aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/2/hilbertraum/definition.tex
diff options
context:
space:
mode:
Diffstat (limited to 'vorlesungen/slides/2/hilbertraum/definition.tex')
-rw-r--r--vorlesungen/slides/2/hilbertraum/definition.tex22
1 files changed, 13 insertions, 9 deletions
diff --git a/vorlesungen/slides/2/hilbertraum/definition.tex b/vorlesungen/slides/2/hilbertraum/definition.tex
index ed0ab13..d101637 100644
--- a/vorlesungen/slides/2/hilbertraum/definition.tex
+++ b/vorlesungen/slides/2/hilbertraum/definition.tex
@@ -13,8 +13,8 @@
\begin{column}{0.48\textwidth}
\begin{block}{$\mathbb{C}$-Hilbertraum $H$}
\begin{enumerate}
-\item $\mathbb{C}$-Vektorraum, muss nicht endlichdimensional sein
-\item Sesquilineares Skalarprodukt
+\item<2-> $\mathbb{C}$-Vektorraum, muss nicht endlichdimensional sein
+\item<3-> Sesquilineares Skalarprodukt
\[
\langle \cdot,\cdot\rangle
\colon H \to \mathbb{C}: (x,y) \mapsto \langle x,y\rangle
@@ -23,36 +23,40 @@ Dazugehörige Norm:
\[
\|x\| = \sqrt{\langle x,x\rangle}
\]
-\item Vollständigkeit: jede Cauchy-Folge konvergiert
+\item<4-> Vollständigkeit: jede Cauchy-Folge konvergiert
\end{enumerate}
-Ohne Vollständigkeit: {\em Prähilbertraum}
+\uncover<5->{%
+Ohne Vollständigkeit: {\em Prähilbertraum}}
\end{block}
+\uncover<6->{%
\begin{block}{$\mathbb{R}$-Hilbertraum}
Vollständiger $\mathbb{R}$-Vektorraum mit bilinearem Skalarprodukt
-\end{block}
+\end{block}}
\end{column}
\begin{column}{0.48\textwidth}
+\uncover<7->{%
\begin{block}{Vollständigkeit}
\begin{itemize}
-\item $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge:
+\item<8-> $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge:
Für alle $\varepsilon>0$ gibt es $N>0$ derart, dass
\[
\| x_n-x_m\| < \varepsilon\quad\forall n,m>N
\]
-\item Grenzwert existiert: $\exists x\in H$ derart, dass es für alle
+\item<9-> Grenzwert existiert: $\exists x\in H$ derart, dass es für alle
$\varepsilon >0$ ein $N>0$ gibt derart, dass
\[
\|x_n-x\|<\varepsilon\quad\forall n>N
\]
\end{itemize}
-\end{block}
+\end{block}}
+\uncover<10->{%
\begin{block}{Cauchy-Schwarz-Ungleichung}
\[
|\langle x,y\rangle|
\le \|x\| \cdot \|y\|
\]
Gleichheit für linear abhängige $x$ und $y$
-\end{block}
+\end{block}}
\end{column}
\end{columns}
\end{frame}