aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorPatrik Müller <36931350+p1mueller@users.noreply.github.com>2022-05-12 18:21:49 +0200
committerGitHub <noreply@github.com>2022-05-12 18:21:49 +0200
commit26793218263b34dcc9337a5289db1e9c17a4a89c (patch)
tree5b91b0e91a3e7aad4de16a2d26c5aae95cac538b
parentRemove deprecated files (diff)
parentdreiecksdaten (diff)
downloadSeminarSpezielleFunktionen-26793218263b34dcc9337a5289db1e9c17a4a89c.tar.gz
SeminarSpezielleFunktionen-26793218263b34dcc9337a5289db1e9c17a4a89c.zip
Merge branch 'AndreasFMueller:master' into master
-rwxr-xr-xbuch/Makefile4
-rw-r--r--buch/aufgaben3.tex4
-rw-r--r--buch/chapters/000-einleitung/Makefile.inc2
-rw-r--r--buch/chapters/010-potenzen/Makefile.inc2
-rw-r--r--buch/chapters/020-exponential/Makefile.inc2
-rw-r--r--buch/chapters/030-geometrie/Makefile.inc2
-rw-r--r--buch/chapters/040-rekursion/Makefile.inc2
-rw-r--r--buch/chapters/050-differential/Makefile.inc2
-rw-r--r--buch/chapters/060-integral/Makefile.inc6
-rw-r--r--buch/chapters/070-orthogonalitaet/Makefile.inc2
-rw-r--r--buch/chapters/070-orthogonalitaet/gaussquadratur.tex8
-rw-r--r--buch/chapters/070-orthogonalitaet/sturm.tex2
-rw-r--r--buch/chapters/075-fourier/Makefile.inc2
-rw-r--r--buch/chapters/080-funktionentheorie/Makefile.inc2
-rw-r--r--buch/chapters/090-pde/Makefile.inc2
-rw-r--r--buch/chapters/110-elliptisch/Makefile.inc9
-rw-r--r--buch/chapters/110-elliptisch/chapter.tex21
-rw-r--r--buch/chapters/110-elliptisch/dglsol.tex494
-rw-r--r--buch/chapters/110-elliptisch/ellintegral.tex208
-rw-r--r--buch/chapters/110-elliptisch/elltrigo.tex1012
-rw-r--r--buch/chapters/110-elliptisch/images/Makefile9
-rw-r--r--buch/chapters/110-elliptisch/images/jacobiplots.pdfbin56975 -> 56975 bytes
-rw-r--r--buch/chapters/110-elliptisch/images/lemniskate.pdfbin9914 -> 14339 bytes
-rw-r--r--buch/chapters/110-elliptisch/images/lemniskate.tex15
-rw-r--r--buch/chapters/110-elliptisch/images/slcl.cpp128
-rw-r--r--buch/chapters/110-elliptisch/images/slcl.pdfbin0 -> 28233 bytes
-rw-r--r--buch/chapters/110-elliptisch/images/slcl.tex88
-rw-r--r--buch/chapters/110-elliptisch/jacobi.tex1592
-rw-r--r--buch/chapters/110-elliptisch/lemniskate.tex299
-rw-r--r--buch/chapters/110-elliptisch/mathpendel.tex250
-rw-r--r--buch/chapters/110-elliptisch/uebungsaufgaben/1.tex39
-rw-r--r--buch/common/macros.tex4
-rw-r--r--buch/common/test-common.tex1
-rw-r--r--buch/common/test3.tex1
-rw-r--r--buch/papers/common/addpapers.tex1
-rw-r--r--buch/papers/common/paperlist1
-rw-r--r--buch/papers/nav/images/Makefile11
-rw-r--r--buch/papers/nav/images/dreieck.tex68
-rw-r--r--buch/papers/nav/images/dreieckdata.tex16
-rw-r--r--buch/papers/nav/images/macros.tex54
-rw-r--r--buch/papers/nav/images/pk.m55
-rw-r--r--buch/papers/zeta/Makefile.inc7
-rw-r--r--buch/papers/zeta/analytic_continuation.tex264
-rw-r--r--buch/papers/zeta/einleitung.tex11
-rw-r--r--buch/papers/zeta/main.tex32
-rw-r--r--buch/papers/zeta/teil0.tex22
-rw-r--r--buch/papers/zeta/teil1.tex55
-rw-r--r--buch/papers/zeta/teil2.tex40
-rw-r--r--buch/papers/zeta/teil3.tex40
-rw-r--r--buch/papers/zeta/zeta_gamma.tex53
-rw-r--r--vorlesungen/04_fresnel/common.tex4
-rw-r--r--vorlesungen/04_fresnel/slides.tex6
-rw-r--r--vorlesungen/slides/fresnel/Makefile9
-rw-r--r--vorlesungen/slides/fresnel/Makefile.inc6
-rw-r--r--vorlesungen/slides/fresnel/apfel.jpgbin0 -> 1125584 bytes
-rw-r--r--vorlesungen/slides/fresnel/apfel.pngbin0 -> 525490 bytes
-rw-r--r--vorlesungen/slides/fresnel/apfel.tex32
-rw-r--r--vorlesungen/slides/fresnel/chapter.tex6
-rw-r--r--vorlesungen/slides/fresnel/eulerpath.tex4012
-rw-r--r--vorlesungen/slides/fresnel/eulerspirale.m61
-rw-r--r--vorlesungen/slides/fresnel/integrale.tex119
-rw-r--r--vorlesungen/slides/fresnel/klothoide.tex68
-rw-r--r--vorlesungen/slides/fresnel/kruemmung.tex91
-rw-r--r--vorlesungen/slides/fresnel/numerik.tex124
-rw-r--r--vorlesungen/slides/fresnel/test.tex19
-rw-r--r--vorlesungsnotizen/B/8 - Integration in geschlossener Form.pdfbin0 -> 3984055 bytes
-rw-r--r--vorlesungsnotizen/MSE/5 - Elliptische Funktionen.pdfbin0 -> 5607117 bytes
67 files changed, 7611 insertions, 1890 deletions
