de
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c12.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c13.jpg b/vorlesungen/slides/7/images/c/c13.jpg
new file mode 100644
index 0000000..3cb5ae6
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c13.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c14.jpg b/vorlesungen/slides/7/images/c/c14.jpg
new file mode 100644
index 0000000..6985e4f
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c14.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c15.jpg b/vorlesungen/slides/7/images/c/c15.jpg
new file mode 100644
index 0000000..5bb5aed
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c15.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c16.jpg b/vorlesungen/slides/7/images/c/c16.jpg
new file mode 100644
index 0000000..cc77fa1
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c16.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c17.jpg b/vorlesungen/slides/7/images/c/c17.jpg
new file mode 100644
index 0000000..a60e2e9
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c17.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c18.jpg b/vorlesungen/slides/7/images/c/c18.jpg
new file mode 100644
index 0000000..1d08c29
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c18.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c19.jpg b/vorlesungen/slides/7/images/c/c19.jpg
new file mode 100644
index 0000000..9210c60
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c19.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c20.jpg b/vorlesungen/slides/7/images/c/c20.jpg
new file mode 100644
index 0000000..8951883
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c20.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c21.jpg b/vorlesungen/slides/7/images/c/c21.jpg
new file mode 100644
index 0000000..5169c7e
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c21.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c22.jpg b/vorlesungen/slides/7/images/c/c22.jpg
new file mode 100644
index 0000000..bdeb90b
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c22.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c23.jpg b/vorlesungen/slides/7/images/c/c23.jpg
new file mode 100644
index 0000000..fa3eac7
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c23.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c24.jpg b/vorlesungen/slides/7/images/c/c24.jpg
new file mode 100644
index 0000000..52adc13
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c24.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c25.jpg b/vorlesungen/slides/7/images/c/c25.jpg
new file mode 100644
index 0000000..d557497
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c25.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c26.jpg b/vorlesungen/slides/7/images/c/c26.jpg
new file mode 100644
index 0000000..f825f49
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c26.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c27.jpg b/vorlesungen/slides/7/images/c/c27.jpg
new file mode 100644
index 0000000..0de6c3e
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c27.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c28.jpg b/vorlesungen/slides/7/images/c/c28.jpg
new file mode 100644
index 0000000..d9f89a4
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c28.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c29.jpg b/vorlesungen/slides/7/images/c/c29.jpg
new file mode 100644
index 0000000..937f692
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c29.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c30.jpg b/vorlesungen/slides/7/images/c/c30.jpg
new file mode 100644
index 0000000..45901cc
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c30.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c31.jpg b/vorlesungen/slides/7/images/c/c31.jpg
new file mode 100644
index 0000000..eb52bec
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c31.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c32.jpg b/vorlesungen/slides/7/images/c/c32.jpg
new file mode 100644
index 0000000..a011640
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c32.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c33.jpg b/vorlesungen/slides/7/images/c/c33.jpg
new file mode 100644
index 0000000..ecbb8bd
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c33.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c34.jpg b/vorlesungen/slides/7/images/c/c34.jpg
new file mode 100644
index 0000000..8a624d1
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c34.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c35.jpg b/vorlesungen/slides/7/images/c/c35.jpg
new file mode 100644
index 0000000..33765a1
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c35.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c36.jpg b/vorlesungen/slides/7/images/c/c36.jpg
new file mode 100644
index 0000000..e38a448
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c36.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c37.jpg b/vorlesungen/slides/7/images/c/c37.jpg
new file mode 100644
index 0000000..9f823f4
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c37.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c38.jpg b/vorlesungen/slides/7/images/c/c38.jpg
new file mode 100644
index 0000000..19c96fc
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c38.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c39.jpg b/vorlesungen/slides/7/images/c/c39.jpg
new file mode 100644
index 0000000..c00482b
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c39.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c40.jpg b/vorlesungen/slides/7/images/c/c40.jpg
new file mode 100644
index 0000000..de9fca4
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c40.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c41.jpg b/vorlesungen/slides/7/images/c/c41.jpg
new file mode 100644
index 0000000..1b8a3d1
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c41.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c42.jpg b/vorlesungen/slides/7/images/c/c42.jpg
new file mode 100644
index 0000000..6d4e5bc
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c42.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c43.jpg b/vorlesungen/slides/7/images/c/c43.jpg
new file mode 100644
index 0000000..b39551f
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c43.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c44.jpg b/vorlesungen/slides/7/images/c/c44.jpg
new file mode 100644
index 0000000..0fe56f6
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c44.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c45.jpg b/vorlesungen/slides/7/images/c/c45.jpg
new file mode 100644
index 0000000..9196ad3
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c45.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c46.jpg b/vorlesungen/slides/7/images/c/c46.jpg
new file mode 100644
index 0000000..a4f5823
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c46.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c47.jpg b/vorlesungen/slides/7/images/c/c47.jpg
new file mode 100644
index 0000000..18474dd
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c47.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c48.jpg b/vorlesungen/slides/7/images/c/c48.jpg
new file mode 100644
index 0000000..d839014
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c48.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c49.jpg b/vorlesungen/slides/7/images/c/c49.jpg
new file mode 100644
index 0000000..3cb5cb0
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c49.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c50.jpg b/vorlesungen/slides/7/images/c/c50.jpg
new file mode 100644
index 0000000..de32f8b
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c50.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c51.jpg b/vorlesungen/slides/7/images/c/c51.jpg
new file mode 100644
index 0000000..4bbc224
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c51.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c52.jpg b/vorlesungen/slides/7/images/c/c52.jpg
new file mode 100644
index 0000000..ebf1db6
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c52.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c53.jpg b/vorlesungen/slides/7/images/c/c53.jpg
new file mode 100644
index 0000000..2ece537
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c53.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c54.jpg b/vorlesungen/slides/7/images/c/c54.jpg
new file mode 100644
index 0000000..0ffbac2
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c54.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c55.jpg b/vorlesungen/slides/7/images/c/c55.jpg
new file mode 100644
index 0000000..5f75419
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c55.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c56.jpg b/vorlesungen/slides/7/images/c/c56.jpg
new file mode 100644
index 0000000..5c0f9ae
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c56.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c57.jpg b/vorlesungen/slides/7/images/c/c57.jpg
new file mode 100644
index 0000000..9b61179
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c57.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c58.jpg b/vorlesungen/slides/7/images/c/c58.jpg
new file mode 100644
index 0000000..81d2173
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c58.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c59.jpg b/vorlesungen/slides/7/images/c/c59.jpg
new file mode 100644
index 0000000..0ae9bac
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c59.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/c/c60.jpg b/vorlesungen/slides/7/images/c/c60.jpg
new file mode 100644
index 0000000..2bc77e7
--- /dev/null
+++ b/vorlesungen/slides/7/images/c/c60.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/common.inc b/vorlesungen/slides/7/images/common.inc
new file mode 100644
index 0000000..0e27c9a
--- /dev/null
+++ b/vorlesungen/slides/7/images/common.inc
@@ -0,0 +1,70 @@
+//
+// common.inc
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.025;
+#declare O = <0, 0, 0>;
+#declare at = 0.015;
+
+camera {
+ location <18, 15, -50>
+ look_at <0.0, 0.5, 0>
+ right 16/9 * x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <-40, 30, -50> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro arrow(from, to, arrowthickness, c)
+#declare arrowdirection = vnormalize(to - from);
+#declare arrowlength = vlength(to - from);
+union {
+ sphere {
+ from, 1.1 * arrowthickness
+ }
+ cylinder {
+ from,
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ arrowthickness
+ }
+ cone {
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ 2 * arrowthickness,
+ to,
+ 0
+ }
+ pigment {
+ color c
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+#end
+
+#declare l = 1.2;
+
+arrow(< -l, 0, 0 >, < l, 0, 0 >, at, White)
+arrow(< 0, 0, -l >, < 0, 0, l >, at, White)
+arrow(< 0, -l, 0 >, < 0, l, 0 >, at, White)
+
diff --git a/vorlesungen/slides/7/images/commutator.ini b/vorlesungen/slides/7/images/commutator.ini
new file mode 100644
index 0000000..8c2211e
--- /dev/null
+++ b/vorlesungen/slides/7/images/commutator.ini
@@ -0,0 +1,8 @@
+Input_File_Name=commutator.pov
+Initial_Frame=1
+Final_Frame=60
+Initial_Clock=1
+Final_Clock=60
+Cyclic_Animation=off
+Pause_when_Done=off
+
diff --git a/vorlesungen/slides/7/images/commutator.m b/vorlesungen/slides/7/images/commutator.m
new file mode 100644
index 0000000..5a448db
--- /dev/null
+++ b/vorlesungen/slides/7/images/commutator.m
@@ -0,0 +1,111 @@
+#
+# commutator.m
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+
+X = [
+ 0, 0, 0;
+ 0, 0, -1;
+ 0, 1, 0
+];
+
+Y = [
+ 0, 0, 1;
+ 0, 0, 0;
+ -1, 0, 0
+];
+
+Z = [
+ 0, -1, 0;
+ 1, 0, 0;
+ 0, 0, 0
+];
+
+function retval = Dx(alpha)
+ retval = [
+ 1, 0, 0 ;
+ 0, cos(alpha), -sin(alpha);
+ 0, sin(alpha), cos(alpha)
+ ];
+end
+
+function retval = Dy(beta)
+ retval = [
+ cos(beta), 0, sin(beta);
+ 0, 1, 0 ;
+ -sin(beta), 0, cos(beta)
+ ];
+end
+
+t = 0.9;
+P = Dx(t) * Dy(t)
+Q = Dy(t) * Dx(t)
+P - Q
+(P - Q) * [0;0;1]
+
+function retval = kurven(filename, t)
+ retval = -1;
+ N = 20;
+ fn = fopen(filename, "w");
+ fprintf(fn, "//\n");
+ fprintf(fn, "// %s\n", filename);
+ fprintf(fn, "//\n");
+ fprintf(fn, "#macro XYkurve()\n");
+ for i = (0:N-1)
+ v1 = Dx(t * i / N) * [0;0;1];
+ v2 = Dx(t * (i+1) / N) * [0;0;1];
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1));
+ fprintf(fn, "cylinder { <%.4f,%.4f,%.4f>, <%.4f, %.4f, %.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1), v2(1,1), v2(3,1), v2(2,1));
+ end
+ for i = (0:N-1)
+ v1 = Dx(t) * Dy(t * i / N) * [0;0;1];
+ v2 = Dx(t) * Dy(t * (i+1) / N) * [0;0;1];
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1));
+ fprintf(fn, "cylinder { <%.4f,%.4f,%.4f>, <%.4f, %.4f, %.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1), v2(1,1), v2(3,1), v2(2,1));
+ end
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v2(1,1), v2(3,1), v2(2,1));
+ fprintf(fn, "#end\n");
+ fprintf(fn, "#declare finalXY = <%.4f, %.4f, %.4f>;\n",
+ v2(1,1), v2(3,1), v2(2,1));
+ fprintf(fn, "#macro YXkurve()\n");
+ for i = (0:N-1)
+ v1 = Dy(t * i / N) * [0;0;1];
+ v2 = Dy(t * (i+1) / N) * [0;0;1];
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1));
+ fprintf(fn, "cylinder { <%.4f,%.4f,%.4f>, <%.4f, %.4f, %.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1), v2(1,1), v2(3,1), v2(2,1));
+ end
+ for i = (0:N-1)
+ v1 = Dy(t) * Dx(t * i / N) * [0;0;1];
+ v2 = Dy(t) * Dx(t * (i+1) / N) * [0;0;1];
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1));
+ fprintf(fn, "cylinder { <%.4f,%.4f,%.4f>, <%.4f, %.4f, %.4f>, at }\n",
+ v1(1,1), v1(3,1), v1(2,1), v2(1,1), v2(3,1), v2(2,1));
+ end
+ fprintf(fn, "sphere { <%.4f,%.4f,%.4f>, at }\n",
+ v2(1,1), v2(3,1), v2(2,1));
+ fprintf(fn, "#end\n");
+ fprintf(fn, "#declare finalYX = <%.4f, %.4f, %.4f>;\n",
+ v2(1,1), v2(3,1), v2(2,1));
+
+ fclose(fn);
+ retval = 0;
+end
+
+function retval = kurve(i)
+ n = pi / 180;
+ filename = sprintf("f/%04d.inc", i);
+ kurven(filename, n * i);
+end
+
+for i = (1:60)
+ kurve(i);
+end
diff --git a/vorlesungen/slides/7/images/commutator.pov b/vorlesungen/slides/7/images/commutator.pov
new file mode 100644
index 0000000..9ae11b9
--- /dev/null
+++ b/vorlesungen/slides/7/images/commutator.pov
@@ -0,0 +1,59 @@
+//
+// commutator.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#include "common.inc"
+
+sphere { O, 0.99
+ pigment {
+ color rgbt<1,1,1,0.5>
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+#declare filename = concat("f/", str(clock, -4, 0), ".inc");
+
+#include filename
+
+#declare n1 = vcross(<0,1,0>, finalXY);
+#declare n2 = vcross(<0,1,0>, finalYX);
+
+intersection {
+ sphere { O, 1 }
+ plane { -n1, 0 }
+ plane { n2, 0 }
+ pigment {
+ color rgb<0,0.4,0.1>
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+union {
+ XYkurve()
+ pigment {
+ color Red
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+union {
+ YXkurve()
+ pigment {
+ color Blue
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
diff --git a/vorlesungen/slides/7/images/drehung.inc b/vorlesungen/slides/7/images/drehung.inc
new file mode 100644
index 0000000..c9b4bb7
--- /dev/null
+++ b/vorlesungen/slides/7/images/drehung.inc
@@ -0,0 +1,142 @@
+//
+// common.inc
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.23;
+#declare O = <0, 0, 0>;
+#declare at = 0.02;
+
+camera {
+ location <8.5, 2, 6.5>
+ look_at <0, 0, 0>
+ right x * imagescale
+ up y * imagescale
+}
+
+//light_source {
+// <-14, 20, -50> color White
+// area_light <1,0,0> <0,0,1>, 10, 10
+// adaptive 1
+// jitter
+//}
+
+light_source {
+ <41, 20, 10> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro arrow(from, to, arrowthickness, c)
+#declare arrowdirection = vnormalize(to - from);
+#declare arrowlength = vlength(to - from);
+union {
+ sphere {
+ from, 1.0 * arrowthickness
+ }
+ cylinder {
+ from,
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ arrowthickness
+ }
+ cone {
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ 2 * arrowthickness,
+ to,
+ 0
+ }
+ pigment {
+ color c
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+#end
+#declare r = 1.0;
+
+arrow(< -r-0.2, 0.0, 0 >, < r+0.2, 0.0, 0.0 >, at, Gray)
+arrow(< 0.0, 0.0, -r-0.2>, < 0.0, 0.0, r+0.2 >, at, Gray)
+arrow(< 0.0, -r-0.2, 0 >, < 0.0, r+0.2, 0.0 >, at, Gray)
+
+#declare farbeX = rgb<1.0,0.2,0.6>;
+#declare farbeY = rgb<0.0,0.8,0.4>;
+#declare farbeZ = rgb<0.4,0.6,1.0>;
+
+#declare farbex = rgb<1.0,0.0,0.0>;
+#declare farbey = rgb<0.0,0.6,0.0>;
+#declare farbez = rgb<0.0,0.0,1.0>;
+
+#macro quadrant(X, Y, Z)
+ intersection {
+ sphere { O, 0.5 }
+ plane { -X, 0 }
+ plane { -Y, 0 }
+ plane { -Z, 0 }
+ pigment {
+ color rgb<1.0,0.6,0.2>
+ }
+ finish {
+ specular 0.95
+ metallic
+ }
+ }
+ arrow(O, X, 1.1*at, farbex)
+ arrow(O, Y, 1.1*at, farbey)
+ arrow(O, Z, 1.1*at, farbez)
+#end
+
+#macro drehung(X, Y, Z)
+// intersection {
+// sphere { O, 0.5 }
+// plane { -X, 0 }
+// plane { -Y, 0 }
+// plane { -Z, 0 }
+// pigment {
+// color Gray
+// }
+// finish {
+// specular 0.95
+// metallic
+// }
+// }
+ arrow(O, 1.1*X, 0.9*at, farbeX)
+ arrow(O, 1.1*Y, 0.9*at, farbeY)
+ arrow(O, 1.1*Z, 0.9*at, farbeZ)
+#end
+
+#macro achse(H)
+ cylinder { H, -H, at
+ pigment {
+ color rgb<0.6,0.4,0.2>
+ }
+ finish {
+ specular 0.95
+ metallic
+ }
+ }
+ cylinder { 0.003 * H, -0.003 * H, 1
+ pigment {
+ color rgbt<0.6,0.4,0.2,0.5>
+ }
+ finish {
+ specular 0.95
+ metallic
+ }
+ }
+#end
diff --git a/vorlesungen/slides/7/images/interpolation.ini b/vorlesungen/slides/7/images/interpolation.ini
new file mode 100644
index 0000000..f07c079
--- /dev/null
+++ b/vorlesungen/slides/7/images/interpolation.ini
@@ -0,0 +1,8 @@
+Input_File_Name=interpolation.pov
+Initial_Frame=0
+Final_Frame=50
+Initial_Clock=0
+Final_Clock=50
+Cyclic_Animation=off
+Pause_when_Done=off
+
diff --git a/vorlesungen/slides/7/images/interpolation.m b/vorlesungen/slides/7/images/interpolation.m
new file mode 100644
index 0000000..31554e8
--- /dev/null
+++ b/vorlesungen/slides/7/images/interpolation.m
@@ -0,0 +1,54 @@
+#
+# interpolation.m
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+global N;
+N = 50;
+global A;
+global B;
+
+A = (pi / 2) * [
+ 0, 0, 0;
+ 0, 0, -1;
+ 0, 1, 0
+];
+g0 = expm(A)
+
+B = (pi / 2) * [
+ 0, 0, 1;
+ 0, 0, 0;
+ -1, 0, 0
+];
+g1 = expm(B)
+
+function retval = g(t)
+ global A;
+ global B;
+ retval = expm((1-t)*A+t*B);
+endfunction
+
+function dreibein(fn, M, funktion)
+ fprintf(fn, "%s(<%.4f,%.4f,%.4f>, <%.4f,%.4f,%.4f>, <%.4f,%.4f,%.4f>)\n",
+ funktion,
+ M(1,1), M(3,1), M(2,1),
+ M(1,2), M(3,2), M(2,2),
+ M(1,3), M(3,3), M(2,3));
+endfunction
+
+G = g1 * inverse(g0);
+[V, lambda] = eig(G);
+H = real(V(:,3));
+
+D = logm(g1*inverse(g0));
+
+for i = (0:N)
+ filename = sprintf("dreibein/d%03d.inc", i);
+ fn = fopen(filename, "w");
+ t = i/N;
+ dreibein(fn, g(t), "quadrant");
+ dreibein(fn, expm(t*D)*g0, "drehung");
+ fprintf(fn, "achse(<%.4f,%.4f,%.4f>)\n", H(1,1), H(3,1), H(2,1));
+ fclose(fn);
+endfor
+
diff --git a/vorlesungen/slides/7/images/interpolation.pov b/vorlesungen/slides/7/images/interpolation.pov
new file mode 100644
index 0000000..71e0257
--- /dev/null
+++ b/vorlesungen/slides/7/images/interpolation.pov
@@ -0,0 +1,10 @@
+//
+// commutator.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#include "drehung.inc"
+
+#declare filename = concat("dreibein/d", str(clock, -3, 0), ".inc");
+#include filename
+
diff --git a/vorlesungen/slides/7/images/rodriguez.jpg b/vorlesungen/slides/7/images/rodriguez.jpg
new file mode 100644
index 0000000..5c49700
--- /dev/null
+++ b/vorlesungen/slides/7/images/rodriguez.jpg
Binary files differ
diff --git a/vorlesungen/slides/7/images/rodriguez.png b/vorlesungen/slides/7/images/rodriguez.png
new file mode 100644
index 0000000..6d9e9e4
--- /dev/null
+++ b/vorlesungen/slides/7/images/rodriguez.png
Binary files differ
diff --git a/vorlesungen/slides/7/images/rodriguez.pov b/vorlesungen/slides/7/images/rodriguez.pov
new file mode 100644
index 0000000..07aec19
--- /dev/null
+++ b/vorlesungen/slides/7/images/rodriguez.pov
@@ -0,0 +1,118 @@
+//
+// rodriguez.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#version 3.7;
+#include "colors.inc"
+
+global_settings {
+ assumed_gamma 1
+}
+
+#declare imagescale = 0.020;
+#declare O = <0, 0, 0>;
+#declare at = 0.015;
+
+camera {
+ location <8, 15, -50>
+ look_at <0.1, 0.475, 0>
+ right 16/9 * x * imagescale
+ up y * imagescale
+}
+
+light_source {
+ <-4, 20, -50> color White
+ area_light <1,0,0> <0,0,1>, 10, 10
+ adaptive 1
+ jitter
+}
+
+sky_sphere {
+ pigment {
+ color rgb<1,1,1>
+ }
+}
+
+#macro arrow(from, to, arrowthickness, c)
+#declare arrowdirection = vnormalize(to - from);
+#declare arrowlength = vlength(to - from);
+union {
+ sphere {
+ from, 1.1 * arrowthickness
+ }
+ cylinder {
+ from,
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ arrowthickness
+ }
+ cone {
+ from + (arrowlength - 5 * arrowthickness) * arrowdirection,
+ 2 * arrowthickness,
+ to,
+ 0
+ }
+ pigment {
+ color c
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+#end
+
+#declare K = vnormalize(<0.2,1,0.1>);
+#declare X = vnormalize(<1.1,1,-1.2>);
+#declare O = <0,0,0>;
+
+#declare r = vlength(vcross(K, X)) / vlength(K);
+
+#declare l = 1.0;
+
+arrow(< -l, 0, 0 >, < l, 0, 0 >, at, White)
+arrow(< 0, 0, -l >, < 0, 0, l >, at, White)
+arrow(< 0, -l, 0 >, < 0, l, 0 >, at, White)
+
+arrow(O, X, at, Red)
+arrow(O, K, at, Blue)
+
+#macro punkt(H,phi)
+ ((H-vdot(K,H)*K)*cos(phi) + vcross(K,H)*sin(phi) + vdot(K,X)*K)
+#end
+
+cone { vdot(K, X) * K, r, O, 0
+ pigment {
+ color rgbt<0.6,0.6,0.6,0.5>
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+
+union {
+ #declare phistep = pi / 100;
+ #declare phi = 0;
+ #while (phi < 2 * pi - phistep/2)
+ sphere { punkt(K, phi), at/2 }
+ cylinder {
+ punkt(X, phi),
+ punkt(X, phi + phistep),
+ at/2
+ }
+ #declare phi = phi + phistep;
+ #end
+ pigment {
+ color Orange
+ }
+ finish {
+ specular 0.9
+ metallic
+ }
+}
+
+arrow(vdot(K,X)*K, punkt(X, 0), at, Yellow)
+#declare Darkgreen = rgb<0,0.5,0>;
+arrow(vdot(K,X)*K, punkt(X, pi/2), at, Darkgreen)
diff --git a/vorlesungen/slides/7/images/test.pov b/vorlesungen/slides/7/images/test.pov
new file mode 100644
index 0000000..5707be1
--- /dev/null
+++ b/vorlesungen/slides/7/images/test.pov
@@ -0,0 +1,7 @@
+//
+// test.pov
+//
+// (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+//
+#include "drehung.inc"
+#include "dreibein/d025.inc"
diff --git a/vorlesungen/slides/7/integration.tex b/vorlesungen/slides/7/integration.tex
new file mode 100644
index 0000000..525e6de
--- /dev/null
+++ b/vorlesungen/slides/7/integration.tex
@@ -0,0 +1,66 @@
+%
+% integration.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Invariante Integration}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Koordinatenwechsel}
+Die Koordinatentransformation
+$f\colon\mathbb{R}^n\to\mathbb{R}^n:x\to y$
+hat die Ableitungsmatrix
+\[
+t_{ij}
+=
+\frac{\partial y_i}{\partial x_j}
+\]
+\uncover<2->{%
+$n$-faches Integral
+\begin{gather*}
+\int\dots\int
+h(f(x))
+\det
+\biggl(
+\frac{\partial y_i}{\partial x_j}
+\biggr)
+\,dx_1\,\dots dx_n
+\\
+=
+\int\dots\int
+h(y)
+\,dy_1\,\dots dy_n
+\end{gather*}}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{auf einer Lie-Gruppe}
+Koordinatenwechsel sind Multiplikationen mit einer
+Matrix $g\in G$
+\end{block}}
+\uncover<4->{%
+\begin{block}{Volumenelement in $I$}
