diff options
Diffstat (limited to 'vorlesungen/slides/1')
-rw-r--r-- | vorlesungen/slides/1/Makefile.inc | 18 | ||||
-rw-r--r-- | vorlesungen/slides/1/algebrastruktur.tex | 73 | ||||
-rw-r--r-- | vorlesungen/slides/1/chapter.tex | 14 | ||||
-rw-r--r-- | vorlesungen/slides/1/dreieck.tex | 62 | ||||
-rw-r--r-- | vorlesungen/slides/1/hadamard.tex | 51 | ||||
-rw-r--r-- | vorlesungen/slides/1/j.tex | 63 | ||||
-rw-r--r-- | vorlesungen/slides/1/matrixalgebra.tex | 77 | ||||
-rw-r--r-- | vorlesungen/slides/1/speziell.tex | 43 | ||||
-rw-r--r-- | vorlesungen/slides/1/strukturen.tex | 35 | ||||
-rw-r--r-- | vorlesungen/slides/1/vektorraum.tex | 54 | ||||
-rw-r--r-- | vorlesungen/slides/1/zahlensysteme.tex | 46 |
11 files changed, 536 insertions, 0 deletions
diff --git a/vorlesungen/slides/1/Makefile.inc b/vorlesungen/slides/1/Makefile.inc new file mode 100644 index 0000000..3c1b5d4 --- /dev/null +++ b/vorlesungen/slides/1/Makefile.inc @@ -0,0 +1,18 @@ + +# +# Makefile.inc -- additional depencencies +# +# (c) 20920 Prof Dr Andreas Müller, Hochschule Rapperswil +# +chapter1 = \ + ../slides/1/zahlensysteme.tex \ + ../slides/1/strukturen.tex \ + ../slides/1/j.tex \ + ../slides/1/vektorraum.tex \ + ../slides/1/matrixalgebra.tex \ + ../slides/1/algebrastruktur.tex \ + ../slides/1/speziell.tex \ + ../slides/1/dreieck.tex \ + ../slides/1/hadamard.tex \ + ../slides/1/chapter.tex + diff --git a/vorlesungen/slides/1/algebrastruktur.tex b/vorlesungen/slides/1/algebrastruktur.tex new file mode 100644 index 0000000..9647c04 --- /dev/null +++ b/vorlesungen/slides/1/algebrastruktur.tex @@ -0,0 +1,73 @@ +% +% algebrastruktur.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup + +\definecolor{darkgreen}{rgb}{0,0.6,0} + +\begin{frame}[t] +\frametitle{Algebra über $\Bbbk$} +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\pgfmathparse{atan(7/4)} +\xdef\a{\pgfmathresult} +\fill[color=red!40,opacity=0.5] + ({-4-2.5},{2+1.0}) + -- + ({-2.5},{-3-1.0}) + -- + ({2.5},{-3-1.0}) + -- + ({-4+2.5},{2+1.0}) + -- cycle; +\fill[color=blue!40,opacity=0.5] + ({4-2.5},{2+1.0}) + -- + ({-2.5},{-3-1.0}) + -- + ({2.5},{-3-1.0}) + -- + ({4+2.5},{2+1.0}) + -- cycle; +\fill[color=darkgreen!40,opacity=0.5] + ({-4-2.5},{2+1.0}) + -- + ({-4-2.5+2*(4/7)},{2-1}) + -- + ({+4+2.5-2*(4/7)},{2-1}) + -- + ({+4+2.5},{2+1}) + -- + cycle; +\node at ({-3-0.5},2) {Skalarmultiplikation}; + +\node at (3.5,2.2) {Multiplikation}; +\node at (3.5,1.8) {\tiny Halbgruppe}; + +\node at (0,-2.8) {Addition}; +\node at (0,-3.2) {\tiny Gruppe}; + +\node[color=blue] at (4.8,-0.5) [rotate=\a] {Ring\strut}; +\node[color=red] at (-4.8,-0.5) [rotate=-\a] {Vektorraum\strut}; + +\node[color=darkgreen] at (0,2.6) {$(\lambda a)b=\lambda(ab)$}; + +\node[color=red] at (-2.5,-0.5) {$\displaystyle +\begin{aligned} +\lambda(a+b)&=\lambda a + \lambda b\\ +(\lambda+\mu)a&=\lambda a +\mu a +\end{aligned}$}; + +\node[color=blue] at (2.5,-0.5) {$\displaystyle +\begin{aligned} +a(b+c)&=ab+ac\\ +(a+b)c&=ac+bc +\end{aligned}$}; + +\end{tikzpicture} +\end{center} +\end{frame} + +\egroup diff --git a/vorlesungen/slides/1/chapter.tex b/vorlesungen/slides/1/chapter.tex new file mode 100644 index 0000000..fec3330 --- /dev/null +++ b/vorlesungen/slides/1/chapter.tex @@ -0,0 +1,14 @@ +% +% chapter.tex +% +% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswi +% +\folie{1/zahlensysteme.tex} +\folie{1/strukturen.tex} +\folie{1/j.tex} +\folie{1/vektorraum.tex} +\folie{1/matrixalgebra.tex} +\folie{1/algebrastruktur.tex} +\folie{1/speziell.tex} +\folie{1/dreieck.tex} +\folie{1/hadamard.tex} diff --git a/vorlesungen/slides/1/dreieck.tex b/vorlesungen/slides/1/dreieck.tex new file mode 100644 index 0000000..f4909e2 --- /dev/null +++ b/vorlesungen/slides/1/dreieck.tex @@ -0,0 +1,62 @@ +% +% dreieck.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Dreiecksmatrizen} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.31\textwidth} +\begin{block}{Dreiecksmatrix} +\begin{align*} +R&= +\begin{pmatrix} +*&*&*&\dots&*\\ +0&*&*&\dots&*\\ +0&0&*&\dots&*\\ +\vdots&\vdots&\vdots&\ddots&\vdots\\ +0&0&0&\dots&* +\end{pmatrix} +\\ +U&= +\begin{pmatrix} +1&*&*&\dots&*\\ +0&1&*&\dots&*\\ +0&0&1&\dots&*\\ +\vdots&\vdots&\vdots&\ddots&\vdots\\ +0&0&0&\dots&1 +\end{pmatrix} +\end{align*} +\end{block} +\end{column} +\begin{column}{0.31\textwidth} +\begin{block}{Nilpotente Matrix} +\[ +N= +\begin{pmatrix} +*&*&*&\dots&*\\ +0&*&*&\dots&*\\ +0&0&*&\dots&*\\ +\vdots&\vdots&\vdots&\ddots&\vdots\\ +0&0&0&\dots&* +\end{pmatrix} +\] +$\Rightarrow N^n=0$ +\end{block} +\end{column} +\begin{column}{0.31\textwidth} +\begin{block}{Jordan-Matrix} +\[ +J_\lambda=\begin{pmatrix} +\lambda&1&0&\dots&0\\ +0&\lambda&1&\dots&0\\ +0&0&\lambda&\dots&0\\ +\vdots&\vdots&\vdots&\ddots&\vdots\\ +0&0&0&\dots&\lambda +\end{pmatrix} +\] +$\Rightarrow J_\lambda -\lambda I$ ist nilpotent +\end{block} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/1/hadamard.tex b/vorlesungen/slides/1/hadamard.tex new file mode 100644 index 0000000..5cb692a --- /dev/null +++ b/vorlesungen/slides/1/hadamard.tex @@ -0,0 +1,51 @@ +% +% hadamard.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Hadamard-Algebra} +\begin{block}{Alternatives Produkt: Hadamard-Produkt} +\[ +\begin{pmatrix} +a_{11}&\dots&a_{1n}\\ +\vdots&\ddots&\vdots\\ +a_{m1}&\dots&a_{mn}\\ +\end{pmatrix} +\odot +\begin{pmatrix} +b_{11}&\dots&b_{1n}\\ +\vdots&\ddots&\vdots\\ +b_{m1}&\dots&b_{mn}\\ +\end{pmatrix} += +\begin{pmatrix} +a_{11}b_{11}&\dots&a_{1n}b_{1n}\\ +\vdots&\ddots&\vdots\\ +a_{m1}b_{m1}&\dots&a_{mn}b_{mn}\\ +\end{pmatrix} +\] +\end{block} +\vspace{-10pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.58\textwidth} +\uncover<2->{% +\begin{block}{Algebra} +\begin{itemize} +\item<3-> $M_{mn}(\Bbbk)$ ist eine Algebra mit +$\odot$ als Produkt +\item<4-> Neutrales Element $U$: Matrix aus lauter Einsen +\item<5-> Anwendung: Wahrscheinlichkeitsmatrizen +\end{itemize} +\end{block}} +\end{column} +\begin{column}{0.38\textwidth} +\uncover<6->{% +\begin{block}{Nicht so interessant} +Die Hadamard-Algebra ist kommutativ +\uncover<7->{$\Rightarrow$ +kann ``keine'' interessanten algebraischen Relationen darstellen} +\end{block}} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/1/j.tex b/vorlesungen/slides/1/j.tex new file mode 100644 index 0000000..132f1d0 --- /dev/null +++ b/vorlesungen/slides/1/j.tex @@ -0,0 +1,63 @@ +% +% j.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Beispiele} +\vspace{-15pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Imaginäre Einheit $i$} +Gibt es eine Zahl $i$ mit $i^2=-1$? +\end{block} +\uncover<2->{% +\begin{block}{Matrixlösung} +Die Matrix +\[ +J += +\begin{pmatrix}0&-1\\1&0\end{pmatrix} +\] +erfüllt +\[ +J^2 += +%\begin{pmatrix}0&-1\\1&0\end{pmatrix} +%\begin{pmatrix}0&-1\\1&0\end{pmatrix} +%= +\begin{pmatrix}-1&0\\0&-1\end{pmatrix} += +-I +\] +$\Rightarrow$ $J$ ist eine Matrixdarstellung von $i$ + +Drehmatrix mit Winkel $90^\circ$ +\end{block}} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<3->{% +\begin{block}{Quadratwurzel $\sqrt{2}$} +Gibt es eine Zahl $\sqrt{2}$ derart, dass $(\sqrt{2})^2=2$? +\end{block}} +\uncover<4->{% +\begin{block}{Matrixlösung} +%\setlength{\abovedisplayskip}{5pt} +%\setlength{\belowdisplayskip}{5pt} +Die Matrix +\[ +W += +\begin{pmatrix}0&2\\1&0\end{pmatrix} +\] +erfüllt +\[ +W^2 += +\begin{pmatrix}2&0\\0&2\end{pmatrix} = 2I +\] +$\Rightarrow$ $W$ ist eine Matrixdarstellung von $\sqrt{2}$ +\end{block}} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/1/matrixalgebra.tex b/vorlesungen/slides/1/matrixalgebra.tex new file mode 100644 index 0000000..a3c3a76 --- /dev/null +++ b/vorlesungen/slides/1/matrixalgebra.tex @@ -0,0 +1,77 @@ +% +% matrixalgebra.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\bgroup + +\newtcbox{\myboxA}{blank,boxsep=0mm, +clip upper,minipage, +width=31.0mm,height=17.0mm,nobeforeafter, +borderline={0.0pt}{0.0pt}{white}, +} +\definecolor{magenta}{rgb}{0.8,0.2,0.8} + +\begin{frame}[t] +\frametitle{Matrix-Algebra} +\vspace{-10pt} +\[ +\begin{pmatrix} +a_{11}&\dots &a_{1n}\\ +\vdots&\ddots&\vdots\\ +a_{m1}&\dots &a_{mn} +\end{pmatrix} ++ +\begin{pmatrix} +b_{11}&\dots &b_{1n}\\ +\vdots&\ddots&\vdots\\ +b_{m1}&\dots &b_{mn} +\end{pmatrix} += +\begin{pmatrix} +a_{11}+b_{11}&\dots &a_{1n}+b_{1n}\\ +\vdots&\ddots&\vdots\\ +a_{m1}+b_{m1}&\dots &a_{mn}+b_{mn} +\end{pmatrix} +\] +\[ +\lambda +\begin{pmatrix} +a_{11}&\dots &a_{1n}\\ +\vdots&\ddots&\vdots\\ +a_{m1}&\dots &a_{mn} +\end{pmatrix} += +\begin{pmatrix} +\lambda a_{11}&\dots &\lambda a_{1n}\\ +\vdots&\ddots&\vdots\\ +\lambda a_{m1}&\dots &\lambda