diff --git a/buch/Makefile b/buch/Makefile
index 00fcf42..af0e1e2 100755
--- a/buch/Makefile
+++ b/buch/Makefile
@@ -55,13 +55,13 @@ SeminarSpezielleFunktionen.ind: SeminarSpezielleFunktionen.idx
#
tests: test1.pdf test2.pdf test3.pdf
-test1.pdf: common/test-common.tex common/test1.tex aufgaben1.tex
+test1.pdf: common/test-common.tex common/test1.tex aufgaben1.tex $(TEXFILES)
$(pdflatex) common/test1.tex
test2.pdf: common/test-common.tex common/test1.tex aufgaben2.tex
$(pdflatex) common/test2.tex
-test3.pdf: common/test-common.tex common/test1.tex aufgaben3.tex
+test3.pdf: common/test-common.tex common/test1.tex aufgaben3.tex $(CHAPTERFILES)
$(pdflatex) common/test3.tex
#
diff --git a/buch/aufgaben3.tex b/buch/aufgaben3.tex
index a39fc19..16288ec 100644
--- a/buch/aufgaben3.tex
+++ b/buch/aufgaben3.tex
@@ -4,6 +4,6 @@
% (c) 2022 Prof. Dr. Andreas Mueller, OST
%
-%\item
-%\input chapters/60-gruppen/uebungsaufgaben/6001.tex
+\item
+\input chapters/110-elliptisch/uebungsaufgaben/1.tex
diff --git a/buch/chapters/000-einleitung/Makefile.inc b/buch/chapters/000-einleitung/Makefile.inc
index a870448..5840050 100644
--- a/buch/chapters/000-einleitung/Makefile.inc
+++ b/buch/chapters/000-einleitung/Makefile.inc
@@ -4,5 +4,5 @@
# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/000-einleitung/chapter.tex
diff --git a/buch/chapters/010-potenzen/Makefile.inc b/buch/chapters/010-potenzen/Makefile.inc
index a4505cb..27ccdae 100644
--- a/buch/chapters/010-potenzen/Makefile.inc
+++ b/buch/chapters/010-potenzen/Makefile.inc
@@ -4,7 +4,7 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/010-potenzen/loesbarkeit.tex \
chapters/010-potenzen/polynome.tex \
chapters/010-potenzen/tschebyscheff.tex \
diff --git a/buch/chapters/020-exponential/Makefile.inc b/buch/chapters/020-exponential/Makefile.inc
index d6b3c7f..4d8f58b 100644
--- a/buch/chapters/020-exponential/Makefile.inc
+++ b/buch/chapters/020-exponential/Makefile.inc
@@ -4,7 +4,7 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/020-exponential/zins.tex \
chapters/020-exponential/log.tex \
chapters/020-exponential/lambertw.tex \
diff --git a/buch/chapters/030-geometrie/Makefile.inc b/buch/chapters/030-geometrie/Makefile.inc
index 0bf775f..d4940dc 100644
--- a/buch/chapters/030-geometrie/Makefile.inc
+++ b/buch/chapters/030-geometrie/Makefile.inc
@@ -4,7 +4,7 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/030-geometrie/trigonometrisch.tex \
chapters/030-geometrie/sphaerisch.tex \
chapters/030-geometrie/hyperbolisch.tex \
diff --git a/buch/chapters/040-rekursion/Makefile.inc b/buch/chapters/040-rekursion/Makefile.inc
index a222b1c..cd54c80 100644
--- a/buch/chapters/040-rekursion/Makefile.inc
+++ b/buch/chapters/040-rekursion/Makefile.inc
@@ -4,7 +4,7 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/040-rekursion/gamma.tex \
chapters/040-rekursion/bohrmollerup.tex \
chapters/040-rekursion/integral.tex \
diff --git a/buch/chapters/050-differential/Makefile.inc b/buch/chapters/050-differential/Makefile.inc
index b72a275..7151c07 100644
--- a/buch/chapters/050-differential/Makefile.inc
+++ b/buch/chapters/050-differential/Makefile.inc
@@ -4,7 +4,7 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/050-differential/beispiele.tex \
chapters/050-differential/potenzreihenmethode.tex \
chapters/050-differential/bessel.tex \
diff --git a/buch/chapters/060-integral/Makefile.inc b/buch/chapters/060-integral/Makefile.inc
index e19cb0c..d85caad 100644
--- a/buch/chapters/060-integral/Makefile.inc
+++ b/buch/chapters/060-integral/Makefile.inc
@@ -4,13 +4,9 @@
# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/060-integral/fehlerfunktion.tex \
chapters/060-integral/eulertransformation.tex \
chapters/060-integral/differentialkoerper.tex \
chapters/060-integral/risch.tex \
- chapters/060-integral/orthogonal.tex \
- chapters/060-integral/legendredgl.tex \
- chapters/060-integral/sturm.tex \
- chapters/060-integral/gaussquadratur.tex \
chapters/060-integral/chapter.tex
diff --git a/buch/chapters/070-orthogonalitaet/Makefile.inc b/buch/chapters/070-orthogonalitaet/Makefile.inc
index 286ab2e..8f58489 100644