+Man muss nur das Volumenelement in $I$ in einem beliebigen
+Koordinatensystem definieren:
+\[
+dV = dy_1\,\dots\,dy_n
+\]
+\end{block}}
+\uncover<5->{%
+\begin{block}{Volumenelement in $g$}
+\[
+\text{``\strut}g\cdot dV\text{\strut''}
+=
+\det(g) \, dy_1\,\dots\,dy_n
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/interpolation.tex b/vorlesungen/slides/7/interpolation.tex
new file mode 100644
index 0000000..249ee26
--- /dev/null
+++ b/vorlesungen/slides/7/interpolation.tex
@@ -0,0 +1,112 @@
+%
+% interpolation.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\bild#1#2{\only<#1|handout:0>{\includegraphics[width=\textwidth]{../slides/7/images/interpolation/#2.png}}}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Interpolation}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Aufgabe}
+Finde einen Weg $g(t)\in \operatorname{SO}(3)$ zwischen
+$g_0\in\operatorname{SO}(3)$
+und
+$g_1\in\operatorname{SO}(3)$:
+\[
+g_0=g(0)
+\quad\wedge\quad
+g_1=g(1)
+\]
+\end{block}
+\vspace{-10pt}
+\uncover<2->{%
+\begin{block}{Lösung}
+$g_i=\exp(A_i) \uncover<3->{\Rightarrow A_i^t=-A_i}$
+\begin{align*}
+\uncover<4->{A(t) &= (1-t)A_0 + tA_1}\uncover<8->{ \in \operatorname{so}(3)}
+\\
+\uncover<5->{A(t)^t
+&=(1-t)A_0^t + tA_1^t}
+\\
+&\uncover<6->{=
+-(1-t)A_0 - t A_1}
+\uncover<7->{=
+-A(t)}
+\\
+\uncover<9->{\Rightarrow
+g(t) &= \exp A(t) \in \operatorname{SO}(3)}
+\\
+&\uncover<10->{\ne
+\exp (\log(g_1g_0^{-1})t) g_0}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<11->{%
+\begin{block}{Animation}
+\centering
+\ifthenelse{\boolean{presentation}}{
+\bild{12}{i00}
+\bild{13}{i01}
+\bild{14}{i02}
+\bild{15}{i03}
+\bild{16}{i04}
+\bild{17}{i05}
+\bild{18}{i06}
+\bild{19}{i07}
+\bild{20}{i08}
+\bild{21}{i09}
+\bild{22}{i10}
+\bild{23}{i11}
+\bild{24}{i12}
+\bild{25}{i13}
+\bild{26}{i14}
+\bild{27}{i15}
+\bild{28}{i16}
+\bild{29}{i17}
+\bild{30}{i18}
+\bild{31}{i19}
+\bild{32}{i20}
+\bild{33}{i21}
+\bild{34}{i22}
+\bild{35}{i23}
+\bild{36}{i24}
+\bild{37}{i25}
+\bild{38}{i26}
+\bild{39}{i27}
+\bild{40}{i28}
+\bild{41}{i29}
+\bild{42}{i30}
+\bild{43}{i31}
+\bild{44}{i32}
+\bild{45}{i33}
+\bild{46}{i34}
+\bild{47}{i35}
+\bild{48}{i36}
+\bild{49}{i37}
+\bild{50}{i38}
+\bild{51}{i39}
+\bild{52}{i40}
+\bild{53}{i41}
+\bild{54}{i42}
+\bild{55}{i43}
+\bild{56}{i44}
+\bild{57}{i45}
+\bild{58}{i46}
+\bild{59}{i47}
+\bild{60}{i48}
+\bild{61}{i49}
+\bild{62}{i50}
+}{
+\includegraphics[width=\textwidth]{../slides/7/images/interpolation/i25.png}
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/kommutator.tex b/vorlesungen/slides/7/kommutator.tex
new file mode 100644
index 0000000..84bf034
--- /dev/null
+++ b/vorlesungen/slides/7/kommutator.tex
@@ -0,0 +1,166 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Kommutator in $\operatorname{SO}(3)$}
+\vspace{-20pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\t{14.0cm}
+\ifthenelse{\boolean{presentation}}{
+\only<1>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c01.jpg}};}
+\only<2>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c02.jpg}};}
+\only<3>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c03.jpg}};}
+\only<4>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c04.jpg}};}
+\only<5>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c05.jpg}};}
+\only<6>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c06.jpg}};}
+\only<7>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c07.jpg}};}
+\only<8>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c08.jpg}};}
+\only<9>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c09.jpg}};}
+\only<10>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c10.jpg}};}
+\only<11>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c11.jpg}};}
+\only<12>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c12.jpg}};}
+\only<13>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c13.jpg}};}
+\only<14>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c14.jpg}};}
+\only<15>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c15.jpg}};}
+\only<16>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c16.jpg}};}
+\only<17>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c17.jpg}};}
+\only<18>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c18.jpg}};}
+\only<19>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c19.jpg}};}
+\only<20>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c20.jpg}};}
+\only<21>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c21.jpg}};}
+\only<22>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c22.jpg}};}
+\only<23>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c23.jpg}};}
+\only<24>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c24.jpg}};}
+\only<25>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c25.jpg}};}
+\only<26>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c26.jpg}};}
+\only<27>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c27.jpg}};}
+\only<28>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c28.jpg}};}
+\only<29>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c29.jpg}};}
+\only<30>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c30.jpg}};}
+\only<31>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c31.jpg}};}
+\only<32>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c32.jpg}};}
+\only<33>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c33.jpg}};}
+\only<34>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c34.jpg}};}
+\only<35>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c35.jpg}};}
+\only<36>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c36.jpg}};}
+\only<37>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c37.jpg}};}
+\only<38>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c38.jpg}};}
+\only<39>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c39.jpg}};}
+\only<40>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c40.jpg}};}
+\only<41>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c41.jpg}};}
+\only<42>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c42.jpg}};}
+\only<43>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c43.jpg}};}
+\only<44>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c44.jpg}};}
+\only<45>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c45.jpg}};}
+\only<46>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c46.jpg}};}
+\only<47>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c47.jpg}};}
+\only<48>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c48.jpg}};}
+\only<49>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c49.jpg}};}
+\only<50>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c50.jpg}};}
+\only<51>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c51.jpg}};}
+\only<52>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c52.jpg}};}
+\only<53>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c53.jpg}};}
+\only<54>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c54.jpg}};}
+\only<55>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c55.jpg}};}
+\only<56>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c56.jpg}};}
+\only<57>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c57.jpg}};}
+\only<58>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c58.jpg}};}
+\only<59>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c59.jpg}};}
+}{}
+\only<60>{\node at (0,0) {
+\includegraphics[width=\t]{../slides/7/images/c/c60.jpg}};}
+\coordinate (A) at (-0.3,3);
+\coordinate (B) at (-1.1,2);
+\coordinate (C) at (-2.1,-1.2);
+\draw[->,color=red,line width=1.4pt]
+ (A)
+ to[out=-143,in=60]
+ (B)
+ to[out=-120,in=80]
+ (C);
+%\fill[color=red] (B) circle[radius=0.08];
+\node[color=red] at (-1.2,1.5) [above left] {$D_{x,\alpha}$};
+\coordinate (D) at (0.3,3.2);
+\coordinate (E) at (1.8,2.8);
+\coordinate (F) at (5.2,-0.3);
+\draw[->,color=blue,line width=1.4pt]
+ (D)
+ to[out=-10,in=157]
+ (E)
+ to[out=-23,in=120]
+ (F);
+\fill[color=blue] (E) circle[radius=0.08];
+\node[color=blue] at (2.4,2.4) [above right] {$D_{y,\beta}$};
+\draw[->,color=darkgreen,line width=1.4pt]
+ (0.7,-3.1) to[out=1,in=-160] (3.9,-2.6);
+\node[color=darkgreen] at (2.5,-3.4) {$D_{z,\gamma}$};
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/kurven.tex b/vorlesungen/slides/7/kurven.tex
new file mode 100644
index 0000000..e0690eb
--- /dev/null
+++ b/vorlesungen/slides/7/kurven.tex
@@ -0,0 +1,104 @@
+%
+% kurven.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Kurven und Tangenten}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Kurven}
+Kurve in $\mathbb{R}^n$:
+\vspace{-12pt}
+\[
+\gamma
+\colon
+I=[a,b] \to \mathbb{R}^n
+:
+t\mapsto \gamma(t)
+\uncover<2->{
+=
+\begin{pmatrix}
+x_1(t)\\
+x_2(t)\\
+\vdots\\
+x_n(t)
+\end{pmatrix}
+}
+\]
+\vspace{-15pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (A) at (1,0.5);
+\coordinate (B) at (4,0.5);
+\coordinate (C) at (2,2.2);
+\coordinate (D) at (5,2);
+\coordinate (E) at ($(C)+(80:2)$);
+
+\draw[color=red,line width=1.4pt]
+ (A) to[in=-160] (B) to[out=20,in=-100] (C) to[out=80] (D);
+\fill[color=red] (C) circle[radius=0.06];
+\node[color=red] at (C) [left] {$\gamma(t)$};
+
+\uncover<4->{
+ \draw[->,color=blue,line width=1.4pt,shorten <= 0.06cm] (C) -- (E);
+ \node[color=blue] at (E) [right] {$\dot{\gamma}(t)$};
+}
+
+\uncover<2->{
+ \draw[->] (-0.1,0) -- (5.9,0) coordinate[label={$x_1$}];
+ \draw[->] (0,-0.1) -- (0,4.3) coordinate[label={right:$x_2$}];
+}
+\end{tikzpicture}
+\end{center}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Tangenten}
+Ableitung
+\[
+\frac{d}{dt}\gamma(t)
+=
+\dot{\gamma}(t)
+=
+\begin{pmatrix}
+\dot{x}_1(t)\\
+\dot{x}_2(t)\\
+\vdots\\
+\dot{x}_n(t)
+\end{pmatrix}
+\]
+\uncover<5->{%
+Lineare Approximation:
+\[
+\gamma(t+h)
+=
+\gamma(t)
++
+\dot{\gamma}(t) \cdot h
++
+o(h)
+\]}%
+\vspace{-10pt}
+\begin{itemize}
+\item<6->
+Sinnvoll, weil sowohl $\gamma(t)$ und $\dot{\gamma}(t)$
+in $\mathbb{R}^n$ liegen
+\item<7->
+Gilt auch für
+\[
+\operatorname{GL}_n(\mathbb{R})
+\uncover<8->{\subset M_n(\mathbb{R})}
+\uncover<9->{ = \mathbb{R}^{n\times n}}
+\]
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/liealgbeispiel.tex b/vorlesungen/slides/7/liealgbeispiel.tex
new file mode 100644
index 0000000..a17de40
--- /dev/null
+++ b/vorlesungen/slides/7/liealgbeispiel.tex
@@ -0,0 +1,78 @@
+%
+% liealgbeispiel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lie-Algebra Beispiele}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{$\operatorname{sl}_2(\mathbb{R})$}
+Spurlose Matrizen:
+\[
+\operatorname{sl}_2(\mathbb{R})
+=
+\{A\in M_n(\mathbb{R})\;|\; \operatorname{Spur}A=0\}
+\]
+\end{block}
+\begin{block}{Lie-Algebra?}
+Nachrechnen: $[A,B]\in \operatorname{sl}_2(\mathbb{R})$:
+\begin{align*}
+\operatorname{Spur}([A,B])
+&=
+\operatorname{Spur}(AB-BA)
+\\
+&=
+\operatorname{Spur}(AB)-\operatorname{Spur}(BA)
+\\
+&=
+\operatorname{Spur}(AB)-\operatorname{Spur}(AB)
+\\
+&=0
+\end{align*}
+$\Rightarrow$ $\operatorname{sl}_2(\mathbb{R})$ ist eine Lie-Algebra
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{$\operatorname{so}(n)$}
+Antisymmetrische Matrizen:
+\[
+\operatorname{so}(n)
+=
+\{A\in M_n(\mathbb{R})
+\;|\;
+A=-A^t
+\}
+\]
+\end{block}
+\begin{block}{Lie-Algebra?}
+Nachrechnen: $A,B\in \operatorname{so}(n)$
+\begin{align*}
+[A,B]^t
+&=
+(AB-BA)^t
+\\
+&=
+B^tA^t - A^tB^t
+\\
+&=
+(-B)(-A)-(-A)(-B)
+\\
+&=
+BA-AB
+=
+-(AB-BA)
+\\
+&=
+-[A,B]
+\end{align*}
+$\Rightarrow$ $\operatorname{so}(n)$ ist eine Lie-Algebra
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/liealgebra.tex b/vorlesungen/slides/7/liealgebra.tex
new file mode 100644
index 0000000..574467b
--- /dev/null
+++ b/vorlesungen/slides/7/liealgebra.tex
@@ -0,0 +1,85 @@
+%
+% liealgebra.tex -- Lie-Algebra
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lie-Algebra}
+\ifthenelse{\boolean{presentation}}{\vspace{-15pt}}{\vspace{-8pt}}
+\begin{block}{Vektorraum}
+Tangentialvektoren im Punkt $I$:
+\begin{center}
+\begin{tabular}{>{$}c<{$}|p{6cm}|>{$}c<{$}}
+\text{Lie-Gruppe $G$}&Tangentialvektoren&\text{Lie-Algebra $LG$} \\
+\hline
+\uncover<2->{
+\operatorname{GL}_n(\mathbb{R})
+& beliebige Matrizen
+& M_n(\mathbb{R})
+}
+\\
+\uncover<3->{
+\operatorname{O(n)}
+& antisymmetrische Matrizen
+& \operatorname{o}(n)
+}
+\\
+\uncover<4->{
+\operatorname{SL}_n(\mathbb{R})
+& spurlose Matrizen
+& \operatorname{sl}_2(\mathbb{R})
+}
+\\
+\uncover<5->{
+\operatorname{U(n)}
+& antihermitesche Matrizen
+& \operatorname{u}(n)
+}
+\\
+\uncover<6->{
+\operatorname{SU(n)}
+& spurlose, antihermitesche Matrizen
+& \operatorname{su}(n)
+}
+\end{tabular}
+\end{center}
+\end{block}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\uncover<7->{%
+\begin{block}{Lie-Klammer}
+Kommutator: $[A,B] = AB-BA$
+\end{block}}
+\uncover<8->{%
+\begin{block}{Nachprüfen}
+$[A,B]\in LG$
+für $A,B\in LG$
+\end{block}}
+\end{column}
+\begin{column}{0.56\textwidth}
+\uncover<9->{%
+\begin{block}{Algebraische Eigenschaften}
+\begin{itemize}
+\item<10-> antisymmetrisch: $[A,B]=-[B,A]$
+\item<11-> Jacobi-Identität
+\[
+[A,[B,C]]+
+[B,[C,A]]+
+[C,[A,B]]
+= 0
+\]
+\end{itemize}
+\vspace{-13pt}
+\uncover<12->{%
+{\usebeamercolor[fg]{title}
+Beispiel:} $\mathbb{R}^3$ mit Vektorprodukt $\mathstrut = \operatorname{so}(3)$
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/logarithmus.tex b/vorlesungen/slides/7/logarithmus.tex
new file mode 100644
index 0000000..58065d7
--- /dev/null
+++ b/vorlesungen/slides/7/logarithmus.tex
@@ -0,0 +1,82 @@
+%
+% logarithmus.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Logarithmus}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Taylor-Reihe}
+\begin{align*}
+\frac{d}{dx}\log(1+x)
+&= \frac{1}{1+x}
+\\
+\uncover<2->{
+\Rightarrow\quad
+\log (1+x)
+&=
+\int_0^x \frac{1}{1+t}\,dt}
+\end{align*}
+\begin{align*}
+\uncover<3->{\frac{1}{1+t}
+&=
+1-t+t^2-t^3+\dots}
+\\
+\uncover<4->{\log(1+x)
+&=\int_0^x
+1-t+t^2-t^3+\dots
+\,dt}
+\\
+&\only<5>{=
+x-\frac{x^2}{2}  + \frac{x^3}{3} - \frac{x^4}4 + \dots}
+\uncover<6->{=
+\sum_{k=1}^\infty (-1)^{k-1}\frac{x^k}{k}}
+\\
+\uncover<7->{\log (I+A)
+&=
+\sum_{k=1}^\infty \frac{(-1)^{k-1}}{k}A^k}
+\end{align*}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<8->{%
+\begin{block}{Konvergenzradius}
+Polstelle bei $x=-1$
+\(
+\varrho =1
+\)
+\end{block}}
+\vspace{-5pt}
+\begin{block}{\uncover<9->{Alternative: Spektraltheorie}}
+\uncover<9->{
+Logarithmus $\log z$ in $\{z\in\mathbb{C}\;|\; \neg(\Re z\le 0\wedge\Im z=0)\}$
+definiert:}
+\vspace{-15pt}
+\uncover<8->{
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\uncover<9->{
+ \fill[color=red!20] (-2.1,-2.1) rectangle (2.5,2.1);
+}
+\draw[->] (-2.2,0) -- (2.9,0) coordinate[label={$\Re z$}];
+\draw[->] (0,-2.2) -- (0,2.4) coordinate[label={right:$\Im z$}];
+\fill[color=blue!40,opacity=0.5] (1,0) circle[radius=1];
+\draw[color=blue] (1,0) circle[radius=1];
+\uncover<9->{
+ \draw[color=white,line width=5pt] (-2.2,0) -- (0.1,0);
+}
+\fill (1,0) circle[radius=0.08];
+\node at (2.3,1.9) {$\mathbb{C}$};
+\node at (1,0) [below] {$1$};
+\end{tikzpicture}
+\end{center}}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/mannigfaltigkeit.tex b/vorlesungen/slides/7/mannigfaltigkeit.tex
new file mode 100644
index 0000000..077dc9d
--- /dev/null
+++ b/vorlesungen/slides/7/mannigfaltigkeit.tex
@@ -0,0 +1,46 @@
+%
+% mannigfaltigkeit.tex -- Mannigfaltigkeit
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Mannigfaltigkeit}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/60-gruppen/images/karten.pdf}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+\begin{itemize}
+\item<2-> Karte: Abbildung $\varphi_\alpha\colon U_\alpha\to\mathbb{R}^n$
+\item<3-> differenzierbare Kartenwechsel: Koordinatenumrechnung im Überschneidungsgebiet
+\[
+\varphi_\beta\circ\varphi_\alpha^{-1}
+\colon
+\varphi_\alpha(U_\alpha\cap U_\beta)
+\to
+\varphi_\beta(U_\alpha\cap U_\beta)
+\]
+\item<4-> Atlas: Menge von Karten, die die ganze Mannigfaltigkeit überdecken
+\end{itemize}
+\end{block}
+\vspace{-7pt}
+\uncover<5->{%
+\begin{block}{Lokal$\mathstrut\cong\mathbb{R}^n$}
+Differenzierbare Mannigfaltigkeiten sehen lokal wie $\mathbb{R}^n$ aus
+\end{block}}
+\vspace{-3pt}
+\uncover<6->{%
+\begin{block}{Lie-Gruppe}
+Gruppe und Mannigfaltigkeit
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/parameter.tex b/vorlesungen/slides/7/parameter.tex
new file mode 100644
index 0000000..f3579a3
--- /dev/null
+++ b/vorlesungen/slides/7/parameter.tex
@@ -0,0 +1,107 @@
+%
+% parameter.tex -- Parametrisierung der Matrizen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\definecolor{darkyellow}{rgb}{1,0.8,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Drehungen Parametrisieren}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.4\textwidth}
+\begin{block}{Drehung um Achsen}
+%\vspace{-12pt}
+\begin{align*}
+\uncover<2->{
+D_{x,\alpha}
+&=
+\begin{pmatrix}
+1&0&0\\0&\cos\alpha&-\sin\alpha\\0&\sin\alpha&\cos\alpha
+\end{pmatrix}
+}
+\\
+\uncover<3->{
+D_{y,\beta}
+&=
+\begin{pmatrix}
+\cos\beta&0&\sin\beta\\0&1&0\\-\sin\beta&0&\cos\beta
+\end{pmatrix}
+}
+\\
+\uncover<4->{
+D_{z,\gamma}
+&=
+\begin{pmatrix}
+\cos\gamma&-\sin\gamma&0\\\sin\gamma&\cos\gamma&0\\0&0&1
+\end{pmatrix}
+}
+\intertext{\uncover<5->{beliebige Drehung:}}
+\uncover<5->{
+D
+&=
+D_{x,\alpha}
+D_{y,\beta}
+D_{z,\gamma}
+}
+\end{align*}
+\end{block}
+\end{column}
+\begin{column}{0.56\textwidth}
+\uncover<6->{%
+\begin{block}{Drehung um $\vec{\omega}\in\mathbb{R}^3$: 3-dimensional}
+\uncover<7->{%
+$\omega=|\vec{\omega}|=\mathstrut$Drehwinkel
+}
+\\
+\uncover<8->{%
+$\vec{k}=\vec{\omega}^0=\mathstrut$Drehachse
+}
+\[
+\uncover<9->{
+{\color{red}\vec{x}}
+\mapsto
+}
+\uncover<10->{
+({\color{darkyellow}\vec{x} -(\vec{k}\cdot\vec{x})\vec{k}})
+\cos\omega
++
+}
+\uncover<11->{
+({\color{darkgreen}\vec{x}\times\vec{k}}) \sin\omega
++
+}
+\uncover<9->{
+{\color{blue}\vec{k}} (\vec{k}\cdot\vec{x})
+}
+\]
+\vspace{-40pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\uncover<9->{
+ \node at (0,0)
+ {\includegraphics[width=\textwidth]{../slides/7/images/rodriguez.jpg}};
+ \node[color=red] at (1.6,-0.9) {$\vec{x}$};
+ \node[color=blue] at (0.5,2) {$\vec{k}$};
+}
+\uncover<11->{
+ \node[color=darkgreen] at (-3,1.1) {$\vec{x}\times\vec{k}$};
+}
+\uncover<10->{
+ \node[color=yellow] at (2.2,-0.2)
+ {$\vec{x}-(\vec{x}\cdot\vec{k})\vec{k}$};
+}
+\end{tikzpicture}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-15pt}
+\uncover<5->{%
+{\usebeamercolor[fg]{title}Dimension:} $\operatorname{SO}(3)$ ist eine
+dreidimensionale Gruppe}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/qdreh.tex b/vorlesungen/slides/7/qdreh.tex
new file mode 100644
index 0000000..8ed512a
--- /dev/null
+++ b/vorlesungen/slides/7/qdreh.tex
@@ -0,0 +1,110 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Drehungen mit Quaternionen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Drehung?}
+Abbildung von $\vec{x}$ mit $\operatorname{Re}\vec{x}=0$:
+\[
+\varrho_{q}
+\colon
+\vec{x}\mapsto q\vec{x}q^{-1} = q\vec{x}\overline{q}
+\]
+\end{block}
+\uncover<2->{%
+\begin{block}{Achse}
+\begin{align*}
+\varrho_q(q)
+&=
+qq\overline{q}
+\uncover<3->{=
+q(qq^{-1})}
+\uncover<4->{=
+q}
+\end{align*}
+\end{block}}
+\uncover<4->{%
+\begin{block}{Norm}
+\begin{align*}
+|\varrho_q(\vec{x})|^2
+&=
+q\vec{x}\overline{q}\overline{(q\vec{x}\overline{q})}
+\uncover<5->{=
+q\vec{x}\overline{q}\overline{\overline{q}}\overline{\vec{x}}\overline{q}
+}
+\\
+&\uncover<6->{=
+q\vec{x}(\overline{q}q)\overline{\vec{x}}\overline{q}}
+\uncover<7->{=
+q(\vec{x}\overline{\vec{x}})\overline{q}}
+\uncover<8->{=
+q\overline{q}|\vec{x}|^2}
+\\
+&\uncover<9->{=
+|\vec{x}|^2}
+\end{align*}
+\uncover<10->{%
+$\Rightarrow$ $\varrho_q\in\operatorname{O}(3)$}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<11->{%
+\begin{block}{Drehung!}
+$\vec{a},\vec{b},\vec{n}$ bilden ein on.~Rechtssystem
+\begin{align*}
+\uncover<12->{
+qa
+&=
+c\vec{a}+s\vec{n}\times \vec{a}}
+\uncover<13->{=
+c\vec{a} + s\vec{b}}
+\\
+\uncover<14->{
+q\vec{a}\overline{q}
+&=
+(c\vec{a}+s\vec{b}) c
+-(c\vec{a}+s\vec{b})\times s\vec{n}}
+\\
+&\uncover<15->{=
+c^2 \vec{a}+ sc\vec{b}
++sc\vec{b} - s^2 \vec{a}}
+\\
+&\uncover<16->{=
+\vec{a} \cos\alpha +\vec{b} \sin\alpha }
+\end{align*}
+\vspace{-5pt}
+\uncover<17->{wegen
+%\vspace{-5pt}
+\[
+\begin{aligned}
+\cos\alpha &= \cos^2\frac{\alpha}2 - \sin^2\frac{\alpha}2 &&=c^2-s^2
+\\
+\sin\alpha &= 2\cos\frac{\alpha}2\sin\frac{\alpha}2&&=2cs
+\end{aligned}\]}
+\end{block}}
+\vspace{-18pt}
+\uncover<18->{%
+\begin{block}{Matrix}
+\[
+D
+=
+\tiny
+\begin{pmatrix}
+1-2(q_2^2+q_3^2)&-2q_0q_3+2q_1q_2&-2q_0q_2+2q_1q_3\\
+ 2q_0q_3+2q_1q_2&1-2(q_1^2+q_3^2)&-2q_0q_1+2q_2q_3\\
+-2q_0q_2+2q_1q_3& 2q_0q_1+2q_2q_3&1-2(q_1^2+q_2^2)
+\end{pmatrix}
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/quaternionen.tex b/vorlesungen/slides/7/quaternionen.tex
new file mode 100644
index 0000000..f526366
--- /dev/null
+++ b/vorlesungen/slides/7/quaternionen.tex
@@ -0,0 +1,74 @@
+%
+% quaternionen.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Quaternionen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Quaternionen}
+$4$-dimensionaler $\mathbb{R}$-Vektorraum
+\[
+\mathbb{H}
+=
+\langle 1,i,j,k\rangle_{\mathbb{R}}
+\]
+mit Rechenregeln
+\[
+i^2=j^2=k^2=ijk=-1
+\]
+$x=x_0+x_1i+x_2j+x_3k\in\mathbb{H}$
+\begin{itemize}
+\item<2-> Realteil: $\operatorname{Re}x=x_0$
+\item<3-> Vektorteil: $\operatorname{Im}x=x_1i+x_2j+x_3k$
+\item<4-> Konjugation: $\overline{x}=\operatorname{Re}x-\operatorname{Im}x$
+\item<5-> Norm: $|x|^2 = x\overline{x} = x_0^2+x_1^2+x_2^2+x_3^2$
+\item<6-> Inverse: $x^{1}= \overline{x}/x\overline{x}$
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.50\textwidth}
+\uncover<7->{%
+\begin{block}{Skalarprodukt und Vektorprodukt}
+\begin{align*}
+pq
+&=
+\operatorname{Re}p \operatorname{Re}q
+-
+\operatorname{Im}p\cdot \operatorname{Im}q
+\\
+&\phantom{=}
++
+\operatorname{Re}p\operatorname{Im}q
++
+\operatorname{Im}p\operatorname{Re}q
++
+\operatorname{Im}p\times\operatorname{Im}q
+\end{align*}
+\end{block}}
+\uncover<8->{%
+\begin{block}{Einheitsquaternionen}
+$q\in \mathbb{H}$, $|q|=1, q^{-1}=\overline{q}$
+\end{block}}
+\uncover<9->{%
+\begin{block}{Polardarstellung}
+\[
+q = \cos\frac{\alpha}2 + \vec{n} \sin\frac{\alpha}2
+\]
+\vspace{-8pt}
+\begin{itemize}
+\item<10->
+Drehmatrix: 9 Parameter, 6 Bedingungen
+\item<11->
+Quaternionen: 4 Parameter, 1 Bedingung
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/semi.tex b/vorlesungen/slides/7/semi.tex
new file mode 100644
index 0000000..cd974c9
--- /dev/null
+++ b/vorlesungen/slides/7/semi.tex
@@ -0,0 +1,117 @@
+%
+% semi.tex -- Beispiele: semidirekte Produkte
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Drehung/Skalierung und Verschiebung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Skalierung und Verschiebung}
+Gruppe $G=\{(e^s,t)\;|\;s,t\in\mathbb{R}\}$
+\\
+Wirkung auf $\mathbb{R}$:
+\[
+x\mapsto \underbrace{e^s\cdot x}_{\text{Skalierung}} \mathstrut+ t
+\]
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Drehung und Verschiebung}
+Gruppe
+$G=
+\{ (\alpha,\vec{t})
+\;|\;
+\alpha\in\mathbb{R},\vec{t}\in\mathbb{R}^2
+\}$
+Wirkung auf $\mathbb{R}^2$:
+\[
+\vec{x}\mapsto \underbrace{D_\alpha \vec{x}}_{\text{Drehung}} \mathstrut+ \vec{t}
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-15pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Verknüpfung}
+%\vspace{-15pt}
+\begin{align*}
+(e^{s_1},t_1)(e^{s_2},t_2)x
+&\uncover<4->{=
+(e^{s_1},t_1)(e^{s_2}x+t_2)}
