aboutsummaryrefslogtreecommitdiffstats
path: root/vorlesungen/slides/9/pf
diff options
context:
space:
mode:
Diffstat (limited to 'vorlesungen/slides/9/pf')
-rw-r--r--vorlesungen/slides/9/pf/dreieck.tex44
-rw-r--r--vorlesungen/slides/9/pf/folgerungen.tex203
-rw-r--r--vorlesungen/slides/9/pf/positiv.tex64
-rw-r--r--vorlesungen/slides/9/pf/primitiv.tex84
-rw-r--r--vorlesungen/slides/9/pf/trennung.tex99
-rw-r--r--vorlesungen/slides/9/pf/vergleich.tex113
-rw-r--r--vorlesungen/slides/9/pf/vergleich3d.tex26
7 files changed, 633 insertions, 0 deletions
diff --git a/vorlesungen/slides/9/pf/dreieck.tex b/vorlesungen/slides/9/pf/dreieck.tex
new file mode 100644
index 0000000..0a572f3
--- /dev/null
+++ b/vorlesungen/slides/9/pf/dreieck.tex
@@ -0,0 +1,44 @@
+%
+% dreieck.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Verallgemeinerte Dreiecksungleichung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.32\textwidth}
+\begin{block}{Satz}
+\[
+|u+v|\le |u|+|v|
+\]
+Gleichheit wenn lin.~abh.
+\end{block}
+\begin{block}{Satz}
+\[
+\biggl|\sum_i u_i\biggr|
+\le
+\sum_i |u_i|
+\]
+Gleichheit wenn $u_i = \lambda_i u$
+\end{block}
+\begin{block}{Satz}
+\[
+\biggl|\sum_i z_i\biggr|
+\le
+\sum_i |z_i|
+\]
+Gleichheit, wenn $z_i=|z_i|c$, $c\in\mathbb{C}$
+\end{block}
+\end{column}
+\begin{column}{0.68\textwidth}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/80-wahrscheinlichkeit/images/dreieck.pdf}
+\end{center}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/folgerungen.tex b/vorlesungen/slides/9/pf/folgerungen.tex
new file mode 100644
index 0000000..5042c78
--- /dev/null
+++ b/vorlesungen/slides/9/pf/folgerungen.tex
@@ -0,0 +1,203 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Folgerungen für $A>0$}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Satz}
+$u\ge 0$ ein EV zum EW $ \lambda\ne 0$,
+dann ist $u>0$ und $\lambda >0$
+\end{block}
+\uncover<6->{%
+\begin{block}{Satz}
+$v$ ein EV zum EW $\lambda$ mit $|\lambda| = \varrho(A)$,
+dann ist $u=|v|$ mit $u_i=|v_i|$ ein EV mit EW $\varrho(A)$
+\end{block}}
+\uncover<29->{%
+\begin{block}{Satz}
+$v$ ein EV zum EW $\lambda$ mit $|\lambda|=\varrho(A)$,
+dann ist $\lambda=\varrho(A)$
+\end{block}}
+\uncover<46->{%
+\begin{block}{Satz}
+Der \only<57->{verallgemeinerte }Eigenraum zu EW $\varrho(A)$
+ist eindimensional
+\end{block}
+}
+\end{column}
+\ifthenelse{\boolean{presentation}}{
+\only<-6>{
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis]
+\begin{itemize}
+\item<3->
+Vergleich: $Au>0$
+\item<4->
+$Au=\lambda u > 0$
+\item<5->
+$\lambda >0$ und $u>0$
+\end{itemize}
+\end{proof}
+\end{column}}
+\only<7-20>{
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis]
+\begin{align*}
+(Au)_i
+&\only<-8>{=
+\sum_j a_{ij}u_j}
+\only<8-9>{=
+\sum_j |a_{ij}v_j|}
+\only<9->{\ge}
+\only<9-10>{
+\biggl|\sum_j a_{ij}v_j\biggr|}
+\only<10>{=}
+\only<10-11>{
+|(Av)_i|}
+\only<11>{=}
+\only<11-12>{
+|\lambda v_i|}
+\only<12>{=}
+\only<12-13>{
+\varrho(A) |v_i|}
+\only<13>{=}
+\uncover<13->{
+\varrho(A) u_i}
+\hspace*{5cm}
+\\
+\uncover<14->{Au&\ge \varrho(A)u}
+\intertext{\uncover<15->{Vergleich}}