--- a/buch/chapters/070-orthogonalitaet/Makefile.inc
+++ b/buch/chapters/070-orthogonalitaet/Makefile.inc
@@ -4,7 +4,7 @@
# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/070-orthogonalitaet/orthogonal.tex \
chapters/070-orthogonalitaet/rekursion.tex \
chapters/070-orthogonalitaet/rodrigues.tex \
diff --git a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
index acfdb1a..2e43cec 100644
--- a/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
+++ b/buch/chapters/070-orthogonalitaet/gaussquadratur.tex
@@ -263,7 +263,7 @@ werden können, muss auch
=
\int_{-1}^1 q(x)p(x)\,dx
=
-\sum_{i=0}^n q(x_i)p(x_i)
+\sum_{i=0}^n A_iq(x_i)p(x_i)
\]
für jedes beliebige Polynom $q\in R_{n-1}$ gelten.
Da man für $q$ die Interpolationspolynome $l_j(x)$ verwenden
@@ -272,9 +272,11 @@ kann, den Grad $n-1$ haben, folgt
0
=
\sum_{i=0}^n
-l_j(x_i)p(x_i)
+A_il_j(x_i)p(x_i)
=
-\sum_{i=0}^n \delta_{ij}p(x_i),
+\sum_{i=0}^n A_i\delta_{ij}p(x_i)
+=
+A_jp(x_j),
\]
die Stützstellen $x_i$ müssen also die Nullstellen des Polynoms
$p(x)$ sein.
diff --git a/buch/chapters/070-orthogonalitaet/sturm.tex b/buch/chapters/070-orthogonalitaet/sturm.tex
index c9c9cc6..35054ab 100644
--- a/buch/chapters/070-orthogonalitaet/sturm.tex
+++ b/buch/chapters/070-orthogonalitaet/sturm.tex
@@ -375,7 +375,7 @@ automatisch für diese Funktionenfamilien.
\subsubsection{Trigonometrische Funktionen}
Die trigonometrischen Funktionen sind Eigenfunktionen des Operators
$d^2/dx^2$, also eines Sturm-Liouville-Operators mit $p(x)=1$, $q(x)=0$
-und $w(x)=0$.
+und $w(x)=1$.
Auf dem Intervall $(-\pi,\pi)$ können wir die Randbedingungen
\bgroup
\renewcommand{\arraycolsep}{2pt}
diff --git a/buch/chapters/075-fourier/Makefile.inc b/buch/chapters/075-fourier/Makefile.inc
index c153dc4..a762e63 100644
--- a/buch/chapters/075-fourier/Makefile.inc
+++ b/buch/chapters/075-fourier/Makefile.inc
@@ -4,7 +4,7 @@
# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/075-fourier/bessel.tex \
chapters/075-fourier/2d.tex \
chapters/075-fourier/chapter.tex
diff --git a/buch/chapters/080-funktionentheorie/Makefile.inc b/buch/chapters/080-funktionentheorie/Makefile.inc
index affaa94..779cd80 100644
--- a/buch/chapters/080-funktionentheorie/Makefile.inc
+++ b/buch/chapters/080-funktionentheorie/Makefile.inc
@@ -4,7 +4,7 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/080-funktionentheorie/holomorph.tex \
chapters/080-funktionentheorie/analytisch.tex \
chapters/080-funktionentheorie/cauchy.tex \
diff --git a/buch/chapters/090-pde/Makefile.inc b/buch/chapters/090-pde/Makefile.inc
index c64af06..5b52d27 100644
--- a/buch/chapters/090-pde/Makefile.inc
+++ b/buch/chapters/090-pde/Makefile.inc
@@ -4,7 +4,7 @@
# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/090-pde/gleichung.tex \
chapters/090-pde/separation.tex \
chapters/090-pde/rechteck.tex \
diff --git a/buch/chapters/110-elliptisch/Makefile.inc b/buch/chapters/110-elliptisch/Makefile.inc
index 538db68..639cb8f 100644
--- a/buch/chapters/110-elliptisch/Makefile.inc
+++ b/buch/chapters/110-elliptisch/Makefile.inc
@@ -4,9 +4,12 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
-CHAPTERFILES = $(CHAPTERFILES) \
+CHAPTERFILES += \
chapters/110-elliptisch/ellintegral.tex \
chapters/110-elliptisch/jacobi.tex \
+ chapters/110-elliptisch/elltrigo.tex \
+ chapters/110-elliptisch/dglsol.tex \
+ chapters/110-elliptisch/mathpendel.tex \
chapters/110-elliptisch/lemniskate.tex \
- chapters/110-elliptisch/uebungsaufgaben/001.tex \
- chapters/110-geometrie/chapter.tex
+ chapters/110-elliptisch/uebungsaufgaben/1.tex \
+ chapters/110-elliptisch/chapter.tex
diff --git a/buch/chapters/110-elliptisch/chapter.tex b/buch/chapters/110-elliptisch/chapter.tex
index e09fa53..e05f3bd 100644
--- a/buch/chapters/110-elliptisch/chapter.tex
+++ b/buch/chapters/110-elliptisch/chapter.tex
@@ -10,18 +10,33 @@
\rhead{}
Der Versuch, die Länge eines Ellipsenbogens zu berechnen, hat
-in Abschnitt~\ref{buch:geometrie:subsection:hyperbeln-und-ellipsen}
+in Abschnitt~\ref{buch:geometrie:subsection:kegelschnitte}
zu Integralen geführt, die nicht in geschlossener Form ausgewertet
werden können.
Neben den dort gefundenen Integralen sind noch weitere, ähnlich
aufgebaute Integrale in dieser Familie zu finden.
+Auf die trigonometrischen Funktionen stösst man, indem man Funktion
+der Bogenlänge umkehrt.
+Ein analoges Vorgehen bei den elliptischen Integralen führt auf
+die Jacobischen elliptischen Funktionen, die in
+Abschnitt~\ref{buch:elliptisch:section:jacobi} allerdings auf
+eine eher geometrische Art eingeführt werden.
+Die Verbindung zu den elliptischen Integralen wird dann in
+Abschnitt~\ref{buch:elliptisch:subsection:differentialgleichungen}
+wieder hergestellt.
+
\input{chapters/110-elliptisch/ellintegral.tex}
+
\input{chapters/110-elliptisch/jacobi.tex}
+\input{chapters/110-elliptisch/elltrigo.tex}
+\input{chapters/110-elliptisch/dglsol.tex}
+\input{chapters/110-elliptisch/mathpendel.tex}
+
\input{chapters/110-elliptisch/lemniskate.tex}
-\section*{Übungsaufgaben}
-\rhead{Übungsaufgaben}
+\section*{Übungsaufgabe}
+\rhead{Übungsaufgabe}
\aufgabetoplevel{chapters/110-elliptisch/uebungsaufgaben}
\begin{uebungsaufgaben}
%\uebungsaufgabe{0}
diff --git a/buch/chapters/110-elliptisch/dglsol.tex b/buch/chapters/110-elliptisch/dglsol.tex
new file mode 100644
index 0000000..7eaab38
--- /dev/null
+++ b/buch/chapters/110-elliptisch/dglsol.tex
@@ -0,0 +1,494 @@
+%
+% dglsol.tex -- Lösung von Differentialgleichungen
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+%
+% Lösung von Differentialgleichungen
+%
+\subsection{Lösungen von Differentialgleichungen
+\label{buch:elliptisch:subsection:differentialgleichungen}}
+Die elliptischen Funktionen ermöglichen die Lösung gewisser nichtlinearer
+Differentialgleichungen in geschlossener Form.
+Ziel dieses Abschnitts ist, Differentialgleichungen der Form
+\(
+\dot{x}(t)^2
+=
+P(x(t))
+\)
+mit einem Polynom $P$ vierten Grades oder
+\(
+\ddot{x}(t)
+=
+p(x(t))
+\)
+mit einem Polynom dritten Grades als rechter Seite lösen zu können.
+
+%
+% Die Differentialgleichung der elliptischen Funktionen
+%
+\subsubsection{Die Differentialgleichungen der elliptischen Funktionen}
+Um Differentialgleichungen mit elliptischen Funktion lösen zu
+können, muss man als erstes die Differentialgleichungen derselben
+finden.
+Quadriert man die Ableitungsregel für $\operatorname{sn}(u,k)$, erhält
+man
+\[
+\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2
+=
+\operatorname{cn}(u,k)^2 \operatorname{dn}(u,k)^2.
+\]
+Die Funktionen auf der rechten Seite können durch $\operatorname{sn}(u,k)$
+ausgedrückt werden, dies führt auf die Differentialgleichung
+\begin{align*}
+\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2
+&=
+\bigl(
+1-\operatorname{sn}(u,k)^2
+\bigr)
+\bigl(
+1-k^2 \operatorname{sn}(u,k)^2
+\bigr)
+\\
+&=
+k^2\operatorname{sn}(u,k)^4
+-(1+k^2)
+\operatorname{sn}(u,k)^2
++1.