+\\
+&\uncover<5->{=
+e^{s_1+s_2}x + e^{s_1}t_2+t_1}
+\\
+\uncover<6->{
+(e^{s_1},t_1)(e^{s_2},t_2)
+&=
+(e^{s_1}e^{s_2},t_1+e^{s_1}t_2)}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Verknüpfung}
+%\vspace{-15pt}
+\begin{align*}
+(\alpha_1,\vec{t}_1)
+(\alpha_2,\vec{t}_2)
+\vec{x}
+&\uncover<8->{=
+(\alpha_1,\vec{t}_1)(D_{\alpha_2}\vec{x}+\vec{t}_2)}
+\\
+&\uncover<9->{=D_{\alpha_1+\alpha_2}\vec{x} + D_{\alpha_1}\vec{t}_2+\vec{t}_1}
+\\
+\uncover<10->{
+(\alpha_1,\vec{t}_1)
+(\alpha_2,\vec{t}_2)
+&=
+(\alpha_1+\alpha_2, D_{\alpha_1}\vec{t}_2+\vec{t}_1)
+}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\vspace{-10pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\uncover<11->{%
+\begin{block}{Matrixschreibweise}
+%\vspace{-12pt}
+\[
+g=(e^s,t) =
+\begin{pmatrix}
+e^s&t\\
+0&1
+\end{pmatrix}
+\quad\text{auf}\quad
+\begin{pmatrix}x\\1\end{pmatrix}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<12->{%
+\begin{block}{Matrixschreibweise}
+%\vspace{-12pt}
+\[
+g=(\alpha,\vec{t}) =
+\begin{pmatrix}
+D_{\alpha}&\vec{t}\\
+0&1
+\end{pmatrix}
+\quad\text{auf}\quad
+\begin{pmatrix}\vec{x}\\1\end{pmatrix}
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/sl2.tex b/vorlesungen/slides/7/sl2.tex
new file mode 100644
index 0000000..a65b4f6
--- /dev/null
+++ b/vorlesungen/slides/7/sl2.tex
@@ -0,0 +1,242 @@
+%
+% sl2.tex -- Beispiel: Parametrisierung von SL_2(R)
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t,fragile]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{$\operatorname{SL}_2(\mathbb{R})\subset\operatorname{GL}_n(\mathbb{R})$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.44\textwidth}
+\begin{block}{Determinante}
+\[
+A=\begin{pmatrix}
+a&b\\
+c&d
+\end{pmatrix}
+\;\Rightarrow\;
+\det A = ad-bc
+\]
+\end{block}
+\end{column}
+\begin{column}{0.52\textwidth}
+\begin{block}{Dimension}
+\[
+4\; \text{Variablen}
+-
+1\; \text{Bedingung}
+=
+3\; \text{Dimensionen}
+\]
+\end{block}
+\end{column}
+\end{columns}
+\vspace{-10pt}
+\uncover<3->{%
+\begin{columns}[t,onlytextwidth]
+\def\s{0.94}
+\begin{column}{0.33\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick,scale=\s]
+\begin{scope}
+ \clip (-2.1,-2.1) rectangle (2.3,2.3);
+ \fill[color=blue!20] (-1,-1) rectangle (1,1);
+ \foreach \x in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (\x,-3) -- (\x,3);
+ }
+ \foreach \y in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (-3,\y) -- (3,\y);
+ }
+ \ifthenelse{\boolean{presentation}}{
+ \foreach \d in {4,...,10}{
+ \only<\d>{
+ \pgfmathparse{1+(\d-4)/10}
+ \xdef\t{\pgfmathresult}
+ \fill[color=red!40,opacity=0.5]
+ ({-\t},{-1/\t}) rectangle (\t,{1/\t});
+ \foreach \x in {-2,...,2}{
+ \draw[color=red,line width=0.3pt]
+ ({\x*\t},-3) -- ({\x*\t},3);
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (-3,{\y/\t}) -- (3,{\y/\t});
+ }
+ }
+ }
+ }{}
+ \uncover<11->{
+ \xdef\t{1.6}
+ \fill[color=red!40,opacity=0.5]
+ ({-\t},{-1/\t}) rectangle (\t,{1/\t});
+ \foreach \x in {-2,...,2}{
+ \draw[color=red,line width=0.3pt]
+ ({\x*\t},-3) -- ({\x*\t},3);
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (-3,{\y/\t}) -- (3,{\y/\t});
+ }
+ }
+\end{scope}
+\draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+\uncover<3->{%
+ \fill[color=white,opacity=0.8] (-1.5,-2.8) rectangle (1.5,-1.3);
+ \node at (0,-2.1) {$
+ D
+ =
+ \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}
+ $};
+}
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.33\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick,scale=\s]
+\fill[color=blue!20] (-1,-1) rectangle (1,1);
+\begin{scope}
+ \clip (-2.1,-2.1) rectangle (2.3,2.3);
+ \foreach \x in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (\x,-3) -- (\x,3);
+ }
+ \foreach \y in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (-3,\y) -- (3,\y);
+ }
+ \ifthenelse{\boolean{presentation}}{
+ \foreach \d in {11,...,17}{
+ \only<\d>{
+ \pgfmathparse{(\d-11)/10}
+ \xdef\t{\pgfmathresult}
+ \fill[color=red!40,opacity=0.5]
+ ({-1+\t*(-1)},{-1})
+ --
+ ({1+\t*(-1)},{-1})
+ --
+ ({1+\t},{1})
+ --
+ ({-1+\t},{1})
+ -- cycle;
+ \foreach \x in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ ({\x+\t*(-3)},-3) -- ({\x+\t*(3)},3);
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ ({-3+\t*\y},\y) -- ({3+\t*\y},\y);
+ }
+ }
+ }
+ }{}
+ \uncover<18->{
+ \xdef\t{0.6}
+ \fill[color=red!40,opacity=0.5]
+ ({-1+\t*(-1)},{-1})
+ --
+ ({1+\t*(-1)},{-1})
+ --
+ ({1+\t},{1})
+ --
+ ({-1+\t},{1})
+ -- cycle;
+ \foreach \x in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ ({\x+\t*(-3)},-3) -- ({\x+\t*(3)},3);
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ ({-3+\t*\y},\y) -- ({3+\t*\y},\y);
+ }
+ }
+\end{scope}
+\draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+\uncover<11->{
+ \fill[color=white,opacity=0.8] (-1.5,-2.8) rectangle (1.5,-1.3);
+ \node at (0,-2.1) {$
+ S
+ =
+ \begin{pmatrix} 1&s\\ 0&1\end{pmatrix}
+ $};
+}
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.33\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick,scale=\s]
+\fill[color=blue!20] (-1,-1) rectangle (1,1);
+\begin{scope}
+ \clip (-2.1,-2.1) rectangle (2.3,2.3);
+ \foreach \x in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (\x,-3) -- (\x,3);
+ }
+ \foreach \y in {-2,...,2}{
+ \draw[color=blue,line width=0.3pt] (-3,\y) -- (3,\y);
+ }
+ \ifthenelse{\boolean{presentation}}{
+ \foreach \d in {18,...,24}{
+ \only<\d>{
+ \pgfmathparse{(\d-18)/10}
+ \xdef\t{\pgfmathresult}
+ \fill[color=red!40,opacity=0.5]
+ (-1,{\t*(-1)-1})
+ --
+ (1,{\t*1-1})
+ --
+ (1,{\t*1+1})
+ --
+ (-1,{\t*(-1)+1})
+ -- cycle;
+ \foreach \x in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (\x,{\x*\t-3}) -- (\x,{\x*\t+3});
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (-3,{-3*\t+\y}) -- (3,{3*\t+\y});
+ }
+ }
+ }
+ }{}
+ \uncover<25->{
+ \xdef\t{0.6}
+ \fill[color=red!40,opacity=0.5]
+ (-1,{\t*(-1)-1})
+ --
+ (1,{\t*1-1})
+ --
+ (1,{\t*1+1})
+ --
+ (-1,{\t*(-1)+1})
+ -- cycle;
+ \foreach \x in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (\x,{\x*\t-3}) -- (\x,{\x*\t+3});
+ }
+ \foreach \y in {-3,...,3}{
+ \draw[color=red,line width=0.3pt]
+ (-3,{-3*\t+\y}) -- (3,{3*\t+\y});
+ }
+ }
+\end{scope}
+\draw[->] (-2.1,0) -- (2.3,0) coordinate[label={$x$}];
+\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
+\uncover<18->{%
+\fill[color=white,opacity=0.8] (-1.5,-2.8) rectangle (1.5,-1.3);
+ \node at (0,-2.1) {$
+ T
+ =
+ \begin{pmatrix} 1&0\\t&1\end{pmatrix}
+ $};
+}
+\end{tikzpicture}
+\end{center}
+\end{column}
+\end{columns}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/symmetrien.tex b/vorlesungen/slides/7/symmetrien.tex
new file mode 100644
index 0000000..35d62d8
--- /dev/null
+++ b/vorlesungen/slides/7/symmetrien.tex
@@ -0,0 +1,145 @@
+%
+% symmetrien.tex -- Symmetrien
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Symmetrien}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Diskrete Symmetrien}
+\begin{itemize}
+\item<2->
+Ebenen-Spiegelung:
+\[
+{\tiny
+\begin{pmatrix*}[r] x_1\\x_2\\x_3 \end{pmatrix*}
+}
+\mapsto
+{\tiny
+\begin{pmatrix*}[r]-x_1\\x_2\\x_3 \end{pmatrix*}
+}
+\uncover<4->{\!,\;
+\vec{x}
+\mapsto
+\vec{x} -2 (\vec{n}\cdot\vec{x}) \vec{n}
+}
+\]
+\vspace{-10pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\a{10}
+\def\b{50}
+\def\r{2}
+\coordinate (O) at (0,0);
+\coordinate (A) at (\b:\r);
+\coordinate (B) at ({180+2*\a-\b}:\r);
+\coordinate (C) at ({90+\a}:{\r*cos(90+\a-\b)});
+\coordinate (N) at (\a:2);
+\coordinate (D) at (\a:{\r*cos(\b-\a)});
+\uncover<3->{
+\clip (-2.5,-0.45) rectangle (2.5,1.95);
+
+ \fill[color=darkgreen!20] (O) -- ({\a-90}:0.2) arc ({\a-90}:\a:0.2)
+ -- cycle;
+ \draw[->,color=darkgreen] (O) -- (N);
+ \node[color=darkgreen] at (N) [above] {$\vec{n}$};
+
+
+ \fill[color=blue!20] (C) -- ($(C)+(\a:0.2)$) arc (\a:{90+\a}:0.2)
+ -- cycle;
+ \fill[color=red] (O) circle[radius=0.06];
+ \draw[color=red] ({\a-90}:2) -- ({\a+90}:2);
+ \fill[color=blue] (C) circle[radius=0.06];
+ \draw[color=blue,line width=0.1pt] (A) -- (D);
+ \node[color=darkgreen] at (D) [below,rotate=\a]
+ {$(\vec{n}\cdot\vec{x})\vec{n}$};
+ \draw[color=blue,line width=0.5pt] (A)--(B);
+
+ \node[color=blue] at (A) [above right] {$\vec{x}$};
+ \node[color=blue] at (B) [above left] {$\vec{x}'$};
+
+ \node[color=red] at (O) [below left] {$O$};
+
+ \draw[->,color=blue,shorten <= 0.06cm,line width=1.4pt] (O) -- (A);
+ \draw[->,color=blue,shorten <= 0.06cm,line width=1.4pt] (O) -- (B);
+}
+
+\end{tikzpicture}
+\end{center}
+\vspace{-5pt}
+$\vec{n}$ ein Einheitsnormalenvektor auf der Ebene, $|\vec{n}|=1$
+\item<5->
+Punkt-Spiegelung:
+\[
+{\tiny
+\begin{pmatrix*}[r] x_1\\x_2\\x_3 \end{pmatrix*}
+}
+\mapsto
+-
+{\tiny
+\begin{pmatrix*}[r]x_1\\x_2\\x_3 \end{pmatrix*}
+}
+\]
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Kontinuierliche Symmetrien}
+\begin{itemize}
+\item<7-> Translation:
+\(
+\vec{x} \mapsto \vec{x} + \vec{t}
+\)
+\item<8-> Drehung:
+\vspace{-3pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\a{25}
+\def\r{1.3}
+\coordinate (O) at (0,0);
+\begin{scope}
+\clip (-1.1,-0.1) rectangle (2.3,2.3);
+\draw[color=red] (O) circle[radius=2];
+\fill[color=blue!20] (O) -- (0:\r) arc (0:\a:\r) -- cycle;
+\fill[color=blue!20] (O) -- (90:\r) arc (90:{90+\a}:\r) -- cycle;
+\node at ({0.5*\a}:1) {$\alpha$};
+\node at ({90+0.5*\a}:1) {$\alpha$};
+\draw[->,color=blue,line width=1.4pt] (O) -- (\a:2);
+\draw[->,color=darkgreen,line width=1.4pt] (O) -- ({90+\a}:2);
+\end{scope}
+\draw[->] (-1.1,0) -- (2.3,0) coordinate[label={$x$}];
+\draw[->] (0,-0.1) -- (0,2.3) coordinate[label={right:$y$}];
+\end{tikzpicture}
+\end{center}
+\[
+\uncover<9->{%
+\begin{pmatrix}x\\y\end{pmatrix}
+\mapsto
+\begin{pmatrix}
+{\color{blue}\cos\alpha}&{\color{darkgreen}-\sin\alpha}\\
+{\color{blue}\sin\alpha}&{\color{darkgreen}\phantom{-}\cos\alpha}
+\end{pmatrix}
+\begin{pmatrix}x\\y\end{pmatrix}
+}
+\]
+\end{itemize}
+\end{block}}
+\vspace{-10pt}
+\uncover<10->{%
+\begin{block}{Definition}
+Längen/Winkel bleiben erhalten
+\\
+\uncover<11->{%
+$\Rightarrow$ $\exists$ Erhaltungsgrösse}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/ueberlagerung.tex b/vorlesungen/slides/7/ueberlagerung.tex
new file mode 100644
index 0000000..426641a
--- /dev/null
+++ b/vorlesungen/slides/7/ueberlagerung.tex
@@ -0,0 +1,98 @@
+%
+% ueberlagerung.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{$S^3$, $\operatorname{SU}(2)$ und $\operatorname{SO}(3)$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.38\textwidth}
+\uncover<6->{%
+\begin{block}{Überlagerung}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (A) at (0,0);
+\coordinate (B) at (2,0);
+\coordinate (C) at (2,-2);
+\coordinate (D) at (0,-2);
+
+\uncover<7->{
+\node at (A) {$\{\pm 1\}\mathstrut$};
+}
+\uncover<6->{
+\node at (B) {$S^3\mathstrut$};
+\node at ($(B)+(0.1,0)$) [right] {$=\operatorname{SU}(2)\mathstrut$};
+}
+\uncover<7->{
+\node at (C) {$\operatorname{SO}(3)\mathstrut$};
+\node at (D) {$\{I\}\mathstrut$};
+}
+
+\uncover<7->{
+\draw[->,shorten >= 0.3cm,shorten <= 0.5cm] (A) -- (B);
+\draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (A) -- (D);
+\draw[->,shorten >= 0.3cm,shorten <= 0.3cm] (B) -- (C);
+\draw[->,shorten >= 0.6cm,shorten <= 0.3cm] (D) -- (C);
+}
+
+\end{tikzpicture}
+\end{center}
+\begin{itemize}
+\item<7->
+$\pm q\in S^3$ $\Rightarrow$ $\varrho_{q}=\varrho_{-q}$
+\item<8->
+In der Nähe von $I$ sehen die Gruppen
+$\operatorname{SO}(3)$
+und
+$\operatorname{SU}(2)$
+``gleich'' aus
+\item<9->
+$\operatorname{SU}(2)$ ist geometrisch ``einfacher''
+\end{itemize}
+\end{block}}
+\end{column}
+\begin{column}{0.58\textwidth}
+\begin{block}{Pauli-Matrizen}
+Quaternionen als $2\times 2$-Matrizen schreiben
+\begin{align*}
+1&=\begin{pmatrix}1&0\\0&1\end{pmatrix}=\sigma_0,
+&
+i&=\begin{pmatrix}0&i\\i&0\end{pmatrix}=-i\sigma_1
+\\
+j&=\begin{pmatrix}0&-1\\1&0\end{pmatrix}=-i\sigma_2,
+&
+k&=\begin{pmatrix}i&0\\0&-i\end{pmatrix}=-i\sigma_3
+\end{align*}
+\uncover<2->{%
+erfüllen $i^2=j^2=k^2=ijk=-1$.}
+\end{block}
+\uncover<3->{%
+\begin{block}{$S^3 = \operatorname{SU}(2)$}
+\[
+a+bi+cj+dk
+=
+\begin{pmatrix}
+a+id&-c+bi\\
+c+ib&a-id
+\end{pmatrix}
+=
+A
+\]
+\begin{align*}
+\uncover<4->{
+\det A &= a^2 + b^2 + c^2 + d^2 = 1
+}
+\\
+\uncover<5->{
+A^* &= a - ib - jc - kd
+}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/vektorlie.tex b/vorlesungen/slides/7/vektorlie.tex
new file mode 100644
index 0000000..621a832
--- /dev/null
+++ b/vorlesungen/slides/7/vektorlie.tex
@@ -0,0 +1,206 @@
+%
+% viktorlie.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Vektorprodukt als Lie-Algebra}
+%\vspace{-10pt}
+\centering
+\begin{tikzpicture}[>=latex,thick]
+\arraycolsep=2.4pt
+\def\Ax{0}
+\def\Ux{4.1}
+\def\Kx{7.2}
+\def\Rx{13.1}
+
+\def\Lx{2.2}
+\def\Ly{0}
+\def\Lz{-2.2}
+
+\fill[color=red!20] (\Ax,{\Lx-1.55}) rectangle ({\Ux-0.1},{\Lx+0.55});
+\fill[color=red!20] (\Ux,{\Lx-1.55}) rectangle ({\Kx-0.1},{\Lx+0.55});
+\fill[color=red!20] (\Kx,{\Lx-1.55}) rectangle ({\Rx},{\Lx+0.55});
+
+\fill[color=darkgreen!20] (\Ax,{\Ly-1.55}) rectangle ({\Ux-0.1},{\Ly+0.55});
+\fill[color=darkgreen!20] (\Ux,{\Ly-1.55}) rectangle ({\Kx-0.1},{\Ly+0.55});
+\fill[color=darkgreen!20] (\Kx,{\Ly-1.55}) rectangle ({\Rx},{\Ly+0.55});
+
+\fill[color=blue!20] (\Ax,{\Lz-1.55}) rectangle ({\Ux-0.1},{\Lz+0.55});
+\fill[color=blue!20] (\Ux,{\Lz-1.55}) rectangle ({\Kx-0.1},{\Lz+0.55});
+\fill[color=blue!20] (\Kx,{\Lz-1.55}) rectangle ({\Rx},{\Lz+0.55});
+
+\coordinate (A) at (\Ax,3.2);
+\coordinate (Ax) at (\Ax,\Lx);
+\coordinate (Ay) at (\Ax,\Ly);
+\coordinate (Az) at (\Ax,\Lz);
+
+\node at (A) [right]
+ {\usebeamercolor[fg]{title}Drehmatrix, $\operatorname{SO}(n)$\strut};
+
+\node at (Ax) [right] {$\displaystyle\tiny
+D_{x,\alpha}=\begin{pmatrix}
+1&0&0\\
+0&\cos\alpha&-\sin\alpha\\
+0&\sin\alpha&\cos\alpha
+\end{pmatrix}$};
+
+\node at (Ay) [right] {$\displaystyle\tiny
+D_{y,\alpha}=\begin{pmatrix}
+\cos\alpha&0&\sin\alpha\\
+0&1&0\\
+-\sin\alpha&0&\cos\alpha
+\end{pmatrix}$};
+
+\node at (Az) [right] {$\displaystyle\tiny
+D_{z,\alpha}=\begin{pmatrix}
+\cos\alpha&-\sin\alpha&0\\
+\sin\alpha&\cos\alpha&0\\
+0&0&1
+\end{pmatrix}$};
+
+\coordinate (U) at (\Ux,3.2);
+\coordinate (Ux) at (\Ux,\Lx);
+\coordinate (Uy) at (\Ux,\Ly);
+\coordinate (Uz) at (\Ux,\Lz);
+\coordinate (Ex) at (\Ux,{\Lx-1});
+\coordinate (Ey) at (\Ux,{\Ly-1});
+\coordinate (Ez) at (\Ux,{\Lz-1});
+
+\uncover<2->{
+\node at (U) [right]
+ {\usebeamercolor[fg]{title}Ableitung, $\operatorname{so}(n)$\strut};
+
+\node at (Ux) [right] {$\displaystyle\tiny
+U_x=\begin{pmatrix*}[r]
+0&0&0\\
+0&0&-1\\
+0&1&0
+\end{pmatrix*}
+$};
+
+\node at (Uy) [right] {$\displaystyle\tiny
+U_y=\begin{pmatrix*}[r]
+0&0&1\\
+0&0&0\\
+-1&0&0
+\end{pmatrix*}
+$};
+
+\node at (Uz) [right] {$\displaystyle\tiny
+U_z=\begin{pmatrix*}[r]
+0&-1&0\\
+1&0&0\\
+0&0&0
+\end{pmatrix*}
+$};
+}
+
+\uncover<9->{
+\node at (Ex) [right] {$\displaystyle
+\, e_x = \tiny\begin{pmatrix}1\\0\\0\end{pmatrix}
+$};
+
+\node at (Ey) [right] {$\displaystyle
+\, e_y = \tiny\begin{pmatrix}0\\1\\0\end{pmatrix}
+$};
+
+\node at (Ez) [right] {$\displaystyle
+\, e_z = \tiny\begin{pmatrix}0\\0\\1\end{pmatrix}
+$};
+}
+
+\coordinate (K) at (\Kx,3.2);
+\coordinate (Kx) at (\Kx,\Lx);
+\coordinate (Ky) at (\Kx,\Ly);
+\coordinate (Kz) at (\Kx,\Lz);
+\coordinate (Vx) at (\Kx,{\Lx-1});
+\coordinate (Vy) at (\Kx,{\Ly-1});
+\coordinate (Vz) at (\Kx,{\Lz-1});
+
+\uncover<3->{
+\node at (K) [right]
+ {\usebeamercolor[fg]{title}Kommutator\strut};
+
+\node at (Kx) [right] {$\displaystyle
+\begin{aligned}
+[U_y,U_z] &\uncover<4->{=
+{\tiny
+\begin{pmatrix}
+0&0&0\\
+0&0&0\\
+0&1&0
+\end{pmatrix}}
+\uncover<5->{\mathstrut-
+\tiny
+\begin{pmatrix}
+0&0&0\\
+0&0&1\\
+0&0&0
+\end{pmatrix}}}
+\uncover<6->{=U_x}
+\end{aligned}
+$};
+}
+
+\uncover<7->{
+\node at (Ky) [right] {$\displaystyle
+\begin{aligned}
+[U_z,U_x] &=
+{\tiny
+\begin{pmatrix}
+0&0&1\\
+0&0&0\\
+0&0&0
+\end{pmatrix}
+-
+\begin{pmatrix}
+0&0&0\\
+0&0&0\\
+1&0&0
+\end{pmatrix}}
+=U_y
+\end{aligned}
+$};
+}
+
+\uncover<8->{
+\node at (Kz) [right] {$\displaystyle
+\begin{aligned}
+[U_x,U_y] &=
+{\tiny
+\begin{pmatrix}
+0&0&0\\
+1&0&0\\
+0&0&0
+\end{pmatrix}
+-
+\begin{pmatrix}
+0&1&0\\
+0&0&0\\
+0&0&0
+\end{pmatrix}}
+=U_z
+\end{aligned}
+$};
+}
+
+\uncover<10->{
+\node at (Vx) [right] {$\displaystyle \phantom{]}e_y\times e_z = e_x$};
+}
+
+\uncover<11->{
+\node at (Vy) [right] {$\displaystyle \phantom{]}e_z\times e_x = e_y$};
+}
+
+\uncover<12->{
+\node at (Vz) [right] {$\displaystyle \phantom{]}e_x\times e_y = e_z$};
+}
+
+\end{tikzpicture}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/7/zusammenhang.tex b/vorlesungen/slides/7/zusammenhang.tex
new file mode 100644
index 0000000..6a43cd8
--- /dev/null
+++ b/vorlesungen/slides/7/zusammenhang.tex
@@ -0,0 +1,99 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Zusammenhang}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Zusammenhängend --- oder nicht}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\ds{2.4}
+\coordinate (A) at (0,0);
+\coordinate (B) at (\ds,0);
+\coordinate (C) at ({2*\ds},0);
+
+\node at (A) {$\operatorname{SO}(n)$};
+\node at (B) {$\operatorname{O}(n)$};
+\node at (C) {$\{\pm 1\}$};
+
+\draw[->,shorten <= 0.6cm,shorten >= 0.5cm] (A) -- (B);
+\draw[->,shorten <= 0.5cm,shorten >= 0.5cm] (B) -- (C);
+\node at ($0.5*(B)+0.5*(C)$) [above] {$\det$};
+
+\coordinate (A2) at (0,-1.0);
+\coordinate (B2) at (\ds,-1.0);
+\coordinate (C2) at ({2*\ds},-1.0);
+
+\draw[color=blue] (A2) ellipse (1cm and 0.3cm);
+\draw[color=blue] (B2) ellipse (1cm and 0.3cm);
+\node[color=blue] at (C2) {$+1$};
+
+\coordinate (A3) at (0,-1.7);
+\coordinate (B3) at (\ds,-1.7);
+\coordinate (C3) at ({2*\ds},-1.7);
+
+\draw[->,shorten <= 1.1cm,shorten >= 0.3cm] (B2) -- (C2);
+\draw[->,shorten <= 1.1cm,shorten >= 0.3cm] (B3) -- (C3);
+
+\draw[color=red] (B3) ellipse (1cm and 0.3cm);
+\node[color=red] at (C3) {$-1$};
+
+\end{tikzpicture}
+\end{center}
+\end{block}
+\begin{block}{Zusammenhangskomponente von $e$}
+$G_e\subset G$ grösste zusammenhängende Menge, die $e$ enthält:
+\begin{align*}
+\operatorname{SO}(n)&\subset \operatorname{O}(n)
+\\
+\{A\in\operatorname{GL}_n(\mathbb{R})\,|\, \det A > 0\}
+ &\subset \operatorname{GL}_n(\mathbb{R})
+\end{align*}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Eigenschaften}
+\begin{itemize}
+\item
+{\bf Untergruppe}: $\gamma_i(t)$ Weg von $e$ nach $g_i$,
+dann ist
+\begin{itemize}
+\item
+$\gamma_1(t)\gamma_2(t)$ ein Weg von $e$ nach $g_1g_2$
+\item
+$\gamma_1(t)^{-1}$ Weg von $e$ nach $g_1^{-1}$
+\end{itemize}
+\item
+{\bf Normalteiler}: $\gamma(t)$ ein Weg von $e$ nach $g$, dann
+ist $h\gamma(t)h^{-1}$ ein Weg von $h$ nach $hgh^{-1}$
+$\Rightarrow hG_eh^{-1}\subset G_e$
+\end{itemize}
+\end{block}
+\begin{block}{Quotient}
+$G/G_e$ ist eine diskrete Gruppe
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (A) at (0,0);
+\coordinate (B) at (2,0);
+\coordinate (C) at (4,0);
+\node at (A) {$G_e$};
+\node at (B) {$G$};
+\node at (C) {$G/G_e$};
+\draw [->,shorten <= 0.3cm,shorten >= 0.3cm] (A) -- (B);
+\draw [->,shorten <= 0.3cm,shorten >= 0.5cm] (B) -- (C);
+\end{tikzpicture}
+\end{center}
+\vspace{-7pt}
+$\Rightarrow$ $G_e$ und $G/G_e$ separat studieren
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/Makefile.inc b/vorlesungen/slides/8/Makefile.inc
index d46dc7f..6ac5665 100644
--- a/vorlesungen/slides/8/Makefile.inc
+++ b/vorlesungen/slides/8/Makefile.inc
@@ -28,5 +28,25 @@ chapter8 = \
../slides/8/tokyo/bahn0.tex \
../slides/8/tokyo/bahn1.tex \
../slides/8/tokyo/bahn2.tex \
+ ../slides/8/chrind.tex \
+ ../slides/8/chrindprop.tex \
+ ../slides/8/chroma1.tex \
+ ../slides/8/amax.tex \
+ ../slides/8/subgraph.tex \
+ ../slides/8/chrwilf.tex \
+ ../slides/8/weitere.tex \
+ ../slides/8/wavelets/funktionen.tex \
+ ../slides/8/wavelets/laplacebasis.tex \
+ ../slides/8/wavelets/vektoren.tex \
+ ../slides/8/wavelets/fourier.tex \
+ ../slides/8/wavelets/lokalisierungsvergleich.tex \
+ ../slides/8/wavelets/frequenzlokalisierung.tex \
+ ../slides/8/wavelets/dilatation.tex \
+ ../slides/8/wavelets/matrixdilatation.tex \
+ ../slides/8/wavelets/gundh.tex \
+ ../slides/8/wavelets/dilbei.tex \
+ ../slides/8/wavelets/frame.tex \
+ ../slides/8/wavelets/framekonstanten.tex \
+ ../slides/8/wavelets/beispiel.tex \
../slides/8/chapter.tex
diff --git a/vorlesungen/slides/8/amax.tex b/vorlesungen/slides/8/amax.tex
new file mode 100644
index 0000000..951400a
--- /dev/null
+++ b/vorlesungen/slides/8/amax.tex
@@ -0,0 +1,86 @@
+%
+% amax.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{$\alpha_{\text{max}}$ und $d$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.44\textwidth}
+\begin{block}{Definition}
+$\alpha_{\text{max}}$ ist der grösste Eigenwert der Adjazenzmatrix
+\end{block}
+\uncover<2->{
+\begin{block}{Fakten}
+\begin{itemize}
+\item<3->
+Der Eigenwert $\alpha_{\text{max}}$ ist einfach
+\item<4->
+Es gibt einen positiven Eigenvektor $f$ zum Eigenwert $\alpha_{\text{max}}$
+\item<5->
+$f$ maximiert
+\[
+\frac{\langle Af,f\rangle}{\langle f,f\rangle}
+=
+\alpha_{\text{max}}
+\]
+\end{itemize}
+Herkunft: Perron-Frobenius-Theorie positiver Matrizen (nächste Woche)
+\end{block}}
+\end{column}
+\begin{column}{0.52\textwidth}
+\uncover<6->{%
+\begin{block}{Mittlerer Grad}
+\[
+\overline{d}
+=
+\frac1{n} \sum_{v} \operatorname{deg}(v)
+\le
+\alpha_{\text{max}}
+\le
+d
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<7->{%
+\begin{proof}[Beweis]
+\begin{itemize}
+\item Konstante Funktion $1$ anstelle von $f$:
+\[
+\frac{\langle A1,1\rangle}{\langle 1,1\rangle}
+\uncover<8->{=
+\frac{\sum_v \operatorname{deg}(v)}{n}}
+\uncover<9->{=
+\overline{d}}
+\uncover<10->{\le
+\alpha_{\text{max}}}
+\]
+\item<11-> Komponenten von $Af$ summieren:
+\begin{align*}
+\uncover<12->{
+\alpha_{\text{max}}
+f(v) &= (Af)(v)}\uncover<13->{ = \sum_{u\sim v} f(u)}
+\\
+\uncover<14->{\alpha_{\text{max}}
+\sum_{v}f(v)
+&=
+\sum_v
+\operatorname{deg}(v) f(v)}
+\\
+&\uncover<15->{\le
+d\sum_v f(v)}
+\;
+\uncover<16->{\Rightarrow
+\;
+\alpha_{\text{max}} \le d}
+\end{align*}
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/chapter.tex b/vorlesungen/slides/8/chapter.tex
index 6a0b13f..69b7231 100644
--- a/vorlesungen/slides/8/chapter.tex
+++ b/vorlesungen/slides/8/chapter.tex
@@ -30,3 +30,24 @@
\folie{8/tokyo/bahn1.tex}
\folie{8/tokyo/bahn2.tex}
+\folie{8/chrind.tex}
+\folie{8/chrindprop.tex}
+\folie{8/chroma1.tex}
+\folie{8/amax.tex}
+\folie{8/subgraph.tex}
+\folie{8/chrwilf.tex}
+\folie{8/weitere.tex}
+
+\folie{8/wavelets/funktionen.tex}
+\folie{8/wavelets/laplacebasis.tex}
+\folie{8/wavelets/fourier.tex}
+\folie{8/wavelets/lokalisierungsvergleich.tex}
+\folie{8/wavelets/frequenzlokalisierung.tex}
+\folie{8/wavelets/dilatation.tex}
+\folie{8/wavelets/matrixdilatation.tex}
+\folie{8/wavelets/gundh.tex}
+\folie{8/wavelets/frame.tex}
+\folie{8/wavelets/dilbei.tex}
+\folie{8/wavelets/framekonstanten.tex}
+\folie{8/wavelets/beispiel.tex}
+
diff --git a/vorlesungen/slides/8/chrind.tex b/vorlesungen/slides/8/chrind.tex
new file mode 100644
index 0000000..bd406ab
--- /dev/null
+++ b/vorlesungen/slides/8/chrind.tex
@@ -0,0 +1,231 @@
+%
+% chrind.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Chromatische Zahl und Unabhängigkeitszahl}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Chromatische Zahl}
+$\operatorname{chr}(G)=\mathstrut$
+minimale Anzahl Farben, die zum Einfärben eines Graphen $G$ nötig sind derart,
+dass benachbarte Knoten verschiedene Farben haben.