a_{mn} +\end{pmatrix} +\] +\uncover<2->{% +\begin{center} +\begin{tikzpicture}[>=latex,thick] +\begin{scope}[xshift=-4.5cm] +\node at (1.5,1.53) {$\left(\myboxA{}\right)$}; +\draw[color=red,line width=3pt] (0,2) -- (3,2); +\draw (0,0) rectangle (3,3); +\end{scope} +\node at (-0.75,1.5) {$\mathstrut\cdot\mathstrut$}; +\begin{scope}[xshift=0cm] +\node at (1.5,1.53) {$\left(\myboxA{}\right)$}; +\draw[color=blue,line width=3pt] (2.7,0) -- (2.7,3); +\draw (0,0) rectangle (3,3); +\end{scope} +\node at (3.75,1.5) {$\mathstrut=\mathstrut$}; +\begin{scope}[xshift=4.5cm] +\node at (1.5,1.53) {$\left(\myboxA{}\right)$}; +\draw[color=gray,line width=1pt] (2.7,0) -- (2.7,3); +\draw[color=gray,line width=1pt] (0,2) -- (3,2); +\fill[color=magenta] (2.7,2) circle[radius=0.12]; +\draw (0,0) rectangle (3,3); +\end{scope} +\end{tikzpicture} +\end{center}} +\end{frame} + +\egroup diff --git a/vorlesungen/slides/1/speziell.tex b/vorlesungen/slides/1/speziell.tex new file mode 100644 index 0000000..87b767a --- /dev/null +++ b/vorlesungen/slides/1/speziell.tex @@ -0,0 +1,43 @@ +% +% speziell.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\begin{columns}[t,onlytextwidth] +\begin{column}{0.38\textwidth} +\frametitle{Diagonalmatrizen} +\begin{block}{Einheitsmatrix} +\[ +I=\begin{pmatrix} +1&0&\dots&0\\ +0&1&\dots&0\\ +\vdots&\vdots&\ddots&\vdots\\ +0&0&\dots&1 +\end{pmatrix} +\] +Neutrales Element der Matrixmultiplikation: +\[ +AI=IA=A +\] +\end{block} +\end{column} +\begin{column}{0.58\textwidth} +\begin{block}{Diagonalmatrix} +\[ +\operatorname{diag}(\lambda_1,\lambda_2,\dots,\lambda_n) += +\begin{pmatrix} +\lambda_1&0&\dots&0\\ +0&\lambda_2&\dots&0\\ +\vdots&\vdots&\ddots&\vdots\\ +0&0&\dots&\lambda_n +\end{pmatrix} +\] +\end{block} +\begin{block}{Hadamard-Algebra} +Die Algebra der Diagonalmatrizen ist die Hadamard-Algebra +\end{block} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/1/strukturen.tex b/vorlesungen/slides/1/strukturen.tex new file mode 100644 index 0000000..a5fc09a --- /dev/null +++ b/vorlesungen/slides/1/strukturen.tex @@ -0,0 +1,35 @@ +% +% strukturen.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Strukturen} +\vspace{-15pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.42\textwidth} +\begin{center} +\includegraphics[width=\textwidth]{../../buch/chapters/10-vektorenmatrizen/images/strukturen.pdf} +\end{center} +\end{column} +\begin{column}{0.54\textwidth} +\begin{itemize}[<+->] +\item Gruppen: Drehungen, Symmetrien +\item Vektorraum: Geometrie +\item Ring (mit Eins) +\item Algebra: Vektorraum und Ring +\item Algebra mit Eins: Vektorraum und Ring mit Eins +\item Körper +\end{itemize} +\uncover<7->{% +\begin{block}{Matrizen} +Jede beliebige Struktur lässt sich mit Matrizen darstellen: +\begin{itemize} +\item<8-> Permutationsmatrizen +\item<9-> Wahrscheinlichkeitsmatrizen +\item<10-> Wurzeln +\end{itemize} +\end{block}} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/1/vektorraum.tex b/vorlesungen/slides/1/vektorraum.tex new file mode 100644 index 0000000..2566085 --- /dev/null +++ b/vorlesungen/slides/1/vektorraum.tex @@ -0,0 +1,54 @@ +% +% vektorraum.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Vektorraum} +\vspace{-10pt} +\begin{columns}[t,onlytextwidth] +\begin{column}{0.48\textwidth} +\begin{block}{Operationen} +Addition: +\[ +\begin{pmatrix}a_1\\\vdots\\a_n \end{pmatrix} ++ +\begin{pmatrix}b_1\\\vdots\\b_n \end{pmatrix} += +\begin{pmatrix}a_1+b_1\\\vdots\\a_n+b_n \end{pmatrix} +\] +Skalarmultiplikation: +\[ +\lambda\begin{pmatrix}a_1\\\vdots\\a_n \end{pmatrix} += +\begin{pmatrix}\lambda a_1\\\vdots\\\lambda a_n \end{pmatrix} +\] +\end{block} +\end{column} +\begin{column}{0.48\textwidth} +\uncover<2->{% +\begin{block}{Additive Gruppe} +$\mathbb{R}^n$ ist eine Gruppe bezüglich der Addition +mit +\[ +0=\begin{pmatrix}0\\\vdots\\0\end{pmatrix}, +\qquad +-a += +-\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix} += +\begin{pmatrix}-a_1\\\vdots\\-a_n\end{pmatrix} +\] +\end{block}} +\vspace{-5pt} +\uncover<3->{% +\begin{block}{Skalarmultiplikation} +Distributivgesetz +\begin{align*} +(\lambda+\mu)a&=\lambda a + \mu a\\ +\lambda (a+b)&=\lambda a + \lambda b +\end{align*} +\end{block}} +\end{column} +\end{columns} +\end{frame} diff --git a/vorlesungen/slides/1/zahlensysteme.tex b/vorlesungen/slides/1/zahlensysteme.tex new file mode 100644 index 0000000..4e66137 --- /dev/null +++ b/vorlesungen/slides/1/zahlensysteme.tex @@ -0,0 +1,46 @@ +% +% zahlensysteme.tex +% +% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\begin{frame}[t] +\frametitle{Zahlensysteme} +\begin{center} +\begin{tabular}{|>{$}c<{$}|p{7cm}|p{3cm}|} +\hline +\text{Zahlenmenge}&\text{Eigenschaften}&\text{Struktur} +\\ +\hline +\mathbb{N} +&\phantom{}\raggedright\uncover<2->{Addition, neutrales Element $0$} +&\phantom{}\uncover<2->{Monoid} +\\ +\mathbb{Z} +&\phantom{}\raggedright\uncover<3->{Addition, neutrales Element $0$, +inverses Element der Addition} +&\phantom{}\uncover<3->{Gruppe} +\\ +\mathbb{Z} +&\phantom{}\raggedright\uncover<4->{zusätzlich: Multiplikation, neutrales Element $1$} +&\phantom{}\uncover4->{Ring} +\\ +\mathbb{Q} +&\phantom{}\raggedright\uncover<5->{Addition und Multiplikation mit Inversen} +&\phantom{}\uncover<5->{Körper} +\\ +\mathbb{R} +&\phantom{}\raggedright\uncover<6->{zusätzlich: Ordnungsrelation, Vollständigkeit} +&\phantom{}\uncover<6->{Körper mit Ordnung} +\\ +\mathbb{C} +&\phantom{}\raggedright\uncover<7->{zusätzlich: Alle Wurzeln} +&\phantom{}\uncover<7->{algebraisch abgeschlossener Körper} +\\ +\uncover<8->{\mathbb{H}} +&\phantom{}\raggedright\uncover<8->{höhere Dimension, nichtkommutativ} +&\phantom{}\uncover<8->{Schiefkörper} +\\ +\hline +\end{tabular} +\end{center} +\end{frame} |