+\end{align*}
+Für die Funktion $\operatorname{cn}(u,k)$ ergibt die analoge Rechnung
+\begin{align*}
+\frac{d}{du}\operatorname{cn}(u,k)
+&=
+-\operatorname{sn}(u,k) \operatorname{dn}(u,k)
+\\
+\biggl(\frac{d}{du}\operatorname{cn}(u,k)\biggr)^2
+&=
+\operatorname{sn}(u,k)^2 \operatorname{dn}(u,k)^2
+\\
+&=
+\bigl(1-\operatorname{cn}(u,k)^2\bigr)
+\bigl(k^{\prime 2}+k^2 \operatorname{cn}(u,k)^2\bigr)
+\\
+&=
+-k^2\operatorname{cn}(u,k)^4
++
+(k^2-k^{\prime 2})\operatorname{cn}(u,k)^2
++
+k^{\prime 2}
+\intertext{und weiter für $\operatorname{dn}(u,k)$:}
+\frac{d}{du}\operatorname{dn}(u,k)
+&=
+-k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k)
+\\
+\biggl(
+\frac{d}{du}\operatorname{dn}(u,k)
+\biggr)^2
+&=
+\bigl(k^2 \operatorname{sn}(u,k)^2\bigr)
+\bigl(k^2 \operatorname{cn}(u,k)^2\bigr)
+\\
+&=
+\bigl(
+1-\operatorname{dn}(u,k)^2
+\bigr)
+\bigl(
+\operatorname{dn}(u,k)^2-k^{\prime 2}
+\bigr)
+\\
+&=
+-\operatorname{dn}(u,k)^4
++
+(1+k^{\prime 2})\operatorname{dn}(u,k)^2
+-k^{\prime 2}.
+\end{align*}
+
+\begin{table}
+\centering
+\renewcommand{\arraystretch}{1.7}
+\begin{tabular}{|>{$}l<{$}|>{$}l<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|}
+\hline
+\text{Funktion $y=$}&\text{Differentialgleichung}&\alpha&\beta&\gamma\\
+\hline
+\operatorname{sn}(u,k)
+ & y'^2 = \phantom{-}(1-y^2)(1-k^2y^2)
+ &k^2&1+k^2&1
+\\
+\operatorname{cn}(u,k) &y'^2 = \phantom{-}(1-y^2)(k^{\prime2}+k^2y^2)
+ &-k^2 &k^2-k^{\prime 2}=2k^2-1&k^{\prime2}
+\\
+\operatorname{dn}(u,k)
+ & y'^2 = -(1-y^2)(k^{\prime 2}-y^2)
+ &-1 &1+k^{\prime 2}=2-k^2 &-k^{\prime2}
+\\
+\hline
+\end{tabular}
+\caption{Elliptische Funktionen als Lösungsfunktionen für verschiedene
+nichtlineare Differentialgleichungen der Art
+\eqref{buch:elliptisch:eqn:1storderdglell}.
+Die Vorzeichen der Koeffizienten $\alpha$, $\beta$ und $\gamma$
+entscheidet darüber, welche Funktion für die Lösung verwendet werden
+muss.
+\label{buch:elliptisch:tabelle:loesungsfunktionen}}
+\end{table}
+
+Die drei grundlegenden Jacobischen elliptischen Funktionen genügen also alle
+einer nichtlinearen Differentialgleichung erster Ordnung der selben Art.
+Das Quadrat der Ableitung ist ein Polynom vierten Grades der Funktion.
+Die Differentialgleichungen sind in der
+Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen} zusammengefasst.
+
+%
+% Differentialgleichung der abgeleiteten elliptischen Funktionen
+%
+\subsubsection{Die Differentialgleichung der abgeleiteten elliptischen
+Funktionen}
+Da auch die Ableitungen der abgeleiteten Jacobischen elliptischen
+Funktionen Produkte von genau zwei Funktionen sind, die sich wieder
+durch die ursprüngliche Funktion ausdrücken lassen, darf man erwarten,
+dass alle elliptischen Funktionen einer ähnlichen Differentialgleichung
+genügen.
+Um dies besser einzufangen, schreiben wir $\operatorname{pq}(u,k)$,
+wenn wir eine beliebige abgeleitete Jacobische elliptische Funktion.
+Für
+$\operatorname{pq}=\operatorname{sn}$
+$\operatorname{pq}=\operatorname{cn}$
+und
+$\operatorname{pq}=\operatorname{dn}$
+wissen wir bereits und erwarten für jede andere Funktion dass
+$\operatorname{pq}(u,k)$ auch, dass sie Lösung einer Differentialgleichung
+der Form
+\begin{equation}
+\operatorname{pq}'(u,k)^2
+=
+\alpha \operatorname{pq}(u,k)^4 + \beta \operatorname{pq}(u,k)^2 + \gamma
+\label{buch:elliptisch:eqn:1storderdglell}
+\end{equation}
+erfüllt,
+wobei wir mit $\operatorname{pq}'(u,k)$ die Ableitung von
+$\operatorname{pq}(u,k)$ nach dem ersten Argument meinen.
+Die Koeffizienten $\alpha$, $\beta$ und $\gamma$ hängen von $k$ ab,
+ihre Werte für die grundlegenden Jacobischen elliptischen
+sind in Tabelle~\ref{buch:elliptisch:table:differentialgleichungen}
+zusammengestellt.
+
+Die Koeffizienten müssen nicht für jede Funktion wieder neu bestimmt
+werden, denn für den Kehrwert einer Funktion lässt sich die
+Differentialgleichung aus der Differentialgleichung der ursprünglichen
+Funktion ermitteln.