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\def\Ra{2}
+\def\Ri{1}
+\def\e{1.0}
+\def\r{0.2}
+
+\definecolor{rot}{rgb}{0.8,0,0.8}
+\definecolor{gruen}{rgb}{0.2,0.6,0.2}
+\definecolor{blau}{rgb}{1,0.6,0.2}
+
+\coordinate (PA) at ({\Ri*sin(0*72)},{\e*\Ri*cos(0*72)});
+\coordinate (PB) at ({\Ri*sin(1*72)},{\e*\Ri*cos(1*72)});
+\coordinate (PC) at ({\Ri*sin(2*72)},{\e*\Ri*cos(2*72)});
+\coordinate (PD) at ({\Ri*sin(3*72)},{\e*\Ri*cos(3*72)});
+\coordinate (PE) at ({\Ri*sin(4*72)},{\e*\Ri*cos(4*72)});
+
+\coordinate (QA) at ({\Ra*sin(0*72)},{\e*\Ra*cos(0*72)});
+\coordinate (QB) at ({\Ra*sin(1*72)},{\e*\Ra*cos(1*72)});
+\coordinate (QC) at ({\Ra*sin(2*72)},{\e*\Ra*cos(2*72)});
+\coordinate (QD) at ({\Ra*sin(3*72)},{\e*\Ra*cos(3*72)});
+\coordinate (QE) at ({\Ra*sin(4*72)},{\e*\Ra*cos(4*72)});
+
+\draw (PA)--(PC)--(PE)--(PB)--(PD)--cycle;
+\draw (QA)--(QB)--(QC)--(QD)--(QE)--cycle;
+\draw (PA)--(QA);
+\draw (PB)--(QB);
+\draw (PC)--(QC);
+\draw (PD)--(QD);
+\draw (PE)--(QE);
+
+\only<1>{
+ \fill[color=white] (PA) circle[radius=\r];
+ \fill[color=white] (PB) circle[radius=\r];
+ \fill[color=white] (PC) circle[radius=\r];
+ \fill[color=white] (PD) circle[radius=\r];
+ \fill[color=white] (PE) circle[radius=\r];
+ \fill[color=white] (QA) circle[radius=\r];
+ \fill[color=white] (QB) circle[radius=\r];
+ \fill[color=white] (QC) circle[radius=\r];
+ \fill[color=white] (QD) circle[radius=\r];
+ \fill[color=white] (QE) circle[radius=\r];
+}
+
+\only<2->{
+ \fill[color=blau] (PA) circle[radius=\r];
+ \fill[color=rot] (PB) circle[radius=\r];
+ \fill[color=rot] (PC) circle[radius=\r];
+ \fill[color=gruen] (PD) circle[radius=\r];
+ \fill[color=gruen] (PE) circle[radius=\r];
+
+ \fill[color=rot] (QA) circle[radius=\r];
+ \fill[color=blau] (QB) circle[radius=\r];
+ \fill[color=gruen] (QC) circle[radius=\r];
+ \fill[color=rot] (QD) circle[radius=\r];
+ \fill[color=blau] (QE) circle[radius=\r];
+}
+
+\draw (PA) circle[radius=\r];
+\draw (PB) circle[radius=\r];
+\draw (PC) circle[radius=\r];
+\draw (PD) circle[radius=\r];
+\draw (PE) circle[radius=\r];
+
+\draw (QA) circle[radius=\r];
+\draw (QB) circle[radius=\r];
+\draw (QC) circle[radius=\r];
+\draw (QD) circle[radius=\r];
+\draw (QE) circle[radius=\r];
+
+\node at ($0.5*(QC)+0.5*(QD)+(0,-0.2)$) [below] {$\operatorname{chr} G = 3$};
+
+\end{tikzpicture}
+\end{center}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Unabhängigkeitszahl}
+$\operatorname{ind}(G)=\mathstrut$
+maximale Anzahl nicht benachbarter Knoten
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\def\Ra{2}
+\def\Ri{1}
+\def\e{1.0}
+\def\r{0.2}
+
+\definecolor{rot}{rgb}{0.8,0,0.8}
+\definecolor{gruen}{rgb}{0.2,0.6,0.2}
+\definecolor{blau}{rgb}{1,0.6,0.2}
+\definecolor{gelb}{rgb}{0,0,1}
+
+\coordinate (PA) at ({\Ri*sin(0*72)},{\e*\Ri*cos(0*72)});
+\coordinate (PB) at ({\Ri*sin(1*72)},{\e*\Ri*cos(1*72)});
+\coordinate (PC) at ({\Ri*sin(2*72)},{\e*\Ri*cos(2*72)});
+\coordinate (PD) at ({\Ri*sin(3*72)},{\e*\Ri*cos(3*72)});
+\coordinate (PE) at ({\Ri*sin(4*72)},{\e*\Ri*cos(4*72)});
+
+\coordinate (QA) at ({\Ra*sin(0*72)},{\e*\Ra*cos(0*72)});
+\coordinate (QB) at ({\Ra*sin(1*72)},{\e*\Ra*cos(1*72)});
+\coordinate (QC) at ({\Ra*sin(2*72)},{\e*\Ra*cos(2*72)});
+\coordinate (QD) at ({\Ra*sin(3*72)},{\e*\Ra*cos(3*72)});
+\coordinate (QE) at ({\Ra*sin(4*72)},{\e*\Ra*cos(4*72)});
+
+\draw (PA)--(PC)--(PE)--(PB)--(PD)--cycle;
+\draw (QA)--(QB)--(QC)--(QD)--(QE)--cycle;
+\draw (PA)--(QA);
+\draw (PB)--(QB);
+\draw (PC)--(QC);
+\draw (PD)--(QD);
+\draw (PE)--(QE);
+
+\foreach \n in {1,...,7}{
+ \only<\n>{\node[color=white] at (1,2.9) {$\n$};}
+}
+
+\fill[color=white] (PA) circle[radius=\r];
+\fill[color=white] (PB) circle[radius=\r];
+\fill[color=white] (PC) circle[radius=\r];
+\fill[color=white] (PD) circle[radius=\r];
+\fill[color=white] (PE) circle[radius=\r];
+\fill[color=white] (QA) circle[radius=\r];
+\fill[color=white] (QB) circle[radius=\r];
+\fill[color=white] (QC) circle[radius=\r];
+\fill[color=white] (QD) circle[radius=\r];
+\fill[color=white] (QE) circle[radius=\r];
+
+\only<4->{
+ \fill[color=rot] (QA) circle[radius={1.5*\r}];
+ \fill[color=rot!40] (QB) circle[radius=\r];
+ \fill[color=rot!40] (QE) circle[radius=\r];
+ \fill[color=rot!40] (PA) circle[radius=\r];
+}
+
+\only<5->{
+ \fill[color=blau] (PB) circle[radius={1.5*\r}];
+ \fill[color=blau!40] (PD) circle[radius=\r];
+ \fill[color=blau!40] (PE) circle[radius=\r];
+ \fill[color=blau!80,opacity=0.5] (QB) circle[radius=\r];
+}
+
+\only<6->{
+ \fill[color=gruen] (PC) circle[radius={1.5*\r}];
+ \fill[color=gruen!40] (QC) circle[radius=\r];
+ \fill[color=gruen!80,opacity=0.5] (PA) circle[radius=\r];
+ \fill[color=gruen!80,opacity=0.5] (PE) circle[radius=\r];
+}
+
+\only<7->{
+ \fill[color=gelb] (QD) circle[radius={1.5*\r}];
+ \fill[color=gelb!80,opacity=0.5] (QC) circle[radius=\r];
+ \fill[color=gelb!80,opacity=0.5] (QE) circle[radius=\r];
+ \fill[color=gelb!80,opacity=0.5] (PD) circle[radius=\r];
+}
+
+\only<-3|handout:0>{
+ \draw (QA) circle[radius=\r];
+}
+\only<4->{
+ \draw (QA) circle[radius={1.5*\r}];
+}
+
+\only<-4|handout:0>{
+ \draw (PB) circle[radius=\r];
+}
+\only<5->{
+ \draw (PB) circle[radius={1.5*\r}];
+}
+
+\only<-5|handout:0>{
+ \draw (PC) circle[radius=\r];
+}
+\only<6->{
+ \draw (PC) circle[radius={1.5*\r}];
+}
+
+\only<-6|handout:0>{
+ \draw (QD) circle[radius=\r];
+}
+\only<7->{
+ \draw (QD) circle[radius={1.5*\r}];
+}
+
+\draw (PA) circle[radius=\r];
+\draw (PD) circle[radius=\r];
+\draw (PE) circle[radius=\r];
+
+\draw (QB) circle[radius=\r];
+\draw (QC) circle[radius=\r];
+\draw (QE) circle[radius=\r];
+
+\only<4|handout:0>{
+\node at ($0.5*(QC)+0.5*(QD)+(0,-0.2)$) [below] {$\operatorname{ind} G = 1$};
+}
+\only<5|handout:0>{
+\node at ($0.5*(QC)+0.5*(QD)+(0,-0.2)$) [below] {$\operatorname{ind} G = 2$};
+}
+\only<6|handout:0>{
+\node at ($0.5*(QC)+0.5*(QD)+(0,-0.2)$) [below] {$\operatorname{ind} G = 3$};
+}
+\only<7->{
+\node at ($0.5*(QC)+0.5*(QD)+(0,-0.2)$) [below] {$\operatorname{ind} G = 4$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/chrindprop.tex b/vorlesungen/slides/8/chrindprop.tex
new file mode 100644
index 0000000..094588c
--- /dev/null
+++ b/vorlesungen/slides/8/chrindprop.tex
@@ -0,0 +1,62 @@
+%
+% chrindprop.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Zusammenhang zwischen $\operatorname{chr}G$ und $\operatorname{ind}G$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.38\textwidth}
+\begin{block}{Proposition}
+Ist $G$ ein Graph mit $n$ Knoten, dann gilt
+\[
+\operatorname{chr}G
+\cdot
+\operatorname{ind}G
+\ge n
+\]
+\end{block}
+\uncover<2->{%
+\begin{block}{Beispiel}
+Peterson-Graph $K$ hat $n=10$ Knoten:
+\[
+\operatorname{chr}(K)
+\cdot
+\operatorname{ind}(K)
+=
+3\cdot 4
+\ge
+10
+=
+n
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.58\textwidth}
+\uncover<3->{%
+\begin{proof}[Beweis]
+\begin{itemize}
+\item<4-> eine minimale Färbung hat $\operatorname{chr}(G)$ Farben
+\item<5-> Sie teilt die Knoten in $\operatorname{chr}(G)$
+gleichfarbige Mengen auf
+\item<6-> Jede einfarbige Menge von Knoten ist unabhängig, d.~h.~sie
+besteht aus Knoten, die nicht miteinander verbunden sind.
+\item<7-> Jede einfarbige Menge enthält höchstens $\operatorname{ind}(G)$
+\item<8-> Die Gesamtzahl der Knoten ist
+\[
+n\uncover<9->{=\sum_{\text{Farbe}}\underbrace{|V_{\text{Farbe}}|}_{\le \operatorname{ind}(G)}}
+\uncover<10->{\le
+\operatorname{chr}(G)
+\cdot
+\operatorname{ind}(G)}
+\]
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/chroma1.tex b/vorlesungen/slides/8/chroma1.tex
new file mode 100644
index 0000000..6a55704
--- /dev/null
+++ b/vorlesungen/slides/8/chroma1.tex
@@ -0,0 +1,56 @@
+%
+% chroma1.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Schranke für $\operatorname{chr}(G)$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\begin{block}{Proposition}
+Ist $G$ ein Graph mit maximalem Grad $d$, dann gilt
+\[
+\operatorname{chr}(G) \le d + 1
+\]
+\end{block}
+\uncover<2->{%
+\begin{block}{Beispiel}
+\begin{itemize}
+\item<3->
+Peterson-Graph $G$: maximaler Grad ist $d=3$, aber
+\[
+\operatorname{chr}(G)
+=
+3
+< d+1=4
+\]
+\item<4->
+Voller Graph $V$: maximaler Grad ist $d=n-1$,
+\[
+\operatorname{chr}(V) = n = d+1
+\]
+\end{itemize}
+\end{block}}
+\end{column}
+\begin{column}{0.58\textwidth}
+\uncover<4->{%
+\begin{proof}[Beweis]
+Mit vollständiger Induktion, d.~h.~Annahme: Graphen mit $<n$ Knoten und
+maximalem Grad $d$ lassen sich mit höchstens $d+1$ Farben färben.
+\begin{itemize}
+\item<5-> $X$ ein Graph mit $n$ Knoten
+\item<6-> entferne den Knoten $v\in X$, $X'=X\setminus\{v\}$
+\item<7-> $X'$ lässt sich mit höchstens $d+1$ Farben einfärben
+\item<8-> $v$ hat höchstens $d$ Nachbarn, die höchsten $d$ verschiedene
+Farben haben
+\item<9-> Es bleibt eine Farbe für $v$
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/chrwilf.tex b/vorlesungen/slides/8/chrwilf.tex
new file mode 100644
index 0000000..7edb10e
--- /dev/null
+++ b/vorlesungen/slides/8/chrwilf.tex
@@ -0,0 +1,115 @@
+%
+% chrwilf.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\def\kante#1#2{
+ \draw[shorten >= 0.2cm,shorten <= 0.2cm] (#1) -- (#2);
+}
+\def\knoten#1#2{
+ \uncover<8->{
+ \fill[color=#2!30] (#1) circle[radius=0.2];
+ \draw[color=#2] (#1) circle[radius=0.2];
+ }
+ \only<-7>{
+ \draw (#1) circle[radius=0.2];
+ }
+}
+\def\R{1.5}
+\definecolor{rot}{rgb}{1,0,0}
+\definecolor{gruen}{rgb}{0,0.6,0}
+\definecolor{blau}{rgb}{0,0,1}
+\begin{frame}[t]
+\frametitle{Schranke für die chromatische Zahl}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Satz (Wilf)}
+$\uncover<2->{\operatorname{chr}(X) \le 1+}\alpha_{\text{max}} \le\uncover<2->{ 1 + }d$
+\end{block}
+\uncover<3->{%
+\begin{block}{Beispiel}
+\begin{align*}
+\uncover<4->{d&= 4}
+&&\uncover<5->{\Rightarrow& \operatorname{chr}(G) &\le 5}\\
+\uncover<6->{\alpha_{\text{max}} &=
+2.9565}
+&&\uncover<7->{\Rightarrow& \operatorname{chr}(G) &\le 3}\\
+\uncover<4->{\overline{d} &= \frac{24}{9}=\rlap{$2.6666$}}
+\end{align*}
+\vspace{-20pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\coordinate (A) at (0:\R);
+\coordinate (B) at (40:\R);
+\coordinate (C) at (80:\R);
+\coordinate (D) at (120:\R);
+\coordinate (E) at (160:\R);
+\coordinate (F) at (200:\R);
+\coordinate (G) at (240:\R);
+\coordinate (H) at (280:\R);
+\coordinate (I) at (320:\R);
+
+\knoten{A}{rot}
+\knoten{B}{blau}
+\knoten{C}{gruen}
+\knoten{D}{blau}
+\knoten{E}{rot}
+\knoten{F}{blau}
+\knoten{G}{rot}
+\knoten{H}{gruen}
+\knoten{I}{blau}
+
+\kante{A}{B}
+\kante{B}{C}
+\kante{C}{D}
+\kante{D}{E}
+\kante{E}{F}
+\kante{F}{G}
+\kante{G}{H}
+\kante{H}{I}
+\kante{I}{A}
+
+\kante{A}{C}
+\kante{A}{D}
+\kante{D}{G}
+
+\end{tikzpicture}
+\end{center}
+\end{block}}
+\end{column}
+\begin{column}{0.52\textwidth}
+\uncover<9->{%
+\begin{proof}[Beweis]
+Induktion nach der Grösse $n$ des Graphen.
+\begin{itemize}
+\item<10->
+Entferne $v\in X$ mit minimalem Grad: $X'=X\setminus \{v\}$
+\item<11->
+Induktionsannahme:
+\[
+\operatorname{chr}(X')
+\le
+1+
+\alpha_{\text{max}}'
+\]
+\item<12->
+$X'$ kann mit höhcstens $1+\alpha_{\text{max}}'\le 1+\alpha_{\text{max}}$
+Farben eingefärbt werden.
+\item<13->
+Wegen
+\(
+\deg(v) \le \overline{d} \le \alpha_{\text{max}}
+\)
+hat $v$ höchstens $\alpha_{\text{max}}$ Nachbarn, um $v$ zu färben,
+braucht man also höchstens $1+\alpha_{\text{max}}$ Farben.
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/inzidenz.tex b/vorlesungen/slides/8/inzidenz.tex
index 952c85b..10f88cd 100644
--- a/vorlesungen/slides/8/inzidenz.tex
+++ b/vorlesungen/slides/8/inzidenz.tex
@@ -5,6 +5,8 @@
%
\bgroup
\definecolor{darkgreen}{rgb}{0,0.6,0}
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
\begin{frame}[t]
\frametitle{Inzidenz- und Adjazenzmatrix}
\vspace{-20pt}
@@ -67,7 +69,7 @@
\vspace{-10pt}
\uncover<5->{%
\begin{block}{Definition}
-\vspace{-15pt}
+%\vspace{-15pt}
\begin{align*}
B(G)_{ij}&=1&&\Leftrightarrow&&\text{Kante $j$ endet in Knoten $i$}\\
A(G)_{ij}&=1&&\Leftrightarrow&&\text{Kante zwischen Knoten $i$ und $j$}
diff --git a/vorlesungen/slides/8/inzidenzd.tex b/vorlesungen/slides/8/inzidenzd.tex
index 5f2f51a..43e5330 100644
--- a/vorlesungen/slides/8/inzidenzd.tex
+++ b/vorlesungen/slides/8/inzidenzd.tex
@@ -5,6 +5,8 @@
%
\bgroup
\definecolor{darkgreen}{rgb}{0,0.6,0}
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
\begin{frame}[t]
\frametitle{Inzidenz- und Adjazenz-Matrix}
\vspace{-20pt}
@@ -67,7 +69,7 @@
\vspace{-15pt}
\uncover<5->{%
\begin{block}{Definition}
-\vspace{-20pt}
+%\vspace{-20pt}
\begin{align*}
B(G)_{ij}&=-1&&\Leftrightarrow&&\text{Kante $j$ von $i$}\\
B(G)_{kj}&=+1&&\Leftrightarrow&&\text{Kante $j$ nach $k$}\\
diff --git a/vorlesungen/slides/8/produkt.tex b/vorlesungen/slides/8/produkt.tex
index 1d8b725..93333bc 100644
--- a/vorlesungen/slides/8/produkt.tex
+++ b/vorlesungen/slides/8/produkt.tex
@@ -56,7 +56,7 @@
\end{center}
\vspace{-15pt}
\begin{block}{Berechne}
-\vspace{-20pt}
+%\vspace{-20pt}
\begin{align*}
\uncover<4->{L(G)}&\uncover<4->{=}B(G)B(G)^t
\end{align*}
diff --git a/vorlesungen/slides/8/spanningtree.tex b/vorlesungen/slides/8/spanningtree.tex
index 425fe1c..62180d9 100644
--- a/vorlesungen/slides/8/spanningtree.tex
+++ b/vorlesungen/slides/8/spanningtree.tex
@@ -3,6 +3,7 @@
%
% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
%
+\bgroup
\begin{frame}
\frametitle{Spannbäume}
@@ -121,7 +122,7 @@ Wieviele Spannbäume gibt es?