+\uncover<16->{A^2u&> \varrho(A)Au}
+\intertext{\uncover<17->{Trennung: $\exists \vartheta >1$ mit}}
+\uncover<18->{A^2u&\ge \vartheta \varrho(A) Au }\\
+\uncover<19->{A^3u&\ge (\vartheta \varrho(A))^2 Au }\\
+\uncover<20->{A^ku&\ge (\vartheta \varrho(A))^{k-1} Au }\\
+\end{align*}
+\end{proof}
+\end{column}}
+\only<21-29>{%
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis, Fortsetzung]
+Abschätzung der Operatornorm:
+\begin{align*}
+\|A^k\|\, |Au|
+\ge
+\|A^{k+1}u\|
+\uncover<22->{
+\ge
+(\vartheta\varrho(A))^k |Au|}
+\end{align*}
+\uncover<23->{Abschätzung des Spektralradius}
+\begin{align*}
+\uncover<24->{\|A^k\| &\ge (\vartheta\varrho(A))^k}
+\\
+\uncover<25->{\|A^k\|^{\frac1k} &\ge \vartheta \varrho(A)}
+\\
+\uncover<26->{\lim_{k\to\infty}\|A^k\|^{\frac1k} &\ge \vartheta \varrho(A)}
+\\
+\uncover<27->{\varrho(A) &\ge \underbrace{\vartheta}_{>1} \varrho(A)}
+\end{align*}
+\uncover<28->{Widerspruch: $u=v$}
+\end{proof}
+\end{column}}
+\only<30-46>{
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis]
+$u$ ist EV mit EW $\varrho(A)$:
+\[
+Au=\varrho(A)u
+\uncover<31->{\Rightarrow
+\sum_j a_{ij}|v_j| = {\color<38->{red}\varrho(A) |v_i|}}
+\]
+\uncover<33->{Andererseits: $Av=\lambda v$}
+\[
+\uncover<34->{\sum_{j}a_{ij}v_j=\lambda v_i}
+\]
+\uncover<35->{Betrag}
+\begin{align*}
+\uncover<36->{\biggl|\sum_j a_{ij}v_j\biggr|
+&=
+|\lambda v_i|}
+\uncover<37->{=
+{\color<38->{red}\varrho(A) |v_i|}}
+\uncover<39->{=
+\sum_j a_{ij}|v_j|}
+\end{align*}
+\uncover<40->{Dreiecksungleichung: $v_j=|v_j|c, c\in\mathbb{C}$}
+\[
+\uncover<41->{\lambda v = Av}
+\uncover<42->{= Acu}
+\uncover<43->{= c\varrho(A) u}
+\uncover<44->{= \varrho(A)v}
+\]
+\uncover<45->{$\Rightarrow
+\lambda=\varrho(A)
+$}
+\end{proof}
+\end{column}}
+\only<47-57>{
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis]
+\begin{itemize}
+\item<48-> $u>0$ ein EV zum EW $\varrho(A)$
+\item<49-> $v$ ein weiterer EV, man darf $v\in\mathbb{R}^n$ annehmen
+\item<50-> Da $u>0$ gibt es $c>0$ mit $u\ge cv$ aber $u\not > cv$
+\item<51-> $u-cv\ge 0$ aber $u-cv\not > 0$
+\item<52-> $A$ anwenden:
+\[
+\begin{array}{ccc}
+\uncover<53->{A(u-cv)}&\uncover<54->{>&0}
+\\
+\uncover<53->{\|}&&
+\\
+\uncover<53->{\varrho(A)(u-cv)}&\uncover<55->{\not>&0}
+\end{array}
+\]
+\uncover<56->{Widerspruch: $v$ existiert nicht}
+\end{itemize}
+\end{proof}
+\end{column}}
+\only<58->{
+\begin{column}{0.48\textwidth}
+\begin{proof}[Beweis]
+\begin{itemize}
+\item<59-> $Au=\varrho(A)u$ und $A^tp^t=\varrho(A)p^t$
+\item<60-> $u>0$ und $p>0$ $\Rightarrow$ $up>0$
+\item<61-> $px=0$, dann ist
+\[
+\uncover<62->{pAx}
+\only<62-63>{=
+(A^tp^t)^t x}
+\only<63-64>{=
+\varrho(A) (p^t)^t x}
+\uncover<64->{=
+\varrho(A) px}
+\uncover<65->{= 0}
+\]
+\uncover<66->{also ist $\{x\in\mathbb{R}^n\;|\; px=0\}$
+invariant}
+\item<67-> Annahme: $v\in \mathcal{E}_{\varrho(A)}$
+\item<68-> Dann muss es einen EV zum EW $\varrho(A)$ in
+$\mathcal{E}_{\varrho(A)}$ geben
+\item<69-> Widerspruch: der Eigenraum ist eindimensional
+\end{itemize}
+\end{proof}
+\end{column}}
+}{
+\begin{column}{0.48\textwidth}
+\begin{block}{}
+\usebeamercolor[fg]{title}
