aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex')
-rw-r--r--buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex5
1 files changed, 3 insertions, 2 deletions
diff --git a/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex b/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex
index ec76c34..40a69af 100644
--- a/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex
+++ b/buch/chapters/40-eigenwerte/uebungsaufgaben/4005.tex
@@ -94,7 +94,7 @@ Es gilt also $AA^t=A^tA$, die Matrix ist also normal.
\notag
\end{align}
Mit einem Taschenrechner kann man die Nullstellen finden,
-aber man kann das auch die Form \eqref{4005:charpoly}
+aber man kann auch die Form \eqref{4005:charpoly}
des charakteristischen Polynoms direkt faktorisieren:
\begin{align*}
\chi_A(\lambda)
@@ -124,6 +124,7 @@ man mit der Lösungsformel für quadratische Gleichungen finden kann:
\frac{3}{2} \pm\frac{\sqrt{-3}}{2}
=
\frac{3}{2} \pm i\frac{\sqrt{3}}{2}
+&|lambda_{\pm}&=\sqrt{3}.
\end{align*}
\item
Wir müssen $z=A$ und $\overline{z}=A^t$ im Polynom $p(z,\overline{z})$
@@ -139,7 +140,7 @@ B
2.1547005& 0.42264973& 0.42264973 \\
0.4226497& 2.15470053& 0.42264973 \\
0.4226497& 0.42264973& 2.15470053
-\end{pmatrix}
+\end{pmatrix}.
\end{align*}
\item
Tatsächlich gibt die Berechnung der Eigenwerte