\begin{column}{0.56\hsize}
\uncover<5->{%
\begin{block}{Laplace-Matrix}
-\vspace{-15pt}
+%\vspace{-15pt}
\[
L=
\tiny
@@ -162,3 +163,4 @@ L\text{ ohne }\left\{\begin{array}{c}\text{Zeile $i$}\\\text{Spalte $j$}\end{arr
\end{columns}
\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/subgraph.tex b/vorlesungen/slides/8/subgraph.tex
new file mode 100644
index 0000000..f3005f9
--- /dev/null
+++ b/vorlesungen/slides/8/subgraph.tex
@@ -0,0 +1,60 @@
+%
+% subgraph.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{$\alpha_{\text{max}}$ eines Untergraphen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Satz}
+$X'$ ein echter Untergraph von $X$ mit Adjazenzmatrix $A'$ und grösstem
+Eigenwert $\alpha_{\text{max}}'$
+\[
+\alpha_{\text{max}}' \le \alpha_{\text{max}}
+\]
+\end{block}
+\uncover<2->{$V'$ die Knoten von $X'$}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{proof}[Beweis]
+\begin{itemize}
+\item<4->
+$f'$ der positive Eigenvektor von $A'$
+\item<5->
+Definiere
+\[
+g(v)
+=
+\begin{cases}
+f'(v) &\qquad v\in V'\\
+0 &\qquad \text{sonst}
+\end{cases}
+\]
+\item<6-> Skalarprodukte:
+\begin{align*}
+\uncover<7->{\langle f',f'\rangle &= \langle g,g\rangle}
+\\
+\uncover<8->{\langle A'f',f'\rangle &\le \langle Ag,g\rangle}
+\end{align*}
+\item<9-> Vergleich
+\[
+\alpha_{\text{max}}'
+=
+\frac{\langle A'f',f'\rangle}{\langle f',f'\rangle}
+\uncover<10->{\le
+\frac{\langle Ag,g\rangle}{\langle g,g\rangle}}
+\uncover<11->{\le
+\alpha_{\text{max}}}
+\]
+\end{itemize}
+\end{proof}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/Makefile b/vorlesungen/slides/8/wavelets/Makefile
new file mode 100644
index 0000000..3b4a5ce
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/Makefile
@@ -0,0 +1,8 @@
+#
+# Makefile
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+
+vektoren.tex: ev.m
+ octave ev.m
diff --git a/vorlesungen/slides/8/wavelets/beispiel.tex b/vorlesungen/slides/8/wavelets/beispiel.tex
new file mode 100644
index 0000000..dcc33d4
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/beispiel.tex
@@ -0,0 +1,44 @@
+%
+% beispiel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\bild#1#2{
+\node at (0,0) [rotate=-90]
+{\includegraphics[width=#1\textwidth]{../../../SeminarWavelets/buch/papers/sgwt/images/#2}};
+}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Wavelets auf einer Kugel}
+\vspace{-10pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\only<1>{ \bild{0.6}{wavelets-phi-sphere-334.pdf} }
+
+\only<2>{ \bild{0.6}{wavelets-psi-5-sphere-334.pdf} }
+\only<3>{ \bild{0.6}{wavelets-psi-4-sphere-334.pdf} }
+\only<4>{ \bild{0.6}{wavelets-psi-3-sphere-334.pdf} }
+\only<5>{ \bild{0.6}{wavelets-psi-2-sphere-334.pdf} }
+\only<6>{ \bild{0.6}{wavelets-psi-1-sphere-334.pdf} }
+
+\only<1>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_1$}; }
+\only<2>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_2$}; }
+\only<3>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_3$}; }
+\only<4>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_4$}; }
+\only<5>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_5$}; }
+\only<6>{ \node at (-7.6,2.8) [right] {Tiefpass mit $h$}; }
+
+\only<1>{ \node at (-7.6,2) [right] {$D_{g,1/a_1}\chi_*$}; }
+\only<2>{ \node at (-7.6,2) [right] {$D_{g,1/a_2}\chi_*$}; }
+\only<3>{ \node at (-7.6,2) [right] {$D_{g,1/a_3}\chi_*$}; }
+\only<4>{ \node at (-7.6,2) [right] {$D_{g,1/a_4}\chi_*$}; }
+\only<5>{ \node at (-7.6,2) [right] {$D_{g,1/a_5}\chi_*$}; }
+\only<6>{ \node at (-7.6,2) [right] {$D_{h}\chi_*$}; }
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/dilatation.tex b/vorlesungen/slides/8/wavelets/dilatation.tex
new file mode 100644
index 0000000..881f760
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/dilatation.tex
@@ -0,0 +1,62 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Dilatation}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Dilatation in $\mathbb{R}$}
+$f\colon \mathbb{R}\to\mathbb{R}$
+Definition im Ortsraum:
+\[
+(D_af)(x)
+=
+\frac{1}{\sqrt{|a|}}
+f\biggl(\frac{x}{a}\biggr)
+\]
+\uncover<2->{%
+Dilatation im Frequenzraum:
+\[
+\widehat{D_af}(\omega)
+=
+D_{1/a}\hat{f}(\omega)
+\]}
+\uncover<3->{%
+Spektrum wird mit $1/a$ skaliert!}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{``Dilatation'' auf einem Graphen}
+\begin{itemize}
+\item<5-> Dilatation auf dem Graphen gibt es nicht
+\item<6-> Dilatation im Spektrum $\{\lambda_1,\dots,\lambda_n\}$ gibt es nicht
+\item<7-> ``Spektrale Dilatation'' verwenden
+\begin{enumerate}
+\item<8-> Start: $e_k$
+\item<9-> Fourier-Transformation: $\chi^te_k$
+\item<10-> Spektrum skalieren: mit
+$D_{1/a}g$ filtern
+\item<11-> Rücktransformation
+\[
+D_{g,a}e_k
+=
+\chi
+\uncover<12->{\operatorname{diag}(\tilde{D}_{1/a}g(\lambda_*))
+\chi^t e_k}
+\]
+\end{enumerate}
+\end{itemize}
+
+
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/dilbei.tex b/vorlesungen/slides/8/wavelets/dilbei.tex
new file mode 100644
index 0000000..fc66a0a
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/dilbei.tex
@@ -0,0 +1,46 @@
+%
+% beispiel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\bild#1#2{
+\node at (0,0) [rotate=-90]
+{\includegraphics[width=#1\textwidth]{../../../SeminarWavelets/buch/papers/sgwt/images/#2}};
+}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Wavelets einer Strecke}
+\vspace{-10pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\only<1>{ \bild{0.6}{wavelets-psi-line-5-10.pdf} }
+\only<2>{ \bild{0.6}{wavelets-psi-line-4-10.pdf} }
+\only<3>{ \bild{0.6}{wavelets-psi-line-3-10.pdf} }
+\only<4>{ \bild{0.6}{wavelets-psi-line-2-10.pdf} }
+\only<5>{ \bild{0.6}{wavelets-psi-line-1-10.pdf} }
+
+\only<6>{ \bild{0.6}{wavelets-phi-line-10.pdf} }
+
+\only<1>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_1$}; }
+\only<2>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_2$}; }
+\only<3>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_3$}; }
+\only<4>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_4$}; }
+\only<5>{ \node at (-7.6,2.8) [right] {Bandpass mit $g_5$}; }
+\only<6>{ \node at (-7.6,2.8) [right] {Tiefpass mit $h$}; }
+
+
+\only<1>{ \node at (-7.6,2) [right] {$D_{g,1/a_1}\chi_*$}; }
+\only<2>{ \node at (-7.6,2) [right] {$D_{g,1/a_2}\chi_*$}; }
+\only<3>{ \node at (-7.6,2) [right] {$D_{g,1/a_3}\chi_*$}; }
+\only<4>{ \node at (-7.6,2) [right] {$D_{g,1/a_4}\chi_*$}; }
+\only<5>{ \node at (-7.6,2) [right] {$D_{g,1/a_5}\chi_*$}; }
+
+\only<6>{ \node at (-7.6,2) [right] {$D_{h}\chi_*$}; }
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/ev.m b/vorlesungen/slides/8/wavelets/ev.m
new file mode 100644
index 0000000..7f4dd55
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/ev.m
@@ -0,0 +1,97 @@
+#
+# ev.m
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+
+L = [
+ 2, -1, 0, -1, 0;
+ -1, 4, -1, -1, -1;
+ 0, -1, 2, 0, -1;
+ -1, -1, 0, 3, -1;
+ 0, -1, -1, -1, 3
+];
+
+[v, lambda] = eig(L);
+
+function knoten(fn, wert, punkt)
+ if (wert > 0)
+ farbe = sprintf("red!%02d", round(100 * wert));
+ else
+ farbe = sprintf("blue!%02d", round(-100 * wert));
+ end
+ fprintf(fn, "\t\\fill[color=%s] %s circle[radius=0.25];\n",
+ farbe, punkt);
+ fprintf(fn, "\t\\draw %s circle[radius=0.25];\n", punkt);
+endfunction
+
+function vektor(fn, v, name, lambda)
+ fprintf(fn, "\\def\\%s{\n", name);
+ fprintf(fn, "\t\\coordinate (A) at ({0*\\a},0);\n");
+ fprintf(fn, "\t\\coordinate (B) at ({1*\\a},0);\n");
+ fprintf(fn, "\t\\coordinate (C) at ({2*\\a},0);\n");
+ fprintf(fn, "\t\\coordinate (D) at ({0.5*\\a},{-\\b});\n");
+ fprintf(fn, "\t\\coordinate (E) at ({1.5*\\a},{-\\b});\n");
+ fprintf(fn, "\t\\draw (A) -- (B);\n");
+ fprintf(fn, "\t\\draw (A) -- (D);\n");
+ fprintf(fn, "\t\\draw (B) -- (C);\n");
+ fprintf(fn, "\t\\draw (B) -- (D);\n");
+ fprintf(fn, "\t\\draw (B) -- (E);\n");
+ fprintf(fn, "\t\\draw (C) -- (E);\n");
+ fprintf(fn, "\t\\draw (D) -- (E);\n");
+ fprintf(fn, "\t\\node at (-2.8,{-0.5*\\b}) [right] {$\\lambda=%.4f$};\n",
+ round(1000 * abs(lambda)) / 10000);
+ w = v / max(abs(v));
+ knoten(fn, w(1,1), "(A)");
+ knoten(fn, w(2,1), "(B)");
+ knoten(fn, w(3,1), "(C)");
+ knoten(fn, w(4,1), "(D)");
+ knoten(fn, w(5,1), "(E)");
+ fprintf(fn, "}\n");
+endfunction
+
+function punkt(fn, x, wert)
+ fprintf(fn, "({%.4f*\\c},{%.4f*\\d})", x, wert);
+endfunction
+
+function funktion(fn, v, name, lambda)
+ fprintf(fn, "\\def\\%s{\n", name);
+ fprintf(fn, "\t\\draw[color=red,line width=1.4pt]\n\t\t");
+ punkt(fn, -2, v(1,1));
+ fprintf(fn, " --\n\t\t");
+ punkt(fn, -1, v(4,1));
+ fprintf(fn, " --\n\t\t");
+ punkt(fn, 0, v(2,1));
+ fprintf(fn, " --\n\t\t");
+ punkt(fn, 1, v(5,1));
+ fprintf(fn, " --\n\t\t");
+ punkt(fn, 2, v(3,1));
+ fprintf(fn, ";\n");
+ fprintf(fn, "\t\\draw[->] ({-2.1*\\c},0) -- ({2.1*\\c},0);\n");
+ fprintf(fn, "\t\\draw[->] (0,{-1.1*\\d}) -- (0,{1.1*\\d});\n");
+ for x = (-2:2)
+ fprintf(fn, "\t\\fill ({%d*\\c},0) circle[radius=0.05];\n", x);
+ endfor
+ fprintf(fn, "}\n");
+endfunction
+
+fn = fopen("vektoren.tex", "w");
+
+vektor(fn, v(:,1), "vnull", lambda(1,1));
+funktion(fn, v(:,1), "fnull", lambda(1,1));
+
+vektor(fn, v(:,2), "vone", lambda(2,2));
+funktion(fn, v(:,2), "fone", lambda(2,2));
+
+vektor(fn, v(:,3), "vtwo", lambda(3,3));
+funktion(fn, v(:,3), "ftwo", lambda(3,3));
+
+vektor(fn, v(:,4), "vthree", lambda(4,4));
+funktion(fn, v(:,4), "fthree", lambda(4,4));
+
+vektor(fn, v(:,5), "vfour", lambda(5,5));
+funktion(fn, v(:,5), "ffour", lambda(5,5));
+
+fclose(fn);
+
+
diff --git a/vorlesungen/slides/8/wavelets/fourier.tex b/vorlesungen/slides/8/wavelets/fourier.tex
new file mode 100644
index 0000000..3195ec8
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/fourier.tex
@@ -0,0 +1,86 @@
+%
+% fourier.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Fourier-Transformation}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Aufgabe}
+Gegeben: Funktion $f$ auf dem Graphen
+\\
+\uncover<2->{%
+Gesucht: Koeffizienten $\hat{f}$ der Darstellung in der Laplace-Basis}
+\end{block}
+\uncover<3->{%
+\begin{block}{Definition $\chi$-Matrix}
+Eigenwerte $0=\lambda_1<\lambda_2\le \dots \le \lambda_n$ von $L$
+\vspace{-10pt}
+\begin{center}
+\begin{tikzpicture}
+\node at (-1.9,0) [left] {$\chi=\mathstrut$};
+\node at (0,0) {$\left(\raisebox{0pt}[1.7cm][1.7cm]{\hspace{3.5cm}}\right)$};
+
+\fill[color=blue!20] (-1.7,-1.7) rectangle (-1.1,1.7);
+\draw[color=blue] (-1.7,-1.7) rectangle (-1.1,1.7);
+\node at (-1.4,0) [rotate=90] {$v_1=\mathstrut$EV zum EW $\lambda_1$\strut};
+
+\fill[color=blue!20] (-1.0,-1.7) rectangle (-0.4,1.7);
+\draw[color=blue] (-1.0,-1.7) rectangle (-0.4,1.7);
+\node at (-0.7,0) [rotate=90] {$v_2=\mathstrut$EV zum EW $\lambda_2$\strut};
+
+\fill[color=blue!20] (1.1,-1.7) rectangle (1.7,1.7);
+\draw[color=blue] (1.1,-1.7) rectangle (1.7,1.7);
+\node at (1.4,0) [rotate=90] {$v_n=\mathstrut$EV zum EW $\lambda_n$\strut};
+
+\node at (0.4,0) {$\dots$};
+
+\end{tikzpicture}
+\end{center}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<4->{%
+\begin{block}{Transformation}
+$L$ symmetrisch
+\\
+\uncover<5->{$\Rightarrow$
+Die Eigenvektoren von $L$ können orthonormiert gewählt werden}
+\\
+\uncover<6->{$\Rightarrow$
+Koeffizienten können durch Skalarprodukte ermittelt werden:}
+\uncover<7->{%
+\[
+\hat{f}(k)
+=
+\hat{f}(\lambda_k)
+\uncover<8->{=
+\langle v_k, f\rangle
+\quad\Rightarrow\quad
+\hat{f}}
+\uncover<9->{=
+\chi^tf}
+\]}
+\uncover<10->{%
+$\chi$ ist die {\em Fourier-Transformation}}
+\end{block}}
+\uncover<11->{%
+\begin{block}{Rücktransformation}
+Eigenvektoren orthonormiert
+\\
+\uncover<12->{$\Rightarrow$
+$\chi$ orthogonal}
+\uncover<13->{
+\[
+\chi\chi^t = I
+\]}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/frame.tex b/vorlesungen/slides/8/wavelets/frame.tex
new file mode 100644
index 0000000..4d0c7d1
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/frame.tex
@@ -0,0 +1,66 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Graph Wavelet Frame}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Frame-Vektoren}
+Zu Dilatationsfaktoren $A=\{a_i\,|\,i=1,\dots,N\}$
+konstruiere das Frame
+\begin{align*}
+F=
+\{&D_he_1,\dots,D_he_n,\\
+ &Dg_1e_1,\dots,Dg_1e_n,\\
+ &Dg_2e_1,\dots,Dg_2e_n,\\
+ &\dots\\
+ &Dg_Ne_1,\dots,Dg_Ne_n\}
+\end{align*}
+\uncover<2->{Notation:
+\begin{align*}
+v_{0,k}
+&=
+D_he_k
+\\
+v_{i,k}
+&=
+Dg_ie_k
+\end{align*}}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Frameoperator}
+\begin{align*}
+\mathcal{T}\colon \mathbb{R}^n\to\mathbb{R}^{nN}
+:
+v
+&\mapsto
+\begin{pmatrix}
+\uncover<4->{\langle D_he_1,v\rangle}\\
+\uncover<4->{\vdots}\\
+\uncover<4->{\langle D_he_n,v\rangle}\\
+\hline
+\uncover<5->{\langle D_{g_1}e_1,v\rangle}\\
+\uncover<5->{\vdots}\\
+\uncover<5->{\langle D_{g_1}e_n,v\rangle}\\
+\hline
+\uncover<6->{\vdots}\\
+\uncover<6->{\vdots}\\
+\hline
+\uncover<7->{\langle D_{g_N}e_1,v\rangle}\\
+\uncover<7->{\vdots}\\
+\uncover<7->{\langle D_{g_N}e_n,v\rangle}
+\end{pmatrix}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/framekonstanten.tex b/vorlesungen/slides/8/wavelets/framekonstanten.tex
new file mode 100644
index 0000000..a436536
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/framekonstanten.tex
@@ -0,0 +1,71 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+%\setlength{\abovedisplayskip}{5pt}
+%\setlength{\belowdisplayskip}{5pt}
+\frametitle{Framekonstanten}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Eine Menge $\mathcal{F}$ von Vektoren heisst ein Frame,
+falls es Konstanten $A$ und $B$ gibt derart, dass
+\[
+A\|v\|^2
+\le
+\|\mathcal{T}v\|^2
+\sum_{b\in\mathcal{F}} |\langle b,v\rangle|^2
+\le
+B\|v\|^2
+\]
+\uncover<2->{$A>0$ garantiert Invertierbarkeit}
+\end{block}
+\uncover<3->{%
+\begin{block}{$\|\mathcal{T}v\|$ für Graph-Wavelets}
+\begin{align*}
+\|\mathcal{T}v\|^2
+&=
+\sum_k |\langle D_he_k,v\rangle|^2
++
+\sum_{i,k} |\langle D_{g_i}e_k, v\rangle|^2
+\\
+&\uncover<4->{=
+\sum_k |h(\lambda_k) \hat{v}(k)|^2
++
+\sum_{k,i} |g_i(\lambda_k) \hat{v}(k)|^2}
+\end{align*}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{%
+\begin{block}{$A$ und $B$}
+Frame-Norm-Funktion
+\begin{align*}
+f(\lambda)
+&=
+h(\lambda)
++
+\sum_i g_i(\lambda)
+\\
+&\uncover<6->{=
+h(\lambda)
++
+\sum_i g(a_i\lambda)}
+\end{align*}
+\uncover<7->{Abschätzung für Frame-Konstanten
+\begin{align*}
+A&\uncover<8->{=
+\min_{i} f(\lambda_i)}
+\\
+B&\uncover<9->{=
+\max_{i} f(\lambda_i)}
+\end{align*}}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex b/vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex
new file mode 100644
index 0000000..c78e6dd
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/frequenzlokalisierung.tex
@@ -0,0 +1,78 @@
+%
+% frequenzlokalisierung.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+
+\def\kurve#1#2{
+ \draw[color=#2,line width=1.4pt]
+ plot[domain=0:6.3,samples=400]
+ ({\x},{7*\x*exp(-(\x/#1)*(\x/#1))/#1});
+}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lokalisierung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Bandpass}
+Gegeben durch $g(\lambda)\ge 0$:
+\begin{align*}
+g(0) &= 0\\
+\lim_{\lambda\to\infty}g(\lambda)&= 0
+\end{align*}
+\vspace{-10pt}
+\begin{enumerate}
+\item<3-> Fourier-transformieren
+\item<4-> Amplituden mit $g(\lambda)$ multiplizieren
+\item<5-> Rücktransformieren
+\end{enumerate}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Tiefpass}
+Gegeben durch $h(\lambda)\ge0$:
+\begin{align*}
+h(0) &= 1\\
+\lim_{\lambda\to\infty}h(\lambda)&= 0
+\end{align*}
+\vspace{-10pt}
+\begin{enumerate}
+\item<8-> Fourier-Transformation
+\item<9-> Amplituden mit $h(\lambda)$ multiplizieren
+\item<10-> Rücktransformation
+\end{enumerate}
+\end{block}}
+\end{column}
+\end{columns}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick,scale=0.8]
+
+\uncover<2->{
+\begin{scope}[xshift=-4.5cm]
+\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
+\kurve{3}{red}
+\draw[->] (0,-0.1) -- (0,3.3);
+\end{scope}
+}
+
+\uncover<7->{
+\begin{scope}[xshift=4.5cm]
+\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
+\draw[color=darkgreen,line width=1.4pt]
+ plot[domain=0:6.3,samples=100]
+ ({\x},{3*exp(-(\x/0.5)*(\x/0.5)});
+
+\draw[->] (0,-0.1) -- (0,3.3) coordinate[label={right:$\color{darkgreen}h(\lambda)$}];
+\end{scope}
+}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/funktionen.tex b/vorlesungen/slides/8/wavelets/funktionen.tex
new file mode 100644
index 0000000..2e3ae9b
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/funktionen.tex
@@ -0,0 +1,78 @@
+%
+% funktionen.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\knoten#1#2{
+ \draw #1 circle[radius=0.25];
+ \node at #1 {$#2$};
+}
+\def\kante#1#2{
+ \draw[shorten >= 0.25cm,shorten <= 0.25cm] #1 -- #2;
+}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Funktionen auf einem Graphen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Ein Graph $G=(V,E)$, eine Funktion auf dem Graphen ist
+\[
+f\colon V \to \mathbb{R} : v\mapsto f(v)
+\]
+Knoten: $V=\{1,\dots,n\}$
+\\
+\uncover<2->{%
+Vektorschreibweise
+\[
+f = \begin{pmatrix}
+f(1)\\f(2)\\\vdots\\f(n)
+\end{pmatrix}
+\]}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Matrizen}
+Adjazenz-, Grad- und Laplace-Matrix operieren auf Funktionen auf Graphen:
+\[
+L
+=
+\begin{pmatrix*}[r]
+ 2&-1& 0&-1& 0\\
+-1& 4&-1&-1&-1\\
+ 0&-1& 2& 0&-1\\
+-1&-1& 0& 3&-1\\
+ 0&-1&-1&-1& 3\\
+\end{pmatrix*}
+\]
+\end{block}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\def\a{2}
+\coordinate (A) at (0,0);
+\coordinate (B) at (\a,0);
+\coordinate (C) at ({2*\a},0);
+\coordinate (D) at ({0.5*\a},{-0.5*sqrt(3)*\a});
+\coordinate (E) at ({1.5*\a},{-0.5*sqrt(3)*\a});
+\knoten{(A)}{1}
+\knoten{(B)}{2}
+\knoten{(C)}{3}
+\knoten{(D)}{4}
+\knoten{(E)}{5}
+\kante{(A)}{(B)}
+\kante{(B)}{(C)}
+\kante{(A)}{(D)}
+\kante{(B)}{(D)}
+\kante{(B)}{(E)}
+\kante{(C)}{(E)}
+\kante{(D)}{(E)}
+\end{tikzpicture}
+\end{center}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/gundh.tex b/vorlesungen/slides/8/wavelets/gundh.tex
new file mode 100644
index 0000000..2d6c677
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/gundh.tex
@@ -0,0 +1,85 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\kurve#1#2{
+ \draw[color=#2,line width=1.4pt]
+ plot[domain=0:6.3,samples=400]
+ ({\x},{7*\x*exp(-(\x/#1)*(\x/#1))/#1});
+}
+
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Wavelets}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Mutterwavelets + Dilatation}
+Eine Menge von Dilatationsfaktoren
+\[
+A= \{a_1,a_2,\dots,a_N\}
+\]
+wählen\uncover<2->{, und mit Funktionen
+\[
+{\color{blue}g_i} = \tilde{D}_{1/a_i}{\color{red}g}
+\]
+die Standardbasisvektoren filtern}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<5->{
+\begin{block}{Vaterwavelets}
+Tiefpass mit Funktion ${\color{darkgreen}h(\lambda)}$,
+Standardbasisvektoren mit ${\color{darkgreen}h}$ filtern:
+\[
+D_{\color{darkgreen}h}e_k
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\begin{scope}
+
+\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
+
+\kurve{1}{red}
+\uncover<4->{
+\foreach \k in {0,...,4}{
+ \pgfmathparse{0.30*exp(ln(2)*\k)}
+ \xdef\l{\pgfmathresult}
+ \kurve{\l}{blue}
+}
+}
+
+\node[color=red] at ({0.7*1},3) [above] {$g(\lambda)$};
+\uncover<4->{
+\node[color=blue] at ({0.7*0.3*16},3) [above] {$g_i(\lambda)$};
+}
+
+\draw[->] (0,-0.1) -- (0,3.3);
+\end{scope}
+
+\begin{scope}[xshift=7cm]
+
+\uncover<6->{
+\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
+
+\draw[color=darkgreen,line width=1.4pt]
+ plot[domain=0:6.3,samples=100]
+ ({\x},{3*exp(-(\x/0.5)*(\x/0.5)});
+
+\draw[->] (0,-0.1) -- (0,3.3) coordinate[label={right:$\color{darkgreen}h(\lambda)$}];
+}
+
+\end{scope}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/laplacebasis.tex b/vorlesungen/slides/8/wavelets/laplacebasis.tex
new file mode 100644
index 0000000..ced4c09
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/laplacebasis.tex
@@ -0,0 +1,62 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\a{2}
+\def\b{0.8}
+\def\c{1}
+\def\d{0.6}
+\input{../slides/8/wavelets/vektoren.tex}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Laplace-Basis}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\begin{scope}[yshift=-0.4cm,xshift=-5.5cm]
+\fnull
+\end{scope}
+
+\begin{scope}[yshift=-1.8cm,xshift=-5.5cm]
+\fone
+\end{scope}
+
+\begin{scope}[yshift=-3.2cm,xshift=-5.5cm]
+\ftwo
+\end{scope}
+
+\begin{scope}[yshift=-4.6cm,xshift=-5.5cm]
+\fthree
+\end{scope}
+
+\begin{scope}[yshift=-6.0cm,xshift=-5.5cm]
+\ffour
+\end{scope}
+
+\begin{scope}[yshift=0cm]
+\vnull
+\end{scope}
+
+\begin{scope}[yshift=-1.4cm]
+\vone
+\end{scope}
+
+\begin{scope}[yshift=-2.8cm]
+\vtwo
+\end{scope}
+
+\begin{scope}[yshift=-4.2cm]
+\vthree
+\end{scope}
+
+\begin{scope}[yshift=-5.6cm]
+\vfour
+\end{scope}
+
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex b/vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex
new file mode 100644
index 0000000..d6575d0
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/lokalisierungsvergleich.tex
@@ -0,0 +1,46 @@
+%
+% lokalisierungsvergleich.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Lokalisierung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Ortsraum}
+Ortsraum$\mathstrut=V$
+\begin{itemize}
+\item<3-> Standardbasis
+\item<5-> lokalisiert in den Knoten
+\item<7-> die meisten $\hat{f}(k)$ gross
+\item<9-> vollständig delokalisiert im Frequenzraum
+\end{itemize}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Frequenzraum}
+\uncover<2->{Frequenzraum $\mathstrut=\{\lambda_1,\lambda_2,\dots,\lambda_n\}$}
+\begin{itemize}
+\item<4-> Laplace-Basis
+\item<6-> lokalisiert in den Eigenwerten
+\item<8-> die meisten Komponenten gross
+\item<10-> vollständig delokalisiert im Ortsraum
+\end{itemize}
+\end{block}
+\end{column}