+Beweise: Buch Abschnitt 9.3
+\end{block}
+\end{column}
+}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/positiv.tex b/vorlesungen/slides/9/pf/positiv.tex
new file mode 100644
index 0000000..d7e833d
--- /dev/null
+++ b/vorlesungen/slides/9/pf/positiv.tex
@@ -0,0 +1,64 @@
+%
+% positiv.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Positive und nichtnegative Matrizen}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Positive Matrix\strut}
+Eine Matrix $A$ heisst positiv, wenn
+\[
+a_{ij} > 0\quad\forall i,j
+\]
+Man schreibt $A>0\mathstrut$
+\end{block}
+\uncover<2->{%
+\begin{block}{Relation $>\mathstrut$}
+Man schreibt $A>B$ wenn $A-B > 0\mathstrut$
+\end{block}}
+\uncover<5->{%
+\begin{block}{Wahrscheinlichkeitsmatrix}
+\[
+W=\begin{pmatrix}
+0.7&0.2&0.1\\
+0.2&0.6&0.1\\
+0.1&0.2&0.8
+\end{pmatrix}
+\]
+Spaltensumme$\mathstrut=1$, Zeilensumme$\mathstrut=?$
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<3->{%
+\begin{block}{Nichtnegative Matrix\strut}
+Eine Matrix $A$ heisst nichtnegativ, wenn
+\[
+a_{ij} \ge 0\quad\forall i,j
+\]
+Man schreibt $A\ge 0\mathstrut$
+\end{block}}
+\uncover<4->{%
+\begin{block}{Relation $\ge\mathstrut$}
+Man schreibt $A\ge B$ wenn $A-B \ge 0\mathstrut$
+\end{block}}
+\uncover<6->{%
+\begin{block}{Permutationsmatrix}
+\[
+P=\begin{pmatrix}
+0&0&1\\
+1&0&0\\
+0&1&0
+\end{pmatrix}
+\]
+Genau eine $1$ in jeder Zeile/Spalte
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/primitiv.tex b/vorlesungen/slides/9/pf/primitiv.tex
new file mode 100644
index 0000000..961b1d5
--- /dev/null
+++ b/vorlesungen/slides/9/pf/primitiv.tex
@@ -0,0 +1,84 @@
+%
+% primitiv.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Primitive Matrix}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+$A\ge 0$ heisst primitiv, wenn es ein $n>0$ gibt mit $A^n>0$
+\end{block}
+\uncover<9->{%
+\begin{block}{Intuition}
+\begin{itemize}
+\item<10->
+Markov-Ketten: $a_{ij} > 0$ bedeutet, $i$ von $j$ aus erreichbar.
+\item<11->
+Band: {\em alle} Verbindung mit allen Nachbarn
+\item<12->
+$n$-te Potenz: Pfade der Länge $n$
+\item<13->
+Durchmesser: wenn $n>\text{Durchmesser des Zustandsdiagramms}$,
+dann ist $A^n>0$
+\end{itemize}
+\end{block}
+}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<2->{%
+\begin{block}{Beispiel: Reduzible W'keitsmatrix}
+\vspace{-5pt}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\fill[color=gray!40] (-1,0) rectangle (0,1);
+\fill[color=gray!40] (0,-1) rectangle (1,0);
+\draw[line width=0.3pt] (0,-1) -- (0,1);
+\draw[line width=0.3pt] (-1,0) -- (1,0);
+%\draw (-1,-1) rectangle (1,1);
+\node at (0,0) {$\left( \raisebox{0pt}[1cm][1cm]{\hspace*{2cm}} \right)$};
+\node at (-1.3,0) [left] {$\mathstrut W=$};
+\node at (0.5,0.5) {$0$};
+\node at (-0.5,-0.5) {$0$};
+\end{tikzpicture}
+\end{center}
+\vspace{-10pt}
+
+$\Rightarrow$ $W$ ist nicht primitiv
+\end{block}}
+\uncover<3->{%
+\begin{block}{Beispiel: Bandmatrix}
+\centering
+\begin{tikzpicture}[>=latex,thick]
+\begin{scope}
+\clip (-1,-1) rectangle (1,1);
+\foreach \n in {3,...,8}{
+ \pgfmathparse{0.3*(\n-2)}
+ \xdef\x{\pgfmathresult}