+
+%
+% Differentialgleichung der Kehrwertfunktion
+%
+\subsubsection{Differentialgleichung für den Kehrwert einer elliptischen Funktion}
+Aus der Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell}
+für die Funktion $\operatorname{pq}(u,k)$ kann auch eine
+Differentialgleichung für den Kehrwert
+$\operatorname{qp}(u,k)=\operatorname{pq}(u,k)^{-1}$
+ableiten.
+Dazu rechnet man
+\[
+\operatorname{qp}'(u,k)
+=
+\frac{d}{du}\frac{1}{\operatorname{pq}(u,k)}
+=
+\frac{\operatorname{pq}'(u,k)}{\operatorname{pq}(u,k)^2}
+\qquad\Rightarrow\qquad
+\left\{
+\quad
+\begin{aligned}
+\operatorname{pq}(u,k)
+&=
+\frac{1}{\operatorname{qp}(u,k)}
+\\
+\operatorname{pq}'(u,k)
+&=
+\frac{\operatorname{qp}'(u,k)}{\operatorname{qp}(u,k)^2}
+\end{aligned}
+\right.
+\]
+und setzt in die Differentialgleichung ein:
+\begin{align*}
+\biggl(
+\frac{
+\operatorname{qp}'(u,k)
+}{
+\operatorname{qp}(u,k)
+}
+\biggr)^2
+&=
+\alpha \frac{1}{\operatorname{qp}(u,k)^4}
++
+\beta \frac{1}{\operatorname{qp}(u,k)^2}
++
+\gamma.
+\end{align*}
+Nach Multiplikation mit $\operatorname{qp}(u,k)^4$ erhält man den
+folgenden Satz.
+
+\begin{satz}
+Wenn die Jacobische elliptische Funktion $\operatorname{pq}(u,k)$
+der Differentialgleichung genügt, dann genügt der Kehrwert
+$\operatorname{qp}(u,k) = 1/\operatorname{pq}(u,k)$ der Differentialgleichung
+\begin{equation}
+(\operatorname{qp}'(u,k))^2
+=
+\gamma \operatorname{qp}(u,k)^4
++
+\beta \operatorname{qp}(u,k)^2
++
+\alpha
+\label{buch:elliptisch:eqn:kehrwertdgl}
+\end{equation}
+\end{satz}
+
+\begin{table}
+\centering
+\def\lfn#1{\multicolumn{1}{|l|}{#1}}
+\def\rfn#1{\multicolumn{1}{r|}{#1}}
+\renewcommand{\arraystretch}{1.3}
+\begin{tabular}{l|>{$}c<{$}>{$}c<{$}>{$}c<{$}|r}
+\cline{1-4}
+\lfn{Funktion}
+ & \alpha & \beta & \gamma &\\
+\hline
+\lfn{sn}& k^2 & -(1+k^2) & 1 &\rfn{ns}\\
+\lfn{cn}& -k^2 & -(1-2k^2) & 1-k^2 &\rfn{nc}\\
+\lfn{dn}& 1 & 2-k^2 & -(1-k^2) &\rfn{nd}\\
+\hline
+\lfn{sc}& 1-k^2 & 2-k^2 & 1 &\rfn{cs}\\
+\lfn{sd}&-k^2(1-k^2)&-(1-2k^2) & 1 &\rfn{ds}\\
+\lfn{cd}& k^2 &-(1+k^2) & 1 &\rfn{dc}\\
+\hline
+ & \gamma & \beta & \alpha &\rfn{Reziproke}\\
+\cline{2-5}
+\end{tabular}
+\caption{Koeffizienten der Differentialgleichungen für die Jacobischen
+elliptischen Funktionen.
+Der Kehrwert einer Funktion hat jeweils die Differentialgleichung der
+ursprünglichen Funktion, in der die Koeffizienten $\alpha$ und $\gamma$
+vertauscht worden sind.
+\label{buch:elliptisch:table:differentialgleichungen}}
+\end{table}
+
+%
+% Differentialgleichung zweiter Ordnung
+%
+\subsubsection{Differentialgleichung zweiter Ordnung}
+Leitet die Differentialgleichung~\eqref{buch:elliptisch:eqn:1storderdglell}
+man dies nochmals nach $u$ ab, erhält man die Differentialgleichung
+\[
+2\operatorname{pq}''(u,k)\operatorname{pq}'(u,k)
+=
+4\alpha \operatorname{pq}(u,k)^3\operatorname{pq}'(u,k) + 2\beta \operatorname{pq}'(u,k)\operatorname{pq}(u,k).
+\]
+Teilt man auf beiden Seiten durch $2\operatorname{pq}'(u,k)$,
+bleibt die nichtlineare
+Differentialgleichung
+\[
+\frac{d^2\operatorname{pq}}{du^2}
+=
+\beta \operatorname{pq} + 2\alpha \operatorname{pq}^3.
+\]
+Dies ist die Gleichung eines harmonischen Oszillators mit einer
+Anharmonizität der Form $2\alpha z^3$.
+
+
+
+%
+% Jacobischen elliptische Funktionen und elliptische Integrale
+%
+\subsubsection{Jacobische elliptische Funktionen als elliptische Integrale}
+Die in Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen}
+zusammengestellten Differentialgleichungen ermöglichen nun, den
+Zusammenhang zwischen den Funktionen
+$\operatorname{sn}(u,k)$, $\operatorname{cn}(u,k)$ und $\operatorname{dn}(u,k)$
+und den unvollständigen elliptischen Integralen herzustellen.