+\end{columns}
+\uncover<11->{%
+\begin{block}{Plan}
+Gesucht sind Funktionen auf dem Graphen derart, die
+\begin{enumerate}
+\item<12-> in der Nähe einzelner Knoten konzentriert/lokalisiert sind und
+\item<13-> deren Fourier-Transformation in der Nähe einzelner Eigenwerte
+konzentriert/lokalisiert ist
+\end{enumerate}
+\end{block}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/matrixdilatation.tex b/vorlesungen/slides/8/wavelets/matrixdilatation.tex
new file mode 100644
index 0000000..3536736
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/matrixdilatation.tex
@@ -0,0 +1,39 @@
+%
+% matrixdilatation.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Dilatation in Matrixform}
+Dilatationsfaktor $a$, skaliertes Wavelet beim Knoten $k$ mit Spektrum
+$\tilde{D}_{1/a}g$
+\begin{align*}
+D_{g,a}e_k
+&=
+\chi
+\begin{pmatrix}
+g(a\lambda_1)& 0 & \dots & 0 \\
+ 0 &g(a\lambda_2)& \dots & 0 \\
+ \vdots & \vdots & \ddots & \vdots \\
+ 0 & 0 & \dots &g(a\lambda_n)
+\end{pmatrix}
+\chi^t
+e_k
+\intertext{\uncover<2->{``verschmierter'' Standardbasisvektor am Knoten $k$}}
+\uncover<2->{D_he_k
+&=
+\chi
+\begin{pmatrix}
+h(\lambda_1)& 0 & \dots & 0 \\
+ 0 &h(\lambda_2)& \dots & 0 \\
+ \vdots & \vdots & \ddots & \vdots \\
+ 0 & 0 & \dots &h(\lambda_n)
+\end{pmatrix}
+\chi^t
+e_k}
+\end{align*}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wavelets/vektoren.tex b/vorlesungen/slides/8/wavelets/vektoren.tex
new file mode 100644
index 0000000..2315d53
--- /dev/null
+++ b/vorlesungen/slides/8/wavelets/vektoren.tex
@@ -0,0 +1,200 @@
+\def\vnull{
+ \coordinate (A) at ({0*\a},0);
+ \coordinate (B) at ({1*\a},0);
+ \coordinate (C) at ({2*\a},0);
+ \coordinate (D) at ({0.5*\a},{-\b});
+ \coordinate (E) at ({1.5*\a},{-\b});
+ \draw (A) -- (B);
+ \draw (A) -- (D);
+ \draw (B) -- (C);
+ \draw (B) -- (D);
+ \draw (B) -- (E);
+ \draw (C) -- (E);
+ \draw (D) -- (E);
+ \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.0000$};
+ \fill[color=red!100] (A) circle[radius=0.25];
+ \draw (A) circle[radius=0.25];
+ \fill[color=red!100] (B) circle[radius=0.25];
+ \draw (B) circle[radius=0.25];
+ \fill[color=red!100] (C) circle[radius=0.25];
+ \draw (C) circle[radius=0.25];
+ \fill[color=red!100] (D) circle[radius=0.25];
+ \draw (D) circle[radius=0.25];
+ \fill[color=red!100] (E) circle[radius=0.25];
+ \draw (E) circle[radius=0.25];
+}
+\def\fnull{
+ \draw[color=red,line width=1.4pt]
+ ({-2.0000*\c},{0.4472*\d}) --
+ ({-1.0000*\c},{0.4472*\d}) --
+ ({0.0000*\c},{0.4472*\d}) --
+ ({1.0000*\c},{0.4472*\d}) --
+ ({2.0000*\c},{0.4472*\d});
+ \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0);
+ \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d});
+ \fill ({-2*\c},0) circle[radius=0.05];
+ \fill ({-1*\c},0) circle[radius=0.05];
+ \fill ({0*\c},0) circle[radius=0.05];
+ \fill ({1*\c},0) circle[radius=0.05];
+ \fill ({2*\c},0) circle[radius=0.05];
+}
+\def\vone{
+ \coordinate (A) at ({0*\a},0);
+ \coordinate (B) at ({1*\a},0);
+ \coordinate (C) at ({2*\a},0);
+ \coordinate (D) at ({0.5*\a},{-\b});
+ \coordinate (E) at ({1.5*\a},{-\b});
+ \draw (A) -- (B);
+ \draw (A) -- (D);
+ \draw (B) -- (C);
+ \draw (B) -- (D);
+ \draw (B) -- (E);
+ \draw (C) -- (E);
+ \draw (D) -- (E);
+ \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.1586$};
+ \fill[color=blue!100] (A) circle[radius=0.25];
+ \draw (A) circle[radius=0.25];
+ \fill[color=blue!00] (B) circle[radius=0.25];
+ \draw (B) circle[radius=0.25];
+ \fill[color=red!100] (C) circle[radius=0.25];
+ \draw (C) circle[radius=0.25];
+ \fill[color=blue!41] (D) circle[radius=0.25];
+ \draw (D) circle[radius=0.25];
+ \fill[color=red!41] (E) circle[radius=0.25];
+ \draw (E) circle[radius=0.25];
+}
+\def\fone{
+ \draw[color=red,line width=1.4pt]
+ ({-2.0000*\c},{-0.6533*\d}) --
+ ({-1.0000*\c},{-0.2706*\d}) --
+ ({0.0000*\c},{-0.0000*\d}) --
+ ({1.0000*\c},{0.2706*\d}) --
+ ({2.0000*\c},{0.6533*\d});
+ \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0);
+ \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d});
+ \fill ({-2*\c},0) circle[radius=0.05];
+ \fill ({-1*\c},0) circle[radius=0.05];
+ \fill ({0*\c},0) circle[radius=0.05];
+ \fill ({1*\c},0) circle[radius=0.05];
+ \fill ({2*\c},0) circle[radius=0.05];
+}
+\def\vtwo{
+ \coordinate (A) at ({0*\a},0);
+ \coordinate (B) at ({1*\a},0);
+ \coordinate (C) at ({2*\a},0);
+ \coordinate (D) at ({0.5*\a},{-\b});
+ \coordinate (E) at ({1.5*\a},{-\b});
+ \draw (A) -- (B);
+ \draw (A) -- (D);
+ \draw (B) -- (C);
+ \draw (B) -- (D);
+ \draw (B) -- (E);
+ \draw (C) -- (E);
+ \draw (D) -- (E);
+ \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.3000$};
+ \fill[color=red!100] (A) circle[radius=0.25];
+ \draw (A) circle[radius=0.25];
+ \fill[color=blue!00] (B) circle[radius=0.25];
+ \draw (B) circle[radius=0.25];
+ \fill[color=red!100] (C) circle[radius=0.25];
+ \draw (C) circle[radius=0.25];
+ \fill[color=blue!100] (D) circle[radius=0.25];
+ \draw (D) circle[radius=0.25];
+ \fill[color=blue!100] (E) circle[radius=0.25];
+ \draw (E) circle[radius=0.25];
+}
+\def\ftwo{
+ \draw[color=red,line width=1.4pt]
+ ({-2.0000*\c},{0.5000*\d}) --
+ ({-1.0000*\c},{-0.5000*\d}) --
+ ({0.0000*\c},{-0.0000*\d}) --
+ ({1.0000*\c},{-0.5000*\d}) --
+ ({2.0000*\c},{0.5000*\d});
+ \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0);
+ \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d});
+ \fill ({-2*\c},0) circle[radius=0.05];
+ \fill ({-1*\c},0) circle[radius=0.05];
+ \fill ({0*\c},0) circle[radius=0.05];
+ \fill ({1*\c},0) circle[radius=0.05];
+ \fill ({2*\c},0) circle[radius=0.05];
+}
+\def\vthree{
+ \coordinate (A) at ({0*\a},0);
+ \coordinate (B) at ({1*\a},0);
+ \coordinate (C) at ({2*\a},0);
+ \coordinate (D) at ({0.5*\a},{-\b});
+ \coordinate (E) at ({1.5*\a},{-\b});
+ \draw (A) -- (B);
+ \draw (A) -- (D);
+ \draw (B) -- (C);
+ \draw (B) -- (D);
+ \draw (B) -- (E);
+ \draw (C) -- (E);
+ \draw (D) -- (E);
+ \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.4414$};
+ \fill[color=red!41] (A) circle[radius=0.25];
+ \draw (A) circle[radius=0.25];
+ \fill[color=red!00] (B) circle[radius=0.25];
+ \draw (B) circle[radius=0.25];
+ \fill[color=blue!41] (C) circle[radius=0.25];
+ \draw (C) circle[radius=0.25];
+ \fill[color=blue!100] (D) circle[radius=0.25];
+ \draw (D) circle[radius=0.25];
+ \fill[color=red!100] (E) circle[radius=0.25];
+ \draw (E) circle[radius=0.25];
+}
+\def\fthree{
+ \draw[color=red,line width=1.4pt]
+ ({-2.0000*\c},{0.2706*\d}) --
+ ({-1.0000*\c},{-0.6533*\d}) --
+ ({0.0000*\c},{0.0000*\d}) --
+ ({1.0000*\c},{0.6533*\d}) --
+ ({2.0000*\c},{-0.2706*\d});
+ \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0);
+ \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d});
+ \fill ({-2*\c},0) circle[radius=0.05];
+ \fill ({-1*\c},0) circle[radius=0.05];
+ \fill ({0*\c},0) circle[radius=0.05];
+ \fill ({1*\c},0) circle[radius=0.05];
+ \fill ({2*\c},0) circle[radius=0.05];
+}
+\def\vfour{
+ \coordinate (A) at ({0*\a},0);
+ \coordinate (B) at ({1*\a},0);
+ \coordinate (C) at ({2*\a},0);
+ \coordinate (D) at ({0.5*\a},{-\b});
+ \coordinate (E) at ({1.5*\a},{-\b});
+ \draw (A) -- (B);
+ \draw (A) -- (D);
+ \draw (B) -- (C);
+ \draw (B) -- (D);
+ \draw (B) -- (E);
+ \draw (C) -- (E);
+ \draw (D) -- (E);
+ \node at (-2.8,{-0.5*\b}) [right] {$\lambda=0.5000$};
+ \fill[color=red!25] (A) circle[radius=0.25];
+ \draw (A) circle[radius=0.25];
+ \fill[color=blue!100] (B) circle[radius=0.25];
+ \draw (B) circle[radius=0.25];
+ \fill[color=red!25] (C) circle[radius=0.25];
+ \draw (C) circle[radius=0.25];
+ \fill[color=red!25] (D) circle[radius=0.25];
+ \draw (D) circle[radius=0.25];
+ \fill[color=red!25] (E) circle[radius=0.25];
+ \draw (E) circle[radius=0.25];
+}
+\def\ffour{
+ \draw[color=red,line width=1.4pt]
+ ({-2.0000*\c},{0.2236*\d}) --
+ ({-1.0000*\c},{0.2236*\d}) --
+ ({0.0000*\c},{-0.8944*\d}) --
+ ({1.0000*\c},{0.2236*\d}) --
+ ({2.0000*\c},{0.2236*\d});
+ \draw[->] ({-2.1*\c},0) -- ({2.1*\c},0);
+ \draw[->] (0,{-1.1*\d}) -- (0,{1.1*\d});
+ \fill ({-2*\c},0) circle[radius=0.05];
+ \fill ({-1*\c},0) circle[radius=0.05];
+ \fill ({0*\c},0) circle[radius=0.05];
+ \fill ({1*\c},0) circle[radius=0.05];
+ \fill ({2*\c},0) circle[radius=0.05];
+}
diff --git a/vorlesungen/slides/8/weitere.tex b/vorlesungen/slides/8/weitere.tex
new file mode 100644
index 0000000..46a3da0
--- /dev/null
+++ b/vorlesungen/slides/8/weitere.tex
@@ -0,0 +1,43 @@
+%
+% weitere.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Weitere Resultate der spektralen Graphentheorie}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Satz (Hoffmann)}
+\[
+\operatorname{chr} X \ge 1 + \frac{\alpha_{\text{max}}}{-\alpha_{\text{min}}}
+\]
+\end{block}
+\uncover<2->{%
+\begin{block}{Satz (Hoffmann)}
+\[
+\operatorname{ind} X \le n \biggl(1-\frac{d_{\text{min}}}{\lambda_{\text{max}}}\biggr)
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Korollar}
+Für einen regulären Graphen mit $n$ Knoten gilt
+\begin{align*}
+\operatorname{ind} X
+&\le
+\frac{n}{\displaystyle 1-\frac{d}{\alpha_{\text{min}}}}
+\\
+\operatorname{chr} X
+&\ge
+1-\frac{d}{\alpha_{\text{min}}}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/8/wilf.m b/vorlesungen/slides/8/wilf.m
new file mode 100644
index 0000000..49dc161
--- /dev/null
+++ b/vorlesungen/slides/8/wilf.m
@@ -0,0 +1,22 @@
+#
+# wilf.m -- chromatische Zahl für einen Graphen
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+N = 9;
+A = zeros(N,N);
+
+for i = (1:N)
+ j = 1 + rem(i, N)
+ A(i,j) = 1;
+endfor
+for i = (1:3:N-3)
+ j = 1 + rem(i + 2, N)
+ A(i,j) = 1;
+endfor
+
+A(1,3) = 1;
+
+A = A + A'
+
+eig(A)
diff --git a/vorlesungen/slides/9/Makefile.inc b/vorlesungen/slides/9/Makefile.inc
index fa6c29b..2257810 100644
--- a/vorlesungen/slides/9/Makefile.inc
+++ b/vorlesungen/slides/9/Makefile.inc
@@ -10,5 +10,20 @@ chapter9 = \
../slides/9/irreduzibel.tex \
../slides/9/stationaer.tex \
../slides/9/pf.tex \
+ ../slides/9/potenz.tex \
+ ../slides/9/pf/positiv.tex \
+ ../slides/9/pf/primitiv.tex \
+ ../slides/9/pf/trennung.tex \
+ ../slides/9/pf/vergleich.tex \
+ ../slides/9/pf/vergleich3d.tex \
+ ../slides/9/pf/dreieck.tex \
+ ../slides/9/pf/folgerungen.tex \
+ ../slides/9/parrondo/uebersicht.tex \
+ ../slides/9/parrondo/erwartung.tex \
+ ../slides/9/parrondo/spiela.tex \
+ ../slides/9/parrondo/spielb.tex \
+ ../slides/9/parrondo/spielbmod.tex \
+ ../slides/9/parrondo/kombiniert.tex \
+ ../slides/9/parrondo/deformation.tex \
../slides/9/chapter.tex
diff --git a/vorlesungen/slides/9/chapter.tex b/vorlesungen/slides/9/chapter.tex
index 9e26587..cbab0f0 100644
--- a/vorlesungen/slides/9/chapter.tex
+++ b/vorlesungen/slides/9/chapter.tex
@@ -10,5 +10,21 @@
\folie{9/stationaer.tex}
\folie{9/irreduzibel.tex}
\folie{9/pf.tex}
+\folie{9/potenz.tex}
+\folie{9/pf/positiv.tex}
+\folie{9/pf/primitiv.tex}
+\folie{9/pf/trennung.tex}
+\folie{9/pf/vergleich.tex}
+\folie{9/pf/vergleich3d.tex}
+\folie{9/pf/dreieck.tex}
+\folie{9/pf/folgerungen.tex}
+
+\folie{9/parrondo/uebersicht.tex}
+\folie{9/parrondo/erwartung.tex}
+\folie{9/parrondo/spiela.tex}
+\folie{9/parrondo/spielb.tex}
+\folie{9/parrondo/spielbmod.tex}
+\folie{9/parrondo/kombiniert.tex}
+\folie{9/parrondo/deformation.tex}
diff --git a/vorlesungen/slides/9/parrondo/deformation.tex b/vorlesungen/slides/9/parrondo/deformation.tex
new file mode 100644
index 0000000..40d2eb9
--- /dev/null
+++ b/vorlesungen/slides/9/parrondo/deformation.tex
@@ -0,0 +1,45 @@
+%
+% deformation.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Deformation}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Verlustspiele}
+Durch Deformation (Parameter $e$ und $\varepsilon$) kann man
+aus $A_e$ und $B_\varepsilon$ Spiele mit negativer Gewinnerwartung machen
+\uncover<2->{%
+\begin{align*}
+E(X)&=0&&\rightarrow&E(X_e)&<0\\
+E(Y)&=0&&\rightarrow&E(Y_\varepsilon)&<0\\
+\end{align*}}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Kombiniertes Spiel}
+\uncover<3->{%
+Die Deformation für das Spiel $C$ startet mit Erwartungswert $\frac{18}{709}$}%
+\begin{align*}
+\uncover<4->{E(Z)&=\frac{18}{709}>0}
+&&\uncover<5->{\rightarrow&
+E(Z_*)&>0}
+\end{align*}
+\uncover<6->{Wegen Stetigkeit!}
+\\
+\uncover<5->{Die Deformation ist immer noch ein Gewinnspiel (für Parameter klein genug)}
+\end{block}
+\uncover<7->{%
+\begin{block}{Parrondo-Paradoxon}
+Zufällig zwischen zwei Verlustspielen auswählen kann trotzdem ein
+Gewinnspiel ergeben
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/parrondo/erwartung.tex b/vorlesungen/slides/9/parrondo/erwartung.tex
new file mode 100644
index 0000000..b58c37f
--- /dev/null
+++ b/vorlesungen/slides/9/parrondo/erwartung.tex
@@ -0,0 +1,81 @@
+%
+% erwartung.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Erwartung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Zufallsvariable}
+\begin{center}
+\[
+\begin{array}{c|c}
+\text{Werte $X$}&\text{Wahrscheinlichkeit $p$}\\
+\hline
+x_1&p_1=P(X=x_1)\\
+x_2&p_2=P(X=x_2)\\
+\vdots&\vdots\\
+x_n&p_n=P(X=x_n)
+\end{array}
+\]
+\end{center}
+\end{block}
+\uncover<4->{%
+\begin{block}{Einervektoren/-matrizen}
+\[
+U=\begin{pmatrix}
+1&1&\dots&1\\
+1&1&\dots&1\\
+\vdots&\vdots&\ddots&\vdots\\
+1&1&\dots&1
+\end{pmatrix}
+\in
+M_{n\times m}(\Bbbk)
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Erwartungswerte}
+\begin{align*}
+E(X)
+&=
+\sum_i x_ip_i
+=
+x^tp
+\uncover<5->{=
+U^t x\odot p}
+\hspace*{3cm}
+\\
+\uncover<2->{E(X^2)
+&=
+\sum_i x_i^2p_i}
+\ifthenelse{\boolean{presentation}}{
+\only<6>{=
+(x\odot x)^tp}}{}
+\uncover<7->{=
+U^t (x\odot x) \odot p}
+\\
+\uncover<3->{E(X^k)
+&=
+\sum_i x_i^kp_i}
+\uncover<8->{=
+U^t x^{\odot k}\odot p}
+\end{align*}
+\uncover<9->{%
+Substitution:
+\begin{align*}
+\uncover<10->{\sum_i &\to U^t}\\
+\uncover<11->{x_i^k &\to x^{\odot k}}
+\end{align*}}%
+\uncover<12->{Kann für Übergangsmatrizen von Markov-Ketten verallgemeinert werden}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/parrondo/kombiniert.tex b/vorlesungen/slides/9/parrondo/kombiniert.tex
new file mode 100644
index 0000000..5012d06
--- /dev/null
+++ b/vorlesungen/slides/9/parrondo/kombiniert.tex
@@ -0,0 +1,73 @@
+%
+% kombiniert.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Kombiniertes Spiel $C$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Ein fairer Münzwurf entscheidet, ob
+Spiel $A$ oder Spiel $B$ gespielt wird
+\end{block}
+\uncover<2->{%
+\begin{block}{Übergangsmatrix}
+Münzwurf $X$
+\begin{align*}
+C
+&=
+P(X=\text{Kopf})\cdot A
++
+P(X=\text{Zahl})\cdot B
+\\
+&\uncover<3->{=
+\begin{pmatrix}
+ 0&\frac{3}{8}&\frac{5}{8}\\
+\frac{3}{10}& 0&\frac{3}{8}\\
+\frac{7}{10}&\frac{5}{8}& 0
+\end{pmatrix}}
+\end{align*}
+\end{block}}
+\vspace{-8pt}
+\uncover<4->{%
+\begin{block}{Gewinnerwartung im Einzelspiel}
+\[
+p=\frac13U
+\Rightarrow
+U^t(G\odot C)p
+\uncover<5->{=
+-\frac{1}{30}}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Iteriertes Spiel}
+\[
+\overline{p}=C\overline{p}
+\quad
+\uncover<7->{\Rightarrow
+\quad
+\overline{p}=\frac{1}{709}\begin{pmatrix}245\\180\\284\end{pmatrix}}
+\]
+\end{block}}
+\uncover<8->{%
+\begin{block}{Gewinnerwartung}
+\begin{align*}
+E(Z)
+&=
+U^t (G\odot C) \overline{p}
+\uncover<9->{=
+\frac{18}{709}}
+\end{align*}
+\uncover<10->{$C$ ist ein Gewinnspiel!}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/parrondo/spiela.tex b/vorlesungen/slides/9/parrondo/spiela.tex
new file mode 100644
index 0000000..629586f
--- /dev/null
+++ b/vorlesungen/slides/9/parrondo/spiela.tex
@@ -0,0 +1,52 @@
+%
+% spiela.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Spiel $A$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Gewinn = Zufallsvariable $X$ mit Werten $\pm 1$
+\begin{align*}
+P(X=\phantom{+}1)
+&=
+\frac12\uncover<2->{+e}
+\\
+P(X= - 1)
+&=
+\frac12\uncover<2->{-e}
+\end{align*}
+Bernoulli-Experiment mit $p=\frac12\uncover<2->{+e}$
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{
+\begin{block}{Gewinnerwartung}
+\begin{align*}
+E(X)
+&=\uncover<4->{
+P(X=1)\cdot (1)}
+\\
+&\qquad
+\uncover<4->{+
+P(X=-1)\cdot (-1)}
+\\
+&\uncover<5->{=
+\biggl(\frac12+e\biggr)\cdot 1
++
+\biggl(\frac12-e\biggr)\cdot (-1)}
+\\
+&\uncover<6->{=2e}
+\end{align*}
+\uncover<7->{$\Rightarrow$ {\usebeamercolor[fg]{title}Verlustspiel für $e<0$}}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/parrondo/spielb.tex b/vorlesungen/slides/9/parrondo/spielb.tex
new file mode 100644
index 0000000..f65564f
--- /dev/null
+++ b/vorlesungen/slides/9/parrondo/spielb.tex
@@ -0,0 +1,100 @@
+%
+% spielb.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Spiel $B$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Gewinn $\pm 1$, Wahrscheinlichkeit abhängig vom 3er-Rest des
+aktuellen Kapitals $K$:
+\begin{center}
+\uncover<2->{%
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (A0) at (90:2);
+\coordinate (A1) at (210:2);
+\coordinate (A2) at (330:2);
+
+\node at (A0) {$0$};
+\node at (A1) {$1$};
+\node at (A2) {$2$};
+
+\draw (A0) circle[radius=0.4];
+\draw (A1) circle[radius=0.4];
+\draw (A2) circle[radius=0.4];
+
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A0) -- (A1);
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A0) -- (A2);
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A1) -- (A2);
+
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A1) to[out=90,in=-150] (A0);
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A2) to[out=90,in=-30] (A0);
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A2) to[out=-150,in=-30] (A1);
+
+\def\R{1.9}
+\def\r{0.7}
+
+\node at (30:\r) {$\frac{9}{10}$};
+\node at (150:\r) {$\frac1{10}$};
+\node at (270:\r) {$\frac34$};
+
+\node at (30:\R) {$\frac{3}{4}$};
+\node at (150:\R) {$\frac1{4}$};
+\node at (270:\R) {$\frac14$};
+
+\end{tikzpicture}}
+\end{center}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Markov-Kette $Y$}
+Übergangsmatrix
+\[
+B=\begin{pmatrix}
+0&\frac14&\frac34\\
+\frac{1}{10}&0&\frac14\\
+\frac{9}{10}&\frac34&0
+\end{pmatrix}
+\]
+\vspace{-10pt}
+
+\uncover<4->{%
+Gewinnmatrix:
+\vspace{-2pt}
+\[
+G=\begin{pmatrix*}[r]
+0&-1&1\\
+1&0&-1\\
+-1&1&0
+\end{pmatrix*}
+\]}
+\end{block}}
+\vspace{-12pt}
+\uncover<5->{%
+\begin{block}{Gewinnerwartung}
+\begin{align*}
+&&&&
+E(Y)
+&=
+U^t(G\odot B)p
+\\
+p&={\textstyle\frac13}U
+&&\Rightarrow&
+E(Y)&={\textstyle\frac1{15}}
+\\
+\overline{p}&={\tiny\frac{1}{13}\begin{pmatrix}5\\2\\6\end{pmatrix}}
+&&\Rightarrow&
+E(Y)&=0
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/parrondo/spielbmod.tex b/vorlesungen/slides/9/parrondo/spielbmod.tex
new file mode 100644
index 0000000..66d39bc
--- /dev/null
+++ b/vorlesungen/slides/9/parrondo/spielbmod.tex
@@ -0,0 +1,103 @@
+%
+% spielb.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Modifiziertes Spiel $\tilde{B}$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Gewinn $\pm 1$, Wahrscheinlichkeit abhängig vom 3er-Rest des
+aktuellen Kapitals $K$:
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\coordinate (A0) at (90:2);
+\coordinate (A1) at (210:2);
+\coordinate (A2) at (330:2);
+
+\node at (A0) {$0$};
+\node at (A1) {$1$};
+\node at (A2) {$2$};
+
+\draw (A0) circle[radius=0.4];
+\draw (A1) circle[radius=0.4];
+\draw (A2) circle[radius=0.4];
+
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A0) -- (A1);
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A0) -- (A2);
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A1) -- (A2);
+
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A1) to[out=90,in=-150] (A0);
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A2) to[out=90,in=-30] (A0);
+\draw[->,shorten >= 0.4cm,shorten <= 0.4cm] (A2) to[out=-150,in=-30] (A1);
+
+\def\R{1.9}
+\def\r{0.7}
+
+\node at (30:{0.9*\r}) {\tiny $\frac{9}{10}\uncover<2->{+\varepsilon}$};
+\node at (150:{0.9*\r}) {\tiny $\frac1{10}\uncover<2->{-\varepsilon}$};
+\node at (270:\r) {$\frac34\uncover<2->{-\varepsilon}$};
+
+\node at (30:{1.1*\R}) {$\frac{3}{4}\uncover<2->{-\varepsilon}$};
+\node at (150:{1.1*\R}) {$\frac1{4}\uncover<2->{+\varepsilon}$};
+\node at (270:\R) {$\frac14\uncover<2->{+\varepsilon}$};
+
+\end{tikzpicture}
+\end{center}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Markov-Kette $\tilde{Y}$}
+Übergangsmatrix
+\[
+\tilde{B}=
+B\uncover<2->{+\varepsilon F}
+\uncover<3->{=
+B+\varepsilon\begin{pmatrix*}[r]
+0&1&-1\\
+-1&0&1\\
+1&-1&0
+\end{pmatrix*}}
+\]
+\vspace{-12pt}
+
+\uncover<4->{%
+Gewinnmatrix:
+\[
+G=\begin{pmatrix*}[r]
+0&-1&1\\
+1&0&-1\\
+-1&1&0
+\end{pmatrix*}
+\]}
+\end{block}
+\vspace{-12pt}
+\uncover<5->{%
+\begin{block}{Gewinnerwartung}
+\begin{align*}
+\uncover<6->{E(\tilde{Y})
+&=
+U^t(G\odot \tilde{B})p}
+\\
+&\uncover<7->{=
+E(Y) + \varepsilon U^t(G\odot F)p}
+\uncover<8->{=
+{\textstyle\frac1{15}}+2\varepsilon}
+\\
+\uncover<9->{
+\text{rep.}
+&=
+-{\textstyle\frac{294}{169}}\varepsilon+O(\varepsilon^2)
+\quad\text{Verlustspiel}
+}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/parrondo/uebersicht.tex b/vorlesungen/slides/9/parrondo/uebersicht.tex
new file mode 100644
index 0000000..2f3597a
--- /dev/null
+++ b/vorlesungen/slides/9/parrondo/uebersicht.tex
@@ -0,0 +1,17 @@
+%
+% uebersicht.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Parrondo-Paradoxon}
+\begin{center}
+\Large
+Zufällige
+Wahl zwischen zwei Verlustspielen = Gewinnspiel?
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/dreieck.tex b/vorlesungen/slides/9/pf/dreieck.tex
new file mode 100644
index 0000000..0a572f3
--- /dev/null
+++ b/vorlesungen/slides/9/pf/dreieck.tex
@@ -0,0 +1,44 @@
+%
+% dreieck.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Verallgemeinerte Dreiecksungleichung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.32\textwidth}
+\begin{block}{Satz}
+\[
+|u+v|\le |u|+|v|
+\]
+Gleichheit wenn lin.~abh.
