diff options
Diffstat (limited to 'vorlesungen/slides/3/minimalbeispiel.tex')
-rw-r--r-- | vorlesungen/slides/3/minimalbeispiel.tex | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/vorlesungen/slides/3/minimalbeispiel.tex b/vorlesungen/slides/3/minimalbeispiel.tex new file mode 100644 index 0000000..03909de --- /dev/null +++ b/vorlesungen/slides/3/minimalbeispiel.tex @@ -0,0 +1,34 @@ +% +% minimalbeispiel.tex +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\begin{frame}[t] +\frametitle{Beispiel für $p(A)=0$} +\begin{block}{Potenzen einer $2\times 2$-Matrix $A$} +\setlength{\abovedisplayskip}{5pt} +\setlength{\belowdisplayskip}{5pt} +\vspace{-10pt} +\[ +I ={\tiny\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}},\quad +A ={\tiny\begin{pmatrix} 3 & 2 \\ -1 & -2 \end{pmatrix}},\quad +A^2={\tiny\begin{pmatrix} 7 & 2 \\ -1 & 2 \end{pmatrix}},\quad +A^3={\tiny\begin{pmatrix} 19 & 10 \\ -5 & -6 \end{pmatrix}},\quad +A^4={\tiny\begin{pmatrix} 47 & 18 \\ -9 & 2 \end{pmatrix}} +\] +\end{block} +\vspace{-5pt} +\begin{block}{linear abhängig} +Bereits die ersten $3$ sind linear abhängig: +\[ +-4I - A + A^2 += +-4\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} +-\begin{pmatrix} 3 & 2 \\ -1 & -2 \end{pmatrix} ++\begin{pmatrix} 7 & 2 \\ -1 & 2 \end{pmatrix} += +\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} +\] +$p(X) = X^2 - X - 4 \in \mathbb{Q}[X]$ hat die Eigenschaft $p(A)=0$ +\end{block} +\end{frame} |