+ \only<\n>{
+ \fill[color=gray!40]
+ ({-1.2-\x},1) -- (1,{-1.2-\x}) -- (1,{-0.8+\x})
+ -- ({-0.8+\x},1) -- cycle;
+ }
+}
+\fill[color=gray] (-1.2,1) -- (1,-1.2) -- (1,-0.8) -- (-0.8,1) -- cycle;
+\end{scope}
+\foreach \n in {2,...,8}{
+ \uncover<\n>{
+ \pgfmathparse{int(\n-2)}
+ \xdef\k{\pgfmathresult}
+ \node at (-1.3,0) [left] {$\mathstrut B^{\k}=$};
+ }
+}
+\node at (0,0) {$\left( \raisebox{0pt}[1cm][1cm]{\hspace*{2cm}} \right)$};
+\end{tikzpicture}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/trennung.tex b/vorlesungen/slides/9/pf/trennung.tex
new file mode 100644
index 0000000..9c85849
--- /dev/null
+++ b/vorlesungen/slides/9/pf/trennung.tex
@@ -0,0 +1,99 @@
+%
+% trennung.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Trennung}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\coordinate (u) at (3.5,4.5);
+\coordinate (v) at (2.5,2);
+\coordinate (va) at ({(3.5/2.5)*2.5},{(3.5/2.5)*2});
+
+\uncover<3->{
+\fill[color=darkgreen!20] (0,0) rectangle (5.3,5.3);
+\node[color=darkgreen] at (1.5,4.9) {$u\not\ge w$};
+\node[color=darkgreen] at (4.4,0.6) {$u\not\ge w$};
+}
+
+\uncover<5->{
+\begin{scope}
+\clip (0,0) rectangle (5.3,5.3);
+\draw[color=darkgreen] (0,0) -- ($3*(v)$);
+\end{scope}
+
+\node[color=darkgreen] at ($1.2*(va)$)
+ [below,rotate={atan(2/2.5)}] {$(1+\mu)v$};
+}
+
+\uncover<2->{
+ \fill[color=red!20] (0,0) rectangle (u);
+}
+
+\fill[color=red] (u) circle[radius=0.08];
+\node[color=red] at (u) [above right] {$u$};
+
+\uncover<4->{
+ \fill[color=blue!40,opacity=0.5] (0,0) rectangle (v);
+}
+
+\uncover<2->{
+ \fill[color=blue] (v) circle[radius=0.08];
+ \node[color=blue] at (v) [above] {$v$};
+}
+
+\uncover<4->{
+ \draw[color=blue] (0,0) -- (va);
+
+ \fill[color=blue] (va) circle[radius=0.08];
+ \node[color=blue] at (va) [above left] {$(1+\varepsilon)v$};
+}
+
+\draw[->] (-0.1,0) -- (5.5,0) coordinate[label={$x_1$}];
+\draw[->] (0,-0.1) -- (0,5.5) coordinate[label={right:$x_2$}];
+
+\uncover<2->{
+ \draw[->,color=red] (3.0,-0.2) -- (3.0,1.5);
+ \node[color=red] at (3.0,-0.2) [below]
+ {$\{w\in\mathbb{R}^n\;|\; w<u\}$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Satz}
+$u>v\ge 0$\uncover<4->{, dann gibt es $\varepsilon>0$ mit
+\[
+u\ge (1+\varepsilon)v
+\]}%
+\uncover<5->{und für $\mu>\varepsilon$ ist
+\[
+u \not\ge (1+\mu)v
+\]}
+\uncover<6->{%
+\begin{proof}[Beweis]
+\begin{itemize}
+\item<7->
+$u>v$ $\Rightarrow$ $u_i/v_i>1$ falls $v_i>0$
+\item<8->
+\[
+\vartheta = \min_{v_i\ne 0} \frac{u_i}{v_i} > 1
+\]
+\uncover<9->{$\varepsilon = \vartheta - 1$}
+\end{itemize}
+\end{proof}}
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/vergleich.tex b/vorlesungen/slides/9/pf/vergleich.tex
new file mode 100644
index 0000000..c1a1f7a
--- /dev/null
+++ b/vorlesungen/slides/9/pf/vergleich.tex
@@ -0,0 +1,113 @@
+%
+% vergleich.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Vergleich}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\def\a{1.2} \def\b{0.35}
+\def\c{0.5} \def\d{1.25}
+\def\r{4}
+
+\coordinate (u) at (3.5,0);
+\coordinate (v) at (2.5,0);
+
+\coordinate (Au) at ({3.5*\a},{3.5*\c});