+\end{block}
+\begin{block}{Satz}
+\[
+\biggl|\sum_i u_i\biggr|
+\le
+\sum_i |u_i|
+\]
+Gleichheit wenn $u_i = \lambda_i u$
+\end{block}
+\begin{block}{Satz}
+\[
+\biggl|\sum_i z_i\biggr|
+\le
+\sum_i |z_i|
+\]
+Gleichheit, wenn $z_i=|z_i|c$, $c\in\mathbb{C}$
+\end{block}
+\end{column}
+\begin{column}{0.68\textwidth}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/80-wahrscheinlichkeit/images/dreieck.pdf}
+\end{center}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/folgerungen.tex b/vorlesungen/slides/9/pf/folgerungen.tex
new file mode 100644
index 0000000..5042c78
--- /dev/null
+++ b/vorlesungen/slides/9/pf/folgerungen.tex
@@ -0,0 +1,203 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Folgerungen für $A>0$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Satz}
+$u\ge 0$ ein EV zum EW $ \lambda\ne 0$,
+dann ist $u>0$ und $\lambda >0$
+\end{block}
+\uncover<6->{%
+\begin{block}{Satz}
+$v$ ein EV zum EW $\lambda$ mit $|\lambda| = \varrho(A)$,
+dann ist $u=|v|$ mit $u_i=|v_i|$ ein EV mit EW $\varrho(A)$
+\end{block}}
+\uncover<29->{%
+\begin{block}{Satz}
+$v$ ein EV zum EW $\lambda$ mit $|\lambda|=\varrho(A)$,
+dann ist $\lambda=\varrho(A)$
+\end{block}}
+\uncover<46->{%
+\begin{block}{Satz}
+Der \only<57->{verallgemeinerte }Eigenraum zu EW $\varrho(A)$
+ist eindimensional
+\end{block}
+}
+\end{column}
+\ifthenelse{\boolean{presentation}}{
+\only<-6>{
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis]
+\begin{itemize}
+\item<3->
+Vergleich: $Au>0$
+\item<4->
+$Au=\lambda u > 0$
+\item<5->
+$\lambda >0$ und $u>0$
+\end{itemize}
+\end{proof}
+\end{column}}
+\only<7-20>{
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis]
+\begin{align*}
+(Au)_i
+&\only<-8>{=
+\sum_j a_{ij}u_j}
+\only<8-9>{=
+\sum_j |a_{ij}v_j|}
+\only<9->{\ge}
+\only<9-10>{
+\biggl|\sum_j a_{ij}v_j\biggr|}
+\only<10>{=}
+\only<10-11>{
+|(Av)_i|}
+\only<11>{=}
+\only<11-12>{
+|\lambda v_i|}
+\only<12>{=}
+\only<12-13>{
+\varrho(A) |v_i|}
+\only<13>{=}
+\uncover<13->{
+\varrho(A) u_i}
+\hspace*{5cm}
+\\
+\uncover<14->{Au&\ge \varrho(A)u}
+\intertext{\uncover<15->{Vergleich}}
+\uncover<16->{A^2u&> \varrho(A)Au}
+\intertext{\uncover<17->{Trennung: $\exists \vartheta >1$ mit}}
+\uncover<18->{A^2u&\ge \vartheta \varrho(A) Au }\\
+\uncover<19->{A^3u&\ge (\vartheta \varrho(A))^2 Au }\\
+\uncover<20->{A^ku&\ge (\vartheta \varrho(A))^{k-1} Au }\\
+\end{align*}
+\end{proof}
+\end{column}}
+\only<21-29>{%
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis, Fortsetzung]
+Abschätzung der Operatornorm:
+\begin{align*}
+\|A^k\|\, |Au|
+\ge
+\|A^{k+1}u\|
+\uncover<22->{
+\ge
+(\vartheta\varrho(A))^k |Au|}
+\end{align*}
+\uncover<23->{Abschätzung des Spektralradius}
+\begin{align*}
+\uncover<24->{\|A^k\| &\ge (\vartheta\varrho(A))^k}
+\\
+\uncover<25->{\|A^k\|^{\frac1k} &\ge \vartheta \varrho(A)}
+\\
+\uncover<26->{\lim_{k\to\infty}\|A^k\|^{\frac1k} &\ge \vartheta \varrho(A)}
+\\
+\uncover<27->{\varrho(A) &\ge \underbrace{\vartheta}_{>1} \varrho(A)}
+\end{align*}
+\uncover<28->{Widerspruch: $u=v$}
+\end{proof}
+\end{column}}
+\only<30-46>{
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis]
+$u$ ist EV mit EW $\varrho(A)$:
+\[
+Au=\varrho(A)u
+\uncover<31->{\Rightarrow
+\sum_j a_{ij}|v_j| = {\color<38->{red}\varrho(A) |v_i|}}
+\]
+\uncover<33->{Andererseits: $Av=\lambda v$}
+\[
+\uncover<34->{\sum_{j}a_{ij}v_j=\lambda v_i}
+\]
+\uncover<35->{Betrag}
+\begin{align*}
+\uncover<36->{\biggl|\sum_j a_{ij}v_j\biggr|
+&=
+|\lambda v_i|}
+\uncover<37->{=
+{\color<38->{red}\varrho(A) |v_i|}}
+\uncover<39->{=
+\sum_j a_{ij}|v_j|}
+\end{align*}
+\uncover<40->{Dreiecksungleichung: $v_j=|v_j|c, c\in\mathbb{C}$}
+\[
+\uncover<41->{\lambda v = Av}
+\uncover<42->{= Acu}
+\uncover<43->{= c\varrho(A) u}
+\uncover<44->{= \varrho(A)v}
+\]
+\uncover<45->{$\Rightarrow
+\lambda=\varrho(A)
+$}
+\end{proof}
+\end{column}}
+\only<47-57>{
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis]
+\begin{itemize}
+\item<48-> $u>0$ ein EV zum EW $\varrho(A)$
+\item<49-> $v$ ein weiterer EV, man darf $v\in\mathbb{R}^n$ annehmen
+\item<50-> Da $u>0$ gibt es $c>0$ mit $u\ge cv$ aber $u\not > cv$
+\item<51-> $u-cv\ge 0$ aber $u-cv\not > 0$
+\item<52-> $A$ anwenden:
+\[
+\begin{array}{ccc}
+\uncover<53->{A(u-cv)}&\uncover<54->{>&0}
+\\
+\uncover<53->{\|}&&
+\\
+\uncover<53->{\varrho(A)(u-cv)}&\uncover<55->{\not>&0}
+\end{array}
+\]
+\uncover<56->{Widerspruch: $v$ existiert nicht}
+\end{itemize}
+\end{proof}
+\end{column}}
+\only<58->{
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis]
+\begin{itemize}
+\item<59-> $Au=\varrho(A)u$ und $A^tp^t=\varrho(A)p^t$
+\item<60-> $u>0$ und $p>0$ $\Rightarrow$ $up>0$
+\item<61-> $px=0$, dann ist
+\[
+\uncover<62->{pAx}
+\only<62-63>{=
+(A^tp^t)^t x}
+\only<63-64>{=
+\varrho(A) (p^t)^t x}
+\uncover<64->{=
+\varrho(A) px}
+\uncover<65->{= 0}
+\]
+\uncover<66->{also ist $\{x\in\mathbb{R}^n\;|\; px=0\}$
+invariant}
+\item<67-> Annahme: $v\in \mathcal{E}_{\varrho(A)}$
+\item<68-> Dann muss es einen EV zum EW $\varrho(A)$ in
+$\mathcal{E}_{\varrho(A)}$ geben
+\item<69-> Widerspruch: der Eigenraum ist eindimensional
+\end{itemize}
+\end{proof}
+\end{column}}
+}{
+\begin{column}{0.48\textwidth}
+\begin{block}{}
+\usebeamercolor[fg]{title}
+Beweise: Buch Abschnitt 9.3
+\end{block}
+\end{column}
+}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/positiv.tex b/vorlesungen/slides/9/pf/positiv.tex
new file mode 100644
index 0000000..d7e833d
--- /dev/null
+++ b/vorlesungen/slides/9/pf/positiv.tex
@@ -0,0 +1,64 @@
+%
+% positiv.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Positive und nichtnegative Matrizen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Positive Matrix\strut}
+Eine Matrix $A$ heisst positiv, wenn
+\[
+a_{ij} > 0\quad\forall i,j
+\]
+Man schreibt $A>0\mathstrut$
+\end{block}
+\uncover<2->{%
+\begin{block}{Relation $>\mathstrut$}
+Man schreibt $A>B$ wenn $A-B > 0\mathstrut$
+\end{block}}
+\uncover<5->{%
+\begin{block}{Wahrscheinlichkeitsmatrix}
+\[
+W=\begin{pmatrix}
+0.7&0.2&0.1\\
+0.2&0.6&0.1\\
+0.1&0.2&0.8
+\end{pmatrix}
+\]
+Spaltensumme$\mathstrut=1$, Zeilensumme$\mathstrut=?$
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Nichtnegative Matrix\strut}
+Eine Matrix $A$ heisst nichtnegativ, wenn
+\[
+a_{ij} \ge 0\quad\forall i,j
+\]
+Man schreibt $A\ge 0\mathstrut$
+\end{block}}
+\uncover<4->{%
+\begin{block}{Relation $\ge\mathstrut$}
+Man schreibt $A\ge B$ wenn $A-B \ge 0\mathstrut$
+\end{block}}
+\uncover<6->{%
+\begin{block}{Permutationsmatrix}
+\[
+P=\begin{pmatrix}
+0&0&1\\
+1&0&0\\
+0&1&0
+\end{pmatrix}
+\]
+Genau eine $1$ in jeder Zeile/Spalte
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/primitiv.tex b/vorlesungen/slides/9/pf/primitiv.tex
new file mode 100644
index 0000000..961b1d5
--- /dev/null
+++ b/vorlesungen/slides/9/pf/primitiv.tex
@@ -0,0 +1,84 @@
+%
+% primitiv.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Primitive Matrix}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+$A\ge 0$ heisst primitiv, wenn es ein $n>0$ gibt mit $A^n>0$
+\end{block}
+\uncover<9->{%
+\begin{block}{Intuition}
+\begin{itemize}
+\item<10->
+Markov-Ketten: $a_{ij} > 0$ bedeutet, $i$ von $j$ aus erreichbar.
+\item<11->
+Band: {\em alle} Verbindung mit allen Nachbarn
+\item<12->
+$n$-te Potenz: Pfade der Länge $n$
+\item<13->
+Durchmesser: wenn $n>\text{Durchmesser des Zustandsdiagramms}$,
+dann ist $A^n>0$
+\end{itemize}
+\end{block}
+}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Beispiel: Reduzible W'keitsmatrix}
+\vspace{-5pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\fill[color=gray!40] (-1,0) rectangle (0,1);
+\fill[color=gray!40] (0,-1) rectangle (1,0);
+\draw[line width=0.3pt] (0,-1) -- (0,1);
+\draw[line width=0.3pt] (-1,0) -- (1,0);
+%\draw (-1,-1) rectangle (1,1);
+\node at (0,0) {$\left( \raisebox{0pt}[1cm][1cm]{\hspace*{2cm}} \right)$};
+\node at (-1.3,0) [left] {$\mathstrut W=$};
+\node at (0.5,0.5) {$0$};
+\node at (-0.5,-0.5) {$0$};
+\end{tikzpicture}
+\end{center}
+\vspace{-10pt}
+
+$\Rightarrow$ $W$ ist nicht primitiv
+\end{block}}
+\uncover<3->{%
+\begin{block}{Beispiel: Bandmatrix}
+\centering
+\begin{tikzpicture}[>=latex,thick]
+\begin{scope}
+\clip (-1,-1) rectangle (1,1);
+\foreach \n in {3,...,8}{
+ \pgfmathparse{0.3*(\n-2)}
+ \xdef\x{\pgfmathresult}
+ \only<\n>{
+ \fill[color=gray!40]
+ ({-1.2-\x},1) -- (1,{-1.2-\x}) -- (1,{-0.8+\x})
+ -- ({-0.8+\x},1) -- cycle;
+ }
+}
+\fill[color=gray] (-1.2,1) -- (1,-1.2) -- (1,-0.8) -- (-0.8,1) -- cycle;
+\end{scope}
+\foreach \n in {2,...,8}{
+ \uncover<\n>{
+ \pgfmathparse{int(\n-2)}
+ \xdef\k{\pgfmathresult}
+ \node at (-1.3,0) [left] {$\mathstrut B^{\k}=$};
+ }
+}
+\node at (0,0) {$\left( \raisebox{0pt}[1cm][1cm]{\hspace*{2cm}} \right)$};
+\end{tikzpicture}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/trennung.tex b/vorlesungen/slides/9/pf/trennung.tex
new file mode 100644
index 0000000..9c85849
--- /dev/null
+++ b/vorlesungen/slides/9/pf/trennung.tex
@@ -0,0 +1,99 @@
+%
+% trennung.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Trennung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\coordinate (u) at (3.5,4.5);
+\coordinate (v) at (2.5,2);
+\coordinate (va) at ({(3.5/2.5)*2.5},{(3.5/2.5)*2});
+
+\uncover<3->{
+\fill[color=darkgreen!20] (0,0) rectangle (5.3,5.3);
+\node[color=darkgreen] at (1.5,4.9) {$u\not\ge w$};
+\node[color=darkgreen] at (4.4,0.6) {$u\not\ge w$};
+}
+
+\uncover<5->{
+\begin{scope}
+\clip (0,0) rectangle (5.3,5.3);
+\draw[color=darkgreen] (0,0) -- ($3*(v)$);
+\end{scope}
+
+\node[color=darkgreen] at ($1.2*(va)$)
+ [below,rotate={atan(2/2.5)}] {$(1+\mu)v$};
+}
+
+\uncover<2->{
+ \fill[color=red!20] (0,0) rectangle (u);
+}
+
+\fill[color=red] (u) circle[radius=0.08];
+\node[color=red] at (u) [above right] {$u$};
+
+\uncover<4->{
+ \fill[color=blue!40,opacity=0.5] (0,0) rectangle (v);
+}
+
+\uncover<2->{
+ \fill[color=blue] (v) circle[radius=0.08];
+ \node[color=blue] at (v) [above] {$v$};
+}
+
+\uncover<4->{
+ \draw[color=blue] (0,0) -- (va);
+
+ \fill[color=blue] (va) circle[radius=0.08];
+ \node[color=blue] at (va) [above left] {$(1+\varepsilon)v$};
+}
+
+\draw[->] (-0.1,0) -- (5.5,0) coordinate[label={$x_1$}];
+\draw[->] (0,-0.1) -- (0,5.5) coordinate[label={right:$x_2$}];
+
+\uncover<2->{
+ \draw[->,color=red] (3.0,-0.2) -- (3.0,1.5);
+ \node[color=red] at (3.0,-0.2) [below]
+ {$\{w\in\mathbb{R}^n\;|\; w<u\}$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Satz}
+$u>v\ge 0$\uncover<4->{, dann gibt es $\varepsilon>0$ mit
+\[
+u\ge (1+\varepsilon)v
+\]}%
+\uncover<5->{und für $\mu>\varepsilon$ ist
+\[
+u \not\ge (1+\mu)v
+\]}
+\uncover<6->{%
+\begin{proof}[Beweis]
+\begin{itemize}
+\item<7->
+$u>v$ $\Rightarrow$ $u_i/v_i>1$ falls $v_i>0$
+\item<8->
+\[
+\vartheta = \min_{v_i\ne 0} \frac{u_i}{v_i} > 1
+\]
+\uncover<9->{$\varepsilon = \vartheta - 1$}
+\end{itemize}
+\end{proof}}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/vergleich.tex b/vorlesungen/slides/9/pf/vergleich.tex
new file mode 100644
index 0000000..c1a1f7a
--- /dev/null
+++ b/vorlesungen/slides/9/pf/vergleich.tex
@@ -0,0 +1,113 @@
+%
+% vergleich.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Vergleich}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\def\a{1.2} \def\b{0.35}
+\def\c{0.5} \def\d{1.25}
+\def\r{4}
+
+\coordinate (u) at (3.5,0);
+\coordinate (v) at (2.5,0);
+
+\coordinate (Au) at ({3.5*\a},{3.5*\c});
+\coordinate (Av) at ({2.5*\a},{2.5*\c});
+
+\uncover<2->{
+ \begin{scope}
+ \clip (0,0) rectangle (5,5);
+ \fill[color=red!20] (0,0) circle[radius=4];
+ \end{scope}
+ \node[color=red] at (0,4) [below right] {$\mathbb{R}^n$};
+
+ \fill[color=blue!40,opacity=0.5] (0,0) -- ({\a*\r},{\c*\r})
+ -- plot[domain=0:90,samples=100]
+ ({\r*(\a*cos(\x)+\b*sin(\x))},{\r*(\c*cos(\x)+\d*sin(\x))})
+ -- ({\b*\r},{\d*\r}) -- cycle;
+ \node[color=blue] at ({\r*\b},{\r*\d}) [below right] {$A\mathbb{R}^n$};
+}
+
+\draw[->] (-0.1,0) -- (5.5,0) coordinate[label={$x_1$}];
+\draw[->] (0,-0.1) -- (0,5.5) coordinate[label={right:$x_2$}];
+
+\uncover<3->{
+ \fill[color=darkgreen!30,opacity=0.5]
+ (0,0) rectangle ({3.5*\a},{3.5*\c});
+ \draw[color=white,line width=0.7pt]
+ ({3.5*\a},0) -- ({3.5*\a},{3.5*\c}) -- (0,{3.5*\c});
+}
+
+\uncover<2->{
+ \draw[->,color=blue,line width=1.4pt] (0,0) -- ({\r*\a},{\r*\c});
+ \draw[->,color=blue,line width=1.4pt] (0,0) -- ({\r*\b},{\r*\d});
+
+ \draw[->,color=red,line width=1.4pt] (0,0) -- (4,0);
+ \draw[->,color=red,line width=1.4pt] (0,0) -- (0,4);
+}
+
+\draw[color=darkgreen,line width=2pt] (u) -- (v);
+\fill[color=darkgreen] (u) circle[radius=0.08];
+\fill[color=darkgreen] (v) circle[radius=0.08];
+
+\node[color=darkgreen] at (u) [below right] {$u$};
+\node[color=darkgreen] at (v) [below left] {$v$};
+\node[color=darkgreen] at ($0.5*(u)+0.5*(v)$) [above] {$v\le u$};
+
+\uncover<3->{
+ \draw[color=darkgreen,line width=2pt] (Au) -- (Av);
+ \fill[color=darkgreen] (Au) circle[radius=0.08];
+ \fill[color=darkgreen] (Av) circle[radius=0.08];
+
+ \node[color=darkgreen] at (Au) [above left] {$Au$};
+ \node[color=darkgreen] at (Av) [above left] {$Av$};
+
+ \node[color=darkgreen] at ($0.5*(Au)+0.5*(Av)$)
+ [below,rotate={atan(\c/\a)}] {$Av<Au$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Satz}
+$u\ge v\ge 0$ \uncover<2->{und $A > 0$}\uncover<3->{ $\Rightarrow$ $Au>Av$}
+\end{block}
+\uncover<4->{%
+\begin{block}{intuitiv}
+$A>0$ befördert $\ge$ zu $>$
+\end{block}}
+\uncover<5->{%
+\begin{proof}[Beweis]
+$d=u-v\ge 0$
+\begin{align*}
+(Ad)_i
+\uncover<6->{=
+\sum_{j}
+\underbrace{a_{ij}}_{>0}d_j}
+\uncover<7->{>
+0}
+\uncover<8->{\quad\Rightarrow\quad
+Au > Av}
+\end{align*}
+\uncover<7->{da mindestens ein $d_j>0$ ist}
+\end{proof}}
+\uncover<9->{%
+\begin{block}{Korollar}
+$A>0$ und $d\ge 0$ $\Rightarrow$ $Ad > 0$
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/vergleich3d.tex b/vorlesungen/slides/9/pf/vergleich3d.tex
new file mode 100644
index 0000000..1c019a6
--- /dev/null
+++ b/vorlesungen/slides/9/pf/vergleich3d.tex
@@ -0,0 +1,26 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Vergleich}
+
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.57\textwidth}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/80-wahrscheinlichkeit/images/vergleich.pdf}
+\end{center}
+\end{column}
+\begin{column}{0.38\textwidth}
+\begin{block}{Satz}
+$u\ge v\ge 0$ $\Rightarrow$ $Au>Av$
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/potenz.tex b/vorlesungen/slides/9/potenz.tex
new file mode 100644
index 0000000..2c3afa3
--- /dev/null
+++ b/vorlesungen/slides/9/potenz.tex
@@ -0,0 +1,15 @@
+%
+% potenz.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Potenzmethode}
+\begin{center}
+\includegraphics[width=0.9\textwidth]{../../buch/chapters/80-wahrscheinlichkeit/images/positiv.pdf}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/Makefile.inc b/vorlesungen/slides/Makefile.inc
index 4bf9348..a9d72be 100644
--- a/vorlesungen/slides/Makefile.inc
+++ b/vorlesungen/slides/Makefile.inc
@@ -9,9 +9,13 @@ include ../slides/2/Makefile.inc
include ../slides/3/Makefile.inc
include ../slides/4/Makefile.inc
include ../slides/5/Makefile.inc
+include ../slides/6/Makefile.inc
+include ../slides/7/Makefile.inc
include ../slides/8/Makefile.inc
include ../slides/9/Makefile.inc
+include ../slides/a/Makefile.inc
slides = \
$(chapter0) $(chapter1) $(chapter2) $(chapter3) $(chapter4) \
- $(chapter5) $(chapter8) $(chapter9)
+ $(chapter5) $(chapter6) $(chapter7) $(chapter8) $(chapter9) \
+ $(chaptera)
diff --git a/vorlesungen/slides/a/Makefile.inc b/vorlesungen/slides/a/Makefile.inc
new file mode 100644
index 0000000..0c7ab0b
--- /dev/null
+++ b/vorlesungen/slides/a/Makefile.inc
@@ -0,0 +1,25 @@
+#
+# Makefile.inc -- additional depencencies
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+chaptera = \
+ ../slides/a/dc/prinzip.tex \
+ ../slides/a/dc/effizient.tex \
+ ../slides/a/dc/beispiel.tex \
+ \
+ ../slides/a/ecc/gruppendh.tex \
+ ../slides/a/ecc/kurve.tex \
+ ../slides/a/ecc/inverse.tex \
+ ../slides/a/ecc/operation.tex \
+ ../slides/a/ecc/quadrieren.tex \
+ ../slides/a/ecc/oakley.tex \
+ \
+ ../slides/a/aes/bytes.tex \
+ ../slides/a/aes/sinverse.tex \
+ ../slides/a/aes/blocks.tex \
+ ../slides/a/aes/keys.tex \
+ ../slides/a/aes/runden.tex \
+ \
+ ../slides/a/chapter.tex
+
diff --git a/vorlesungen/slides/a/aes/blocks.tex b/vorlesungen/slides/a/aes/blocks.tex
new file mode 100644
index 0000000..9e95a86
--- /dev/null
+++ b/vorlesungen/slides/a/aes/blocks.tex
@@ -0,0 +1,193 @@
+%
+% blocks.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\s{0.4}
+\def\punkt#1#2{({#1*\s},{(3-#2)*\s})}
+\def\feld#1#2#3{
+ \fill[color=#3] \punkt{(#1-0.5)}{(#2+0.5)}
+ rectangle \punkt{(#1+0.5)}{(#2-0.5)};
+}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Blocks}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Blocks}
+$4\times k$ Matrizen mit $k=4,\dots,8$
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\xdef\s{0.4}
+\foreach \i in {0,...,31}{
+ \pgfmathparse{mod(\i,4)}
+ \xdef\y{\pgfmathresult}
+ \pgfmathparse{int(\i/4)}
+ \xdef\x{\pgfmathresult}
+ \node at \punkt{\x}{\y} {\tiny $\i$};
+}
+\foreach \x in {-0.5,0.5,...,7.5}{
+ \draw \punkt{\x}{-0.5} -- \punkt{\x}{3.5};
+}
+\foreach \y in {-0.5,0.5,...,3.5}{
+ \draw \punkt{-0.5}{\y} -- \punkt{7.5}{\y};
+}
+\end{tikzpicture}
+\end{center}
+\uncover<2->{%
+Spalten sind $4$-dimensionale $\mathbb{F}_{2^8}$-Vektoren
+}
+\end{block}
+\uncover<3->{%
+\begin{block}{Zeilenshift}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\xdef\s{0.35}
+
+\begin{scope}
+ \feld{0}{3}{red!20}
+ \feld{0}{2}{red!20}
+ \feld{0}{1}{red!20}
+ \feld{0}{0}{red!20}
+
+ \feld{1}{3}{red!10}
+ \feld{1}{2}{red!10}
+ \feld{1}{1}{red!10}
+ \feld{1}{0}{red!10}
+
+ \feld{2}{3}{yellow!20}
+ \feld{2}{2}{yellow!20}
+ \feld{2}{1}{yellow!20}
+ \feld{2}{0}{yellow!20}
+
+ \feld{3}{3}{yellow!10}
+ \feld{3}{2}{yellow!10}
+ \feld{3}{1}{yellow!10}
+ \feld{3}{0}{yellow!10}
+
+ \feld{4}{3}{darkgreen!20}
+ \feld{4}{2}{darkgreen!20}
+ \feld{4}{1}{darkgreen!20}
+ \feld{4}{0}{darkgreen!20}
+
+ \feld{5}{3}{darkgreen!10}
+ \feld{5}{2}{darkgreen!10}
+ \feld{5}{1}{darkgreen!10}
+ \feld{5}{0}{darkgreen!10}
+
+ \feld{6}{3}{blue!20}
+ \feld{6}{2}{blue!20}
+ \feld{6}{1}{blue!20}
+ \feld{6}{0}{blue!20}
+
+ \feld{7}{3}{blue!10}
+ \feld{7}{2}{blue!10}
+ \feld{7}{1}{blue!10}
+ \feld{7}{0}{blue!10}
+
+ \foreach \x in {-0.5,0.5,...,7.5}{
+ \draw \punkt{\x}{-0.5} -- \punkt{\x}{3.5};
+ }
+ \foreach \y in {-0.5,0.5,...,3.5}{
+ \draw \punkt{-0.5}{\y} -- \punkt{7.5}{\y};
+ }
+\end{scope}
+
+\begin{scope}[xshift=3.5cm]
+ \feld{0}{0}{red!20}
+ \feld{1}{1}{red!20}
+ \feld{2}{2}{red!20}
+ \feld{3}{3}{red!20}
+
+ \feld{1}{0}{red!10}
+ \feld{2}{1}{red!10}
+ \feld{3}{2}{red!10}
+ \feld{4}{3}{red!10}
+
+ \feld{2}{0}{yellow!20}
+ \feld{3}{1}{yellow!20}
+ \feld{4}{2}{yellow!20} \feld{5}{3}{yellow!20}
+
+ \feld{3}{0}{yellow!10}
+ \feld{4}{1}{yellow!10}
+ \feld{5}{2}{yellow!10}
+ \feld{6}{3}{yellow!10}
+
+ \feld{4}{0}{darkgreen!20}
+ \feld{5}{1}{darkgreen!20}
+ \feld{6}{2}{darkgreen!20}
+ \feld{7}{3}{darkgreen!20}
+
+ \feld{5}{0}{darkgreen!10}
+ \feld{6}{1}{darkgreen!10}
+ \feld{7}{2}{darkgreen!10}
+ \feld{0}{3}{darkgreen!10}
+
+ \feld{6}{0}{blue!20}
+ \feld{7}{1}{blue!20}
+ \feld{0}{2}{blue!20}
+ \feld{1}{3}{blue!20}
+
+ \feld{7}{0}{blue!10}
+ \feld{0}{1}{blue!10}
+ \feld{1}{2}{blue!10}
+ \feld{2}{3}{blue!10}
+
+ \foreach \x in {-0.5,0.5,...,7.5}{
+ \draw \punkt{\x}{-0.5} -- \punkt{\x}{3.5};
+ }
+ \foreach \y in {-0.5,0.5,...,3.5}{
+ \draw \punkt{-0.5}{\y} -- \punkt{7.5}{\y};
+ }
+
+ \node at \punkt{-1.5}{1.5} {$\rightarrow$};
+\end{scope}
+
+\end{tikzpicture}
+\end{center}
+\end{block}}
+\end{column}
+\begin{column}{0.50\textwidth}
+\uncover<4->{%
+\begin{block}{Spalten mischen}
+Lineare Operation auf Spaltenvektoren mit Matrix
+\begin{align*}
+C&=\begin{pmatrix}
+\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}\\
+\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}&\texttt{01}_{16}\\
+\texttt{01}_{16}&\texttt{01}_{16}&\texttt{02}_{16}&\texttt{03}_{16}\\
+\texttt{03}_{16}&\texttt{01}_{16}&\texttt{01}_{16}&\texttt{02}_{16}
+\end{pmatrix}
+\\
+\uncover<5->{
+\det C
+&=
+\texttt{0a}_{16}
+}
+\uncover<6->{
+\ne 0}
+\uncover<7->{
+\quad\Rightarrow\quad \exists C^{-1}
+}
+\end{align*}
+\end{block}}
+\uncover<8->{%
+\begin{block}{Als Polynommultiplikation}
+Spalten = Polynome in $\mathbb{F}_{2^8}[Z]/(Z^4-1)$,
+\\
+\uncover<9->{%
+$C=\mathstrut$ Multiplikation mit
+\[
+c(Z) = \texttt{03}_{16}Z^3 + Z^2 + Z + \texttt{02}_{16}
+\]
+}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/aes/bytes.tex b/vorlesungen/slides/a/aes/bytes.tex
new file mode 100644
index 0000000..e873e9a
--- /dev/null
+++ b/vorlesungen/slides/a/aes/bytes.tex
@@ -0,0 +1,96 @@
+%
+% bytes.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Bytes}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Endlicher Körper}
+1 Byte = 8 bits: $\mathbb{F}_{2^8}$
+mit Minimalpolynom:
+\[
+m(X) = X^8+X^4+X^3+X+1
+\]
+\end{block}
+\vspace{-10pt}
+\uncover<2->{%
+\begin{block}{Inverse $a^{-1}$}
+Mit dem euklidischen Algorithmus
+\[
+\begin{aligned}
+sa+tm&=1
+&&\Rightarrow&
+\uncover<3->{
+a^{-1} &= s}
+\\
+&
+&&&
+\uncover<4->{
+\overline{a}
+&=
+\begin{cases}
+a^{-1}&\; a\ne 0\\
+0 &\; a = 0
+\end{cases}}
+\end{aligned}
+\]
+\end{block}}
+\vspace{-10pt}
+\uncover<5->{%
+\begin{block}{Vektorraum}
+$\mathbb{R}_{2^8}$
+ist ein $8$-dimensionaler $\mathbb{F}_2$-Vektorraum
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{S-Box}
+$S\colon a\mapsto A\overline{a}+q$ mit
+\begin{align*}
+\only<1-7>{\phantom{\mathstrut^{-1}}A}
+\ifthenelse{\boolean{presentation}}{}{\only<8>{A^{-1}}}
+&=\only<1-7>{\begin{pmatrix}
+1&0&0&0&1&1&1&1\\
+1&1&0&0&0&1&1&1\\
+1&1&1&0&0&0&1&1\\
+1&1&1&1&0&0&0&1\\
+1&1&1&1&1&0&0&0\\
+0&1&1&1&1&1&0&0\\
+0&0&1&1&1&1&1&0\\
+0&0&0&1&1&1&1&1
+\end{pmatrix}}
+\ifthenelse{\boolean{presentation}}{}{
+\only<8->{
+\begin{pmatrix}
+0&0&1&0&0&1&0&1\\
+1&0&0&1&0&0&1&0\\
+0&1&0&0&1&0&0&1\\
+1&0&1&0&0&1&0&0\\
+0&1&0&1&0&0&1&0\\
+0&0&1&0&1&0&0&1\\
+1&0&0&1&0&1&0&0\\
+0&1&0&0&1&0&1&0
+\end{pmatrix}}
+}
+\\
+q&=X^7+X^6+X+1
+\end{align*}
+\end{block}}
+\vspace{-10pt}
+\uncover<7->{%
+\begin{block}{Inverse $S$-Box}
+\vspace{-10pt}
+\[
+S^{-1}(b) = \overline{A^{-1}(b-q)}
+\]
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/aes/keys.tex b/vorlesungen/slides/a/aes/keys.tex
new file mode 100644
index 0000000..d2ab712
--- /dev/null
+++ b/vorlesungen/slides/a/aes/keys.tex
@@ -0,0 +1,36 @@
+%
+% keys.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Schlüsselerzeugung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/keys.pdf}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Algorithmus}
+\begin{enumerate}
+\item<2->
+Startblock: begebener Schlüssel
+\item<3->
+Zeilenpermutation:
+$\pi=\mathstrut$ Multiplikation mit $Z^3=Z^{-1}$
+\item<4-> $S$-Box
+\item<5-> $r_i$: Addition einer Konstanten
+\[
+r_i = (\texttt{02}_{16})^{i-1}
+\]
+\end{enumerate}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/aes/runden.tex b/vorlesungen/slides/a/aes/runden.tex
new file mode 100644
index 0000000..570b577
--- /dev/null
+++ b/vorlesungen/slides/a/aes/runden.tex
@@ -0,0 +1,47 @@
+%
+% runden.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{$n$ Runden}
+\vspace{-23pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Verschlüsselung}
+In Runde $i=0,\dots,n-1$
+\begin{enumerate}
+\item<2-> Wende die $S$-Box auf alle Bytes des Blocks an
+\item<3-> Führe den Zeilenschift durch
+\item<4-> Mische die Spalten
+\item<5-> Berechne den Schlüsselblock $i$ ($i=0$: ursprünglicher Schlüssel)
+\item<6-> Addiere (XOR) den Rundenschlüssel
+\end{enumerate}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<7->{%
+\begin{block}{Entschlüsselung}
+In Runde $i=0,\dots,n-1$
+\begin{enumerate}
+\item<8-> Addiere den Rundenschlüssel $n-1-i$
+\item<9-> Invertiere Spaltenmischung (mit $C^{-1}$)
+\item<10-> Invertiere den Zeilenshift
+\item<11-> Wende $S^{-1}$ an auf jedes Byte
+\end{enumerate}
+\end{block}}
+\end{column}
+\end{columns}
+\uncover<12->{%
+\begin{block}{Charakteristika}
+\begin{itemize}
+\item<13-> Invertierbar
+\item<14-> Skalierbar: beliebig grosse Blöcke (Vielfache von 32\,bit)
+\item<15-> Keine ``magischen'' Schritte
+\end{itemize}
+\end{block}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/aes/sinverse.tex b/vorlesungen/slides/a/aes/sinverse.tex
new file mode 100644
index 0000000..059100e
--- /dev/null
+++ b/vorlesungen/slides/a/aes/sinverse.tex
@@ -0,0 +1,15 @@
+%
+% sinverse.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Inverse $S$-Box}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/sbox.pdf}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/chapter.tex b/vorlesungen/slides/a/chapter.tex
new file mode 100644
index 0000000..78eec84
--- /dev/null
+++ b/vorlesungen/slides/a/chapter.tex
@@ -0,0 +1,23 @@
+%
+% chapter.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi
+%
+
+\folie{a/dc/prinzip.tex}
+\folie{a/dc/effizient.tex}
+\folie{a/dc/beispiel.tex}
+
+\folie{a/ecc/gruppendh.tex}
+\folie{a/ecc/kurve.tex}
+\folie{a/ecc/inverse.tex}
+\folie{a/ecc/operation.tex}
+\folie{a/ecc/quadrieren.tex}
+\folie{a/ecc/oakley.tex}
+
+\folie{a/aes/bytes.tex}
+\folie{a/aes/sinverse.tex}
+\folie{a/aes/blocks.tex}
+\folie{a/aes/keys.tex}
+\folie{a/aes/runden.tex}
+
diff --git a/vorlesungen/slides/a/dc/beispiel.tex b/vorlesungen/slides/a/dc/beispiel.tex
new file mode 100644
index 0000000..4c99e9e
--- /dev/null
+++ b/vorlesungen/slides/a/dc/beispiel.tex
@@ -0,0 +1,54 @@
+%
+% beispiel.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\def\u#1#2{\uncover<#1->{#2}}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Beispiel}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Aufgabe}
+Berechne $1291^{17}\in\mathbb{F}_{2027}$
+\end{block}
+\uncover<2->{%
+\begin{block}{Exponent}
+\vspace{-10pt}
+\[
+17 = 2^4 + 1
+=
+\texttt{10001}_2
+=
+\texttt{0x11}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Divide-and-Conquor}
+\begin{center}
+\begin{tabular}{|>{$}r<{$}>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|>{$}r<{$}|}
+\hline
+i&2^i& a^{2^i} & n & n_i & m \\
+\hline
+0& 1& 1291 & 17 & \u{4}{1}&\u{5}{ 1291}\\
+1& 2& \u{6}{ 487}& \u{7}{8}& \u{8}{0}& \u{9}{\color{gray}1291}\\
+2& 4&\u{10}{ 10}&\u{11}{4}&\u{12}{0}&\u{13}{\color{gray}1291}\\
+3& 8&\u{14}{ 100}&\u{15}{2}&\u{16}{0}&\u{17}{\color{gray}1291}\\
+4& 16&\u{18}{1892}&\u{19}{1}&\u{20}{1}&\u{21}{ 37}\\
+\hline
+\end{tabular}
+\end{center}
+\end{block}}
+\uncover<22->{%
+\begin{block}{Resultat}
+\(1291^{17} \equiv 37\mod 2027\)
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/dc/effizient.tex b/vorlesungen/slides/a/dc/effizient.tex
new file mode 100644
index 0000000..327ee7e
--- /dev/null
+++ b/vorlesungen/slides/a/dc/effizient.tex
@@ -0,0 +1,65 @@
+%
+% effizient.tex -- Effiziente Berechnung der Potenz
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Effiziente Berechnung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Prinzip}
+\begin{enumerate}
+\item<3-> {\color{red}Bits mit Shift isolieren}
+\item<4-> {\color{blue}Laufend reduzieren}
+\item<5-> {\color{darkgreen}effizient quadrieren}
+\end{enumerate}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Algorithmus}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\uncover<3->{
+\fill[color=red!20] (2.3,-2.44) rectangle (3.8,-1.98);
+\fill[color=red!20] (1.45,-3.88) rectangle (3.2,-3.42);
+}
+\uncover<4->{
+\fill[color=blue!20] (2.15,-2.94) rectangle (3.7,-2.48);
+}
+\uncover<5->{
+\fill[color=darkgreen!20] (1.45,-4.37) rectangle (3.8,-3.91);
+}
+\node at (0,0) [below right] {\begin{minipage}{6cm}\obeylines
+{\tt int potenz(int $a$, int $n$) \{}\\
+\hspace*{0.7cm}{\tt int m = 1;}\\
+\hspace*{0.7cm}{\tt int q = $a$;}\\
+\uncover<2->{%
+\hspace*{0.7cm}{\tt while ($n$ > 0) \{}\\
+\uncover<3->{%
+\hspace*{1.4cm}{\tt if (0x1 \& $n$) \{}\\
+\uncover<4->{%
+\hspace*{2.1cm}{\tt m *= q;}\\
+}%
+\hspace*{1.4cm}{\tt \}}\\
+\hspace*{1.4cm}{\tt $n$ >{}>= 1;}\\
+}%
+\uncover<5->{%
+\hspace*{1.4cm}{\tt q = sqr(q);}\\
+}%
+\hspace*{0.7cm}{\tt \}}\\
+}%
+\hspace*{0.7cm}{\tt return m;}\\
+{\tt \}}
+\end{minipage}};
+\end{tikzpicture}
+\end{center}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/dc/naiv.txt b/vorlesungen/slides/a/dc/naiv.txt
new file mode 100644
index 0000000..bf5569d
--- /dev/null
+++ b/vorlesungen/slides/a/dc/naiv.txt
@@ -0,0 +1,2 @@
+int m = 1, i = 0;
+while (i++ < n) { m *= a; }
diff --git a/vorlesungen/slides/a/dc/prinzip.tex b/vorlesungen/slides/a/dc/prinzip.tex
new file mode 100644
index 0000000..c75af61
--- /dev/null
+++ b/vorlesungen/slides/a/dc/prinzip.tex
@@ -0,0 +1,86 @@
+%
+% prinzip.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Potenzieren $\mod p$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Aufgabe}
+Berechne $a^n\in\mathbb{F}_p$ für grosses $n$
+\end{block}
+\uncover<2->{%
+\begin{block}{Mengengerüst}
+\(
+\log_2 n > 2000
+\)
+\\
+\uncover<3->{%
+RSA mit $N=pq$: Exponenten sind $e,d$, $e$ klein, aber
+\(
+ed\equiv 1 \mod \varphi(N)
+\)}
+\end{block}}
+\uncover<4->{%
+\begin{block}{Naive Idee}
+\verbatiminput{../slides/a/dc/naiv.txt}
+Laufzeit: $O(n) \uncover<5->{= O(2^{\log_2n})}$%
+\uncover<5->{, d.~h.~exponentiell in der Bitlänge von $n$}
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Idee 1: Exponent binär schreiben}
+\vspace{-12pt}
+\[
+n = n_k2^k + n_{k-1}2^{k-1} + \dots +n_12^1 + n_02^0
+\]
+\end{block}}
+\vspace{-5pt}
+\uncover<7->{%
+\begin{block}{Idee 2: Potenzgesetze}
+\vspace{-12pt}
+\[
+a^n
+=
+a^{n_k2^k}
+a^{n_{k-1}2^k}
+\dots
+a^{n_12^1}
+a^{n_02^0}
+\uncover<8->{=
+\prod_{n_i = 1}
+a^{2^i}}
+\]
+\end{block}}
+\vspace{-15pt}
+\uncover<9->{%
+\begin{block}{Idee 3: Quadrieren}
+\vspace{-10pt}
+\begin{align*}
+a^{2^i}
+&=
+a^{2\cdot 2^{i-1}}
+\uncover<10->{=
+(a^{2^{i-1}})^2}
+\\
+&\uncover<11->{=
+(\dots(a\underbrace{\mathstrut^2)^2\dots)^2}_{\displaystyle i}}
+\end{align*}
+\end{block}}
+\vspace{-18pt}
+\uncover<12->{%
+\begin{block}{Laufzeit}
+Multiplikationen: $\le 2 \cdot(\log_2(n) - 1)$
+\\
+\uncover<13->{Worst case Laufzeit: $O(\log_2 n)$}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/ecc/gruppendh.tex b/vorlesungen/slides/a/ecc/gruppendh.tex
new file mode 100644
index 0000000..13d85c8
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/gruppendh.tex
@@ -0,0 +1,51 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Diffie-Hellmann verallgemeinern}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Diffie-Hellman in $\mathbb{F}_p$\strut}
+\begin{enumerate}
+\item<2-> Parteien einigen sich auf $g\in \mathbb{F}_p$, $g\ne 0$, $g\ne 1$
+\item<3-> $A$ und $B$ wählen Exponenten $a,b\in \mathbb{N}$
+\item<4-> Parteien tauschen $u=g^a$ und $v=g^b$ aus
+\item<5-> Parteien berechnen $v^a$ und $u^b$
+\[
+v^a = (g^b)^a = g^{ab} =(g^a)^b = u^b
+\]
+gemeinsamer privater Schlüssel
+\end{enumerate}
+\end{block}
+\uncover<11->{%
+{\usebeamercolor[fg]{title}Spezialfall:} $G=\mathbb{F}_p^*$
+}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Diffie-Hellmann in $G$\strut}
+\begin{enumerate}
+\item<7-> Parteien einigen sich auf $g\in G$, $g\ne e$
+\item<8-> $A$ und $B$ wählen Exponenten $a,b\in \mathbb{N}$
+\item<9-> Parteien tauschen $u=g^a$ und $v=g^b$ aus
+\item<10-> Parteien berechnen $v^a$ und $u^b$
+\[
+v^a = (g^b)^a = g^{ab} =(g^a)^b = u^b
+\]
+gemeinsamer privater Schlüssel
+\end{enumerate}
+\end{block}}
+\uncover<12->{%
+{\usebeamercolor[fg]{title}Idee:} Wähle effizient zu berechnende, ``grosse''
+Gruppen, mit ``komplizierter'' Multiplikation
+}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/ecc/inverse.tex b/vorlesungen/slides/a/ecc/inverse.tex
new file mode 100644
index 0000000..c50f698
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/inverse.tex
@@ -0,0 +1,48 @@
+%
+% inverse.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Involution/Inverse}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/elliptic.pdf}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{In speziellen Koordinaten}
+\vspace{-12pt}
+\[
+v^2 = u^3+Au+B
+\]
+\uncover<2->{invariant unter $v\mapsto -v$}%
+\\
+\uncover<3->{{\color{red}geht nicht in $\mathbb{F}_2$}}
+\end{block}
+\uncover<4->{%
+\begin{block}{Allgemein}
+\vspace{-12pt}
+\begin{align*}
+Y^2+XY &= X^3 + aX+b
+\\
+\uncover<5->{%
+Y(Y+X) &= X^3 + aX + b}
+\end{align*}
+\uncover<6->{invariant unter}
+\begin{align*}
+\uncover<7->{X&\mapsto X,& Y&\mapsto -X-Y}
+\\
+\uncover<8->{&&\Rightarrow X+Y&\mapsto -Y}
+\end{align*}
+\uncover<9->{Spezialfall $\mathbb{F}_2$: $Y\leftrightarrow X+Y$}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/ecc/kurve.tex b/vorlesungen/slides/a/ecc/kurve.tex
new file mode 100644
index 0000000..04d15f8
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/kurve.tex
@@ -0,0 +1,56 @@
+%
+% kurve.tex -- elliptische Kurven
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Elliptische Kurven}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\uncover<5->{%
+\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/elliptic.pdf}
+}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Allgemein}
+mit $a,b\in\Bbbk$
+\[
+Y^2 + XY = X^3 + aX + b
+\]
+\end{block}
+\vspace{-10pt}
+\uncover<2->{%
+\begin{block}{Spezielle Parametrisierung}
+\vspace{-10pt}
+\begin{align*}
+Y^2 + XY + \frac14X^2
+&=
+X^3 + \frac14X^2 + aX + b
+\\
+\uncover<3->{
+(Y+\frac12X)^2
+&=
+X^3 + \frac14X^2 + aX + b
+}\\
+\uncover<4->{
+v^2
+&=
+u^3+Au+B}
+\end{align*}
+\uncover<4->{mit
+\[
+v=Y+{\textstyle\frac12}X,
+\qquad
+u=X-\frac1{12}
+\]}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/ecc/oakley.tex b/vorlesungen/slides/a/ecc/oakley.tex
new file mode 100644
index 0000000..6980c10
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/oakley.tex
@@ -0,0 +1,85 @@
+%
+% oakley.tex -- Oakley Gruppen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Oakley-Gruppen}
+\only<1>{%
+\small
+\verbatiminput{../slides/a/ecc/oakley1.txt}
+$\approx 1.55252\cdot 10^{231}$
+}
+\only<2>{%
+\begin{block}{$\mathbb{F}_p$}
+Endlicher Körper mit $p = $
+\verbatiminput{../slides/a/ecc/prime1.txt}
+\end{block}
+}
+\only<3>{%
+\small
+\verbatiminput{../slides/a/ecc/oakley2.txt}
+}
+\only<4>{%
+\begin{block}{$\mathbb{F}_p$}
+Endlicher Körper mit $p = $
+\verbatiminput{../slides/a/ecc/prime2.txt}
+$\approx 1.7977\cdot 10^{308}$
+\end{block}
+}
+\only<5>{%
+\small
+\verbatiminput{../slides/a/ecc/oakley3.txt}
+}
+\only<6>{%
+\begin{block}{Oakley Gruppe 3}
+\begin{align*}
+m(x) &= x^{155} + x^{62} + 1
+\\
+a &= 0
+\\
+b &= \texttt{0x07338f}
+\\
+g_x &= 0x7b = x^6 + x^5 + x^4 + x^3 + x + 1
+\\
+&=
+x^{18}+x^{17}+x^{16}
++
+x^{13}+x^{12}
++
+x^{9}+x^{8}+x^{7}
++
+x^{3}+x^{1}+x^{1}+1
+\\
+|G|&=45671926166590716193865565914344635196769237316 = 4.5672\cdot 10^{46}
+\\
+\log_2|G|&=155\,\text{bit}
+\end{align*}
+\end{block}}
+\only<7>{%
+\small
+\verbatiminput{../slides/a/ecc/oakley4.txt}
+}
+\only<8>{%
+\begin{block}{Oakley Gruppe 4}
+\begin{align*}
+m(x) &= x^{185} + x^{69} + 1
+\\
+a &= 0
+\\
+b &= \texttt{0x1ee9} = x^{12} + x^{11}+x^{10}+x^9 + x^7+x^6+x^5 + x^3+1
+\\
+g_x &= \texttt{0x18} = x^4+x^3
+\\
+|G| &= 49039857307708443467467104857652682248052385001045053116
+\\
+&= 4.9040\cdot 10^{55}
+\\
+\log_2|G| &= 185
+\end{align*}
+\end{block}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/ecc/oakley1.txt b/vorlesungen/slides/a/ecc/oakley1.txt
new file mode 100644
index 0000000..4cc31ae
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/oakley1.txt
@@ -0,0 +1,14 @@
+6.1 First Oakley Default Group
+
+ Oakley implementations MUST support a MODP group with the following
+ prime and generator. This group is assigned id 1 (one).
+
+ The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 }
+ Its hexadecimal value is
+
+ FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
+ 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
+ EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
+ E485B576 625E7EC6 F44C42E9 A63A3620 FFFFFFFF FFFFFFFF
+
+ The generator is: 2.
diff --git a/vorlesungen/slides/a/ecc/oakley2.txt b/vorlesungen/slides/a/ecc/oakley2.txt
new file mode 100644
index 0000000..ddb2d2a
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/oakley2.txt
@@ -0,0 +1,16 @@
+6.2 Second Oakley Group
+
+ IKE implementations SHOULD support a MODP group with the following
+ prime and generator. This group is assigned id 2 (two).
+
+ The prime is 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
+ Its hexadecimal value is
+
+ FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
+ 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
+ EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
+ E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
+ EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381
+ FFFFFFFF FFFFFFFF
+
+ The generator is 2 (decimal)
diff --git a/vorlesungen/slides/a/ecc/oakley3.txt b/vorlesungen/slides/a/ecc/oakley3.txt
new file mode 100644
index 0000000..ab2c78f
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/oakley3.txt
@@ -0,0 +1,17 @@
+6.3 Third Oakley Group
+
+ IKE implementations SHOULD support a EC2N group with the following
+ characteristics. This group is assigned id 3 (three). The curve is
+ based on the Galois Field GF[2^155]. The field size is 155. The
+ irreducible polynomial for the field is:
+ u^155 + u^62 + 1.
+ The equation for the elliptic curve is:
+ y^2 + xy = x^3 + ax^2 + b.
+
+ Field Size: 155
+ Group Prime/Irreducible Polynomial:
+ 0x0800000000000000000000004000000000000001
+ Group Generator One: 0x7b
+ Group Curve A: 0x0
+ Group Curve B: 0x07338f
+ Group Order: 0X0800000000000000000057db5698537193aef944
diff --git a/vorlesungen/slides/a/ecc/oakley4.txt b/vorlesungen/slides/a/ecc/oakley4.txt
new file mode 100644
index 0000000..3ec20cc
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/oakley4.txt
@@ -0,0 +1,17 @@
+6.4 Fourth Oakley Group
+
+ IKE implementations SHOULD support a EC2N group with the following
+ characteristics. This group is assigned id 4 (four). The curve is
+ based on the Galois Field GF[2^185]. The field size is 185. The
+ irreducible polynomial for the field is:
+ u^185 + u^69 + 1. The
+ equation for the elliptic curve is:
+ y^2 + xy = x^3 + ax^2 + b.
+
+ Field Size: 185
+ Group Prime/Irreducible Polynomial:
+ 0x020000000000000000000000000000200000000000000001
+ Group Generator One: 0x18
+ Group Curve A: 0x0
+ Group Curve B: 0x1ee9
+ Group Order: 0X01ffffffffffffffffffffffdbf2f889b73e484175f94ebc
diff --git a/vorlesungen/slides/a/ecc/operation.tex b/vorlesungen/slides/a/ecc/operation.tex
new file mode 100644
index 0000000..61ef95d
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/operation.tex
@@ -0,0 +1,68 @@
+%
+% operation.tex -- Gruppen-Operation auf einer elliptischen Kurve
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Gruppenoperation}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/elliptic.pdf}
+\end{center}
+\vspace{-23pt}
+\uncover<8->{%
+\begin{block}{Verifizieren}
+\begin{enumerate}
+\item<9-> Assoziativ?
+\item<10-> Neutrales Element $\mathstrut=\infty$
+\item<11-> Involution = Inverse?
+\end{enumerate}
+\end{block}}
+\end{column}
+\begin{column}{0.56\textwidth}
+\begin{block}{Gerade}
+$g_1,g_2\in G$, $t\in \Bbbk$
+\begin{align*}
+g(t)
+&=
+tg_1+(1-t)g_2
+\\
+\uncover<2->{
+\begin{pmatrix}X(t)\\Y(t)\end{pmatrix}
+&=
+t\begin{pmatrix}x_1\\y_1\end{pmatrix}
++
+(1-t)\begin{pmatrix}x_2\\y_2\end{pmatrix}
+\in\Bbbk^2
+}
+\end{align*}
+\end{block}
+\vspace{-13pt}
+\uncover<3->{%
+\begin{block}{3. Schnittpunkt}
+$g(t)$ einsetzen in die elliptische Kurve
+\[
+p(t)
+=
+Y(t)^2+X(t)Y(t)-X(t)^3-aX(t)-b=0
+\]
+\vspace{-12pt}
+\begin{enumerate}
+\item<4->
+kubisches Polynom mit Nullstellen $t=0,1$
+\item<5->
+$p(t) $ ist durch $t(t-1)$ teilbar
+\item<6->
+$p(t) = t(t-1)(Jt+K)=0
+\uncover<7->{\Rightarrow t=-K/J$}
+\end{enumerate}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/a/ecc/prime1.txt b/vorlesungen/slides/a/ecc/prime1.txt
new file mode 100644
index 0000000..eb4515d
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/prime1.txt
@@ -0,0 +1,5 @@
+ 15 52518 09230 07089 35130 91813 12584
+81755 63133 40494 34514 31320 23511 94902 96623 99491 02107
+25866 94538 76591 64244 29100 07680 28886 42291 50803 71891
+80463 42632 72761 30312 82983 74438 08208 90196 28850 91706
+91316 59317 53674 69551 76311 98433 71637 22100 72105 77919
diff --git a/vorlesungen/slides/a/ecc/prime2.txt b/vorlesungen/slides/a/ecc/prime2.txt
new file mode 100644
index 0000000..13458fb
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/prime2.txt
@@ -0,0 +1,8 @@
+ 1797 69313
+48623 15907 70839 15679 37874 53197 86029 60487 56011 70644
+44236 84197 18021 61585 19368 94783 37958 64925 54150 21805
+65485 98050 36464 40548 19923 91000 50792 87700 33558 16639
+22955 31362 39076 50873 57599 14822 57486 25750 07425 30207
+74477 12589 55095 79377 78424 44242 66173 34727 62929 93876
+68709 20560 60502 70810 84290 76929 32019 12819 44676 27007
+
diff --git a/vorlesungen/slides/a/ecc/primes b/vorlesungen/slides/a/ecc/primes
new file mode 100644
index 0000000..3feea29
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/primes
@@ -0,0 +1,13 @@
+#! /bin/bash
+#
+# primes
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+bc <<EOF
+ibase=16
+FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A63A3620FFFFFFFFFFFFFFFF
+
+FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF
+
+EOF
diff --git a/vorlesungen/slides/a/ecc/quadrieren.tex b/vorlesungen/slides/a/ecc/quadrieren.tex
new file mode 100644
index 0000000..942c73b
--- /dev/null
+++ b/vorlesungen/slides/a/ecc/quadrieren.tex
@@ -0,0 +1,59 @@
+%
+% quadrieren.tex -- Quadrieren
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Quadrieren}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.40\textwidth}
+\begin{block}{Problem}
+\( g = g_1 = g_2 \)
+$\Rightarrow$
+Tangente
+\\
+\uncover<2->{{\color{red}ohne Analysis!}}
+\end{block}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/90-crypto/images/elliptic.pdf}
+\end{center}
+\end{column}
+\begin{column}{0.56\textwidth}
+\uncover<3->{%
+\begin{block}{Lösung}
+Finde $h\in G$ derart, dass
+\begin{align*}
+g(t)
+&=
+tg + (1-t)h
+\\
+\uncover<4->{%
+\begin{pmatrix}X(t)\\Y(t)\end{pmatrix}
+&=
+t\begin{pmatrix}x_g\\y_g\end{pmatrix}
++(1-t) \begin{pmatrix}x_h\\y_h\end{pmatrix}
+}
+\end{align*}
+\uncover<5->{eingesetzt
+\[
+p(t)
+=
+Y(t)^2+X(t)Y(t)-X(t)^3-aX(t)-b
+=
+0
+\]}%
+\uncover<6->{%
+Nullstellen $0$ (doppelt) und $1$ hat:}
+\[
+\uncover<7->{p(t) = c(t^3-t)}
+\]
+\uncover<8->{Koeffizientenvergleich: einfachere Gleichungen für $x_h$ und $y_h$}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/slides.tex b/vorlesungen/slides/slides.tex
index b606375..6c24e22 100644
--- a/vorlesungen/slides/slides.tex
+++ b/vorlesungen/slides/slides.tex
@@ -47,15 +47,15 @@
\titel
\input{5/chapter.tex}
-%\title[Permutationen]{Permutationen}
-%\section{Permutationen}
-%\titel
-%\input{6/chapter.tex}
+\title[Permutationen]{Permutationen}
+\section{Permutationen}
+\titel
+\input{6/chapter.tex}
-%\title[Matrizengruppen]{Matrizengruppen}
-%\section{Matrizengruppen}
-%\titel
-%\input{7/chapter.tex}
+\title[Matrizengruppen]{Matrizengruppen}
+\section{Matrizengruppen}
+\titel
+\input{7/chapter.tex}
\title[Graphen]{Graphen}
\section{Graphen}
@@ -67,10 +67,10 @@
\titel
\input{9/chapter.tex}
-%\title[Krypto]{Anwendungen in Kryptographie und Codierungstheorie}
-%\section{Krypto}
-%\titel
-%\input{a/chapter.tex}
+\title[Krypto]{Anwendungen in Kryptographie und Codierungstheorie}
+\section{Krypto}
+\titel
+\input{a/chapter.tex}
%\title[Homologie]{Homologie}
%\section{Homologie}
diff --git a/vorlesungen/slides/test.tex b/vorlesungen/slides/test.tex
index e4b9ad7..4289c44 100644
--- a/vorlesungen/slides/test.tex
+++ b/vorlesungen/slides/test.tex
@@ -1,17 +1,28 @@
%
% test.tex collection of all slides
%
-% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil
+% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-%\folie{5/verzerrung.tex}
-
-% XXX Visualisierung Cayley-Hamilton-Produkte
-% XXX \folie{5/chvisual.tex}
+%\folie{9/google.tex}
+%\folie{9/markov.tex}
+%\folie{9/stationaer.tex}
+%\folie{9/irreduzibel.tex}
+%\folie{9/pf.tex}
-% XXX stone weierstrass incomplete
-%\folie{5/stoneweierstrass.tex}
+%\folie{9/pf/positiv.tex}
+%\folie{9/pf/primitiv.tex}
+%\folie{9/pf/trennung.tex}
+%\folie{9/pf/vergleich.tex}
+%\folie{9/pf/vergleich3d.tex}
+%\folie{9/pf/dreieck.tex}
+%\folie{9/pf/folgerungen.tex}
+%\folie{9/potenz.tex}
-% XXX polynome auf dem spektrum
-% XXX Motiviation für *-Operation
-%\folie{5/normal.tex}
+\folie{9/parrondo/erwartung.tex}
+%\folie{9/parrondo/uebersicht.tex}
+\folie{9/parrondo/spiela.tex}
+\folie{9/parrondo/spielb.tex}
+\folie{9/parrondo/spielbmod.tex}
+\folie{9/parrondo/kombiniert.tex}
+\folie{9/parrondo/deformation.tex}