+Die Differentialgleichungen sind alle von der Form
+\begin{equation}
+\biggl(
+\frac{d y}{d u}
+\biggr)^2
+=
+p(u),
+\label{buch:elliptisch:eqn:allgdgl}
+\end{equation}
+wobei $p(u)$ ein Polynom vierten Grades in $y$ ist.
+Diese Differentialgleichung lässt sich mit Separation lösen.
+Dazu zieht man aus~\eqref{buch:elliptisch:eqn:allgdgl} die
+Wurzel
+\begin{align}
+\frac{dy}{du}
+=
+\sqrt{p(y)}
+\notag
+\intertext{und trennt die Variablen. Man erhält}
+\int\frac{dy}{\sqrt{p(y)}} = u+C.
+\label{buch:elliptisch:eqn:yintegral}
+\end{align}
+Solange $p(y)>0$ ist, ist der Integrand auf der linken Seite
+von~\eqref{buch:elliptisch:eqn:yintegral} ebenfalls positiv und
+das Integral ist eine monoton wachsende Funktion $F(y)$.
+Insbesondere ist $F(y)$ invertierbar.
+Die Lösung $y(u)$ der Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl}
+ist daher
+\[
+y(u) = F^{-1}(u+C).
+\]
+Die Jacobischen elliptischen Funktionen sind daher inverse Funktionen
+der unvollständigen elliptischen Integrale.
+
+
+%
+% Differentialgleichung des anharmonischen Oszillators
+%
+\subsubsection{Differentialgleichung des anharmonischen Oszillators}
+Wir möchten die nichtlineare Differentialgleichung
+\begin{equation}
+\biggl(
+\frac{dx}{dt}
+\biggr)^2
+=
+Ax^4+Bx^2 + C
+\label{buch:elliptisch:eqn:allgdgl}
+\end{equation}
+mit Hilfe elliptischer Funktionen lösen.
+Wir nehmen also an, dass die gesuchte Lösung eine Funktion der Form
+\begin{equation}
+x(t) = a\operatorname{zn}(bt,k)
+\label{buch:elliptisch:eqn:loesungsansatz}
+\end{equation}
+ist.
+Die erste Ableitung von $x(t)$ ist
+\[
+\dot{x}(t)
+=
+a\operatorname{zn}'(bt,k).
+\]
+
+Indem wir diesen Lösungsansatz in die
+Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl}
+einsetzen, erhalten wir
+\begin{equation}
+a^2b^2 \operatorname{zn}'(bt,k)^2
+=
+a^4A\operatorname{zn}(bt,k)^4
++
+a^2B\operatorname{zn}(bt,k)^2
++C
+\label{buch:elliptisch:eqn:dglx}
+\end{equation}
+Andererseits wissen wir, dass $\operatorname{zn}(u,k)$ einer
+Differentilgleichung der Form~\eqref{buch:elliptisch:eqn:1storderdglell}
+erfüllt.
+Wenn wir \eqref{buch:elliptisch:eqn:dglx} durch $a^2b^2$ teilen, können wir
+die rechte Seite von \eqref{buch:elliptisch:eqn:dglx} mit der rechten
+Seite von \eqref{buch:elliptisch:eqn:1storderdglell} vergleichen:
+\[
+\frac{a^2A}{b^2}\operatorname{zn}(bt,k)^4
++
+\frac{B}{b^2}\operatorname{zn}(bt,k)^2
++\frac{C}{a^2b^2}
+=
+\alpha\operatorname{zn}(bt,k)^4
++
+\beta\operatorname{zn}(bt,k)^2
++
+\gamma\operatorname{zn}(bt,k).
+\]
+Daraus ergeben sich die Gleichungen
+\begin{align}
+\alpha &= \frac{a^2A}{b^2},
+&
+\beta &= \frac{B}{b^2}
+&&\text{und}
+&
+\gamma &= \frac{C}{a^2b^2}
+\label{buch:elliptisch:eqn:koeffvergl}
+\intertext{oder aufgelöst nach den Koeffizienten der ursprünglichen
+Differentialgleichung}
+A&=\frac{\alpha b^2}{a^2}
+&
+B&=\beta b^2
+&&\text{und}&
+C &= \gamma a^2b^2
+\label{buch:elliptisch:eqn:koeffABC}
+\end{align}
+für die Koeffizienten der Differentialgleichung der zu verwendenden
+Funktion.
+
+Man beachte, dass nach \eqref{buch:elliptisch:eqn:koeffvergl} die
+Koeffizienten $A$, $B$ und $C$ die gleichen Vorzeichen haben wie
+$\alpha$, $\beta$ und $\gamma$, da in
+\eqref{buch:elliptisch:eqn:koeffvergl} nur mit Quadraten multipliziert
+wird, die immer positiv sind.
+Diese Vorzeichen bestimmen, welche der Funktionen gewählt werden muss.
+
+In den Differentialgleichungen für die elliptischen Funktionen gibt
+es nur den Parameter $k$, der angepasst werden kann.
+Es folgt, dass die Gleichungen
+\eqref{buch:elliptisch:eqn:koeffvergl}
+auch $a$ und $b$ bestimmen.
+Zum Beispiel folgt aus der letzten Gleichung, dass
+\[
+b = \pm\sqrt{\frac{B}{\beta}}.
+\]
+Damit folgt dann aus der zweiten
+\[
+a=\pm\sqrt{\frac{\beta C}{\gamma B}}.
+\]
+Die verbleibende Gleichung legt $k$ fest.
+Das folgende Beispiel illustriert das Vorgehen am Beispiel einer
+Gleichung, die Lösungsfunktion $\operatorname{sn}(u,k)$ verlangt.
+
+\begin{beispiel}
+Wir nehmen an, dass die Vorzeichen von $A$, $B$ und $C$ gemäss
+Tabelle~\ref{buch:elliptische:tabelle:loesungsfunktionen} verlangen,
+dass die Funktion $\operatorname{sn}(u,k)$ für die Lösung verwendet
+werden muss.
+Die Tabelle sagt dann auch, dass
+$\alpha=k^2$, $\beta=1$ und $\gamma=1$ gewählt werden müssen.
+Aus dem Koeffizientenvergleich~\eqref{buch:elliptisch:eqn:koeffvergl}
+folgt dann der Reihe nach
+\begin{align*}
+b&=\pm \sqrt{B}
+\\
+a&=\pm \sqrt{\frac{C}{B}}
+\\
+k^2
+&=
+\frac{AC}{B^2}.
+\end{align*}
+Man beachte, dass man $k^2$ durch Einsetzen von
+\eqref{buch:elliptisch:eqn:koeffABC}
+auch direkt aus den Koeffizienten $\alpha$, $\beta$ und $\gamma$
+erhalten kann, nämlich
+\[
+\frac{AC}{B^2}
+=
+\frac{\frac{\alpha b^2}{a^2} \gamma a^2b^2}{\beta^2 b^4}
+=
+\frac{\alpha\gamma}{\beta^2}.
+\qedhere
+\]
+\end{beispiel}
+
+Da alle Parameter im
+Lösungsansatz~\eqref{buch:elliptisch:eqn:loesungsansatz} bereits
+festgelegt sind stellt sich die Frage, woher man einen weiteren
+Parameter nehmen kann, mit dem Anfangsbedingungen erfüllen kann.
+Die Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} ist
+autonom, die Koeffizienten der rechten Seite der Differentialgleichung
+sind nicht von der Zeit abhängig.
+Damit ist eine zeitverschobene Funktion $x(t-t_0)$ ebenfalls eine
+Lösung der Differentialgleichung.
+Die allgmeine Lösung der
+Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} hat
+also die Form
+\[
+x(t) = a\operatorname{zn}(b(t-t_0)),
+\]
+wobei die Funktion $\operatorname{zn}(u,k)$ auf Grund der Vorzeichen
+von $A$, $B$ und $C$ gewählt werden müssen.
+
diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex
index 46659cd..4cb2ba3 100644
--- a/buch/chapters/110-elliptisch/ellintegral.tex
+++ b/buch/chapters/110-elliptisch/ellintegral.tex
@@ -7,7 +7,7 @@
\label{buch:elliptisch:section:integral}}
\rhead{Elliptisches Integral}
Bei der Berechnung des Ellipsenbogens in
-Abschnitt~\ref{buch:geometrie:subsection:hyperbeln-und-ellipsen}
+Abschnitt~\ref{buch:geometrie:subsection:kegelschnitte}
sind wir auf ein Integral gestossen, welches sich nicht in geschlossener
Form ausdrücken liess.
Um solche Integrale in den Griff zu bekommen, ist es nötig, sie als
@@ -172,7 +172,188 @@ die {\em Jacobi-Normalform} heisst.
\subsubsection{Vollständige elliptische Integrale als hypergeometrische
Funktionen}
-XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\
+%XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\
+Das vollständige elliptische Integral $K(k)$ kann mit Hilfe der
+Binomialreihe umgeformt werden in eine hypergeometrische Reihe.
+Da im Integral nur $k^2$ auftaucht, wird sich $K(k)$ als
+hypergeometrische Funktion von $k^2$ ausdrücken lassen.
+
+\begin{satz}
+\label{buch:elliptisch:satz:hyperK}
+Das vollständige elliptische Integral $K(k)$ lässt sich durch die
+hypergeometrische Funktion $\mathstrut_2F_1$ als
+\[
+K(k)
+=
+\frac{\pi}2
+\cdot
+\mathstrut_2F_1\biggl(
+\begin{matrix}\frac12,\frac12\\1\end{matrix};1;k^2
+\biggr)
+\]
+ausdrücken.
+\end{satz}
+
+\begin{proof}[Beweis]
+Zunächst ist das vollständige elliptische Integral in der Legendre-Form
+\begin{align}
+K(k)
+&=
+\int_0^{\frac{\pi}2}
+\frac{d\vartheta}{\sqrt{1-k^2\sin^2\vartheta}}
+%\notag
+%\\
+%&
+=
+\int_0^{\frac{\pi}2}
+\bigl(
+1-(k\sin\vartheta)^2
+\bigr)^{-\frac12}\,d\vartheta.
+\notag
+\intertext{Die Wurzel im letzten Integral kann mit Hilfe der binomