aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/60-gruppen/lie-gruppen.tex
diff options
context:
space:
mode:
Diffstat (limited to 'buch/chapters/60-gruppen/lie-gruppen.tex')
-rw-r--r--buch/chapters/60-gruppen/lie-gruppen.tex6
1 files changed, 3 insertions, 3 deletions
diff --git a/buch/chapters/60-gruppen/lie-gruppen.tex b/buch/chapters/60-gruppen/lie-gruppen.tex
index 9f0c26f..76fa0ee 100644
--- a/buch/chapters/60-gruppen/lie-gruppen.tex
+++ b/buch/chapters/60-gruppen/lie-gruppen.tex
@@ -12,7 +12,7 @@ Die Gruppe
\[
\operatorname{GL}_n(\mathbb{R})
=
-\{ A \in M_n(\mathbb{R})\;|\; \det A \ne 0\}
+\{ A \in M_n(\mathbb{R}) \mid \det A \ne 0\}
\]
besteht aus den Matrizen, deren Determinante nicht $0$ ist.
Da die Menge der Matrizen mit $\det A=0$ eine abgeschlossene Menge
@@ -266,7 +266,7 @@ Jede komplexe Zahl $z$ vom Betrag $1$ kann geschrieben werden in der Form
$z=e^{i\alpha}$.
Die Abbildung $f$ ist also eine Parametrisierung des
Einheitskreises in der Ebene.
-Wir bezeichen $S^1=\{z\in\mathbb{C}\;|\; |z|=1\}$ die komplexen Zahlen vom
+Wir bezeichen $S^1=\{z\in\mathbb{C} \mid |z|=1\}$ die komplexen Zahlen vom
Betrag $1$.
$S^1$ ist eine Gruppe bezüglich der Multiplikation, da für alle Zahlen
$z,w\in S^1$ gilt
@@ -479,7 +479,7 @@ daher aus den Matrizen
\[
\operatorname{O}(n)
=
-\{ A\in M_n(\mathbb{R})\;|\; AA^t=I\}.
+\{ A\in M_n(\mathbb{R}) \mid AA^t=I\}.
\]
Die Matrixgleichung $AA^t=I$ liefert $n(n+1)/2$ unabhängige Bedingungen,
die die orthogonalen Matrizen innerhalb der $n^2$-dimensionalen