+\coordinate (Av) at ({2.5*\a},{2.5*\c});
+
+\uncover<2->{
+ \begin{scope}
+ \clip (0,0) rectangle (5,5);
+ \fill[color=red!20] (0,0) circle[radius=4];
+ \end{scope}
+ \node[color=red] at (0,4) [below right] {$\mathbb{R}^n$};
+
+ \fill[color=blue!40,opacity=0.5] (0,0) -- ({\a*\r},{\c*\r})
+ -- plot[domain=0:90,samples=100]
+ ({\r*(\a*cos(\x)+\b*sin(\x))},{\r*(\c*cos(\x)+\d*sin(\x))})
+ -- ({\b*\r},{\d*\r}) -- cycle;
+ \node[color=blue] at ({\r*\b},{\r*\d}) [below right] {$A\mathbb{R}^n$};
+}
+
+\draw[->] (-0.1,0) -- (5.5,0) coordinate[label={$x_1$}];
+\draw[->] (0,-0.1) -- (0,5.5) coordinate[label={right:$x_2$}];
+
+\uncover<3->{
+ \fill[color=darkgreen!30,opacity=0.5]
+ (0,0) rectangle ({3.5*\a},{3.5*\c});
+ \draw[color=white,line width=0.7pt]
+ ({3.5*\a},0) -- ({3.5*\a},{3.5*\c}) -- (0,{3.5*\c});
+}
+
+\uncover<2->{
+ \draw[->,color=blue,line width=1.4pt] (0,0) -- ({\r*\a},{\r*\c});
+ \draw[->,color=blue,line width=1.4pt] (0,0) -- ({\r*\b},{\r*\d});
+
+ \draw[->,color=red,line width=1.4pt] (0,0) -- (4,0);
+ \draw[->,color=red,line width=1.4pt] (0,0) -- (0,4);
+}
+
+\draw[color=darkgreen,line width=2pt] (u) -- (v);
+\fill[color=darkgreen] (u) circle[radius=0.08];
+\fill[color=darkgreen] (v) circle[radius=0.08];
+
+\node[color=darkgreen] at (u) [below right] {$u$};
+\node[color=darkgreen] at (v) [below left] {$v$};
+\node[color=darkgreen] at ($0.5*(u)+0.5*(v)$) [above] {$v\le u$};
+
+\uncover<3->{
+ \draw[color=darkgreen,line width=2pt] (Au) -- (Av);
+ \fill[color=darkgreen] (Au) circle[radius=0.08];
+ \fill[color=darkgreen] (Av) circle[radius=0.08];
+
+ \node[color=darkgreen] at (Au) [above left] {$Au$};
+ \node[color=darkgreen] at (Av) [above left] {$Av$};
+
+ \node[color=darkgreen] at ($0.5*(Au)+0.5*(Av)$)
+ [below,rotate={atan(\c/\a)}] {$Av<Au$};
+}
+
+\end{tikzpicture}
+\end{center}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{block}{Satz}
+$u\ge v\ge 0$ \uncover<2->{und $A > 0$}\uncover<3->{ $\Rightarrow$ $Au>Av$}
+\end{block}
+\uncover<4->{%
+\begin{block}{intuitiv}
+$A>0$ befördert $\ge$ zu $>$
+\end{block}}
+\uncover<5->{%
+\begin{proof}[Beweis]
+$d=u-v\ge 0$
+\begin{align*}
+(Ad)_i
+\uncover<6->{=
+\sum_{j}
+\underbrace{a_{ij}}_{>0}d_j}
+\uncover<7->{>
+0}
+\uncover<8->{\quad\Rightarrow\quad
+Au > Av}
+\end{align*}
+\uncover<7->{da mindestens ein $d_j>0$ ist}
+\end{proof}}
+\uncover<9->{%
+\begin{block}{Korollar}
+$A>0$ und $d\ge 0$ $\Rightarrow$ $Ad > 0$
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/9/pf/vergleich3d.tex b/vorlesungen/slides/9/pf/vergleich3d.tex
new file mode 100644
index 0000000..1c019a6
--- /dev/null
+++ b/vorlesungen/slides/9/pf/vergleich3d.tex
@@ -0,0 +1,26 @@
+%
+% template.tex -- slide template
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Vergleich}
+
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.57\textwidth}
+\begin{center}
+\includegraphics[width=\textwidth]{../../buch/chapters/80-wahrscheinlichkeit/images/vergleich.pdf}
+\end{center}
+\end{column}
+\begin{column}{0.38\textwidth}
+\begin{block}{Satz}
+$u\ge v\ge 0$ $\Rightarrow$ $Au>Av$
+\end{block}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup