diff options
Diffstat (limited to 'vorlesungen/slides/3/adjunktion.tex')
-rw-r--r-- | vorlesungen/slides/3/adjunktion.tex | 30 |
1 files changed, 30 insertions, 0 deletions
diff --git a/vorlesungen/slides/3/adjunktion.tex b/vorlesungen/slides/3/adjunktion.tex new file mode 100644 index 0000000..3b55ab0 --- /dev/null +++ b/vorlesungen/slides/3/adjunktion.tex @@ -0,0 +1,30 @@ +% +% adjunktion.tex +% +% (c) 2021 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\begin{frame}[t] +\frametitle{Adjunktion einer Nullstelle von $m(X)$} +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +Sei $m(X)=m_0+m_1X+\dots + X^n\in \Bbbk[X]$ ein irreduzibles Polynom. +\[ +X^n = -m_{n-1}X^{n-1} - \dots - m_1X - m_0 +\] +Nullstelle $W$ als Operator betrachten: +\[ +W = \begin{pmatrix} + 0& 0& 0&\dots & 0& -m_0\\ + 1& 0& 0&\dots & 0& -m_1\\ + 0& 1& 0&\dots & 0& -m_2\\ + 0& 0& 1&\dots & 0& -m_3\\ +\vdots&\vdots&\vdots&\ddots&\vdots& \vdots\\ + 0& 0& 0&\dots & 1&-m_{n-1} +\end{pmatrix} +\] +Man kann nachrechnen, dass immer $m(W)=0$. +\medskip + +$\Rightarrow \Bbbk(W) = \{p(W)\;|\;p\in\Bbbk[X], \deg p<\deg m\}$ +ist ein Körper, in dem $m(X)$ faktorisiert werden kann $m(X) = (X-W)q(X)$. +\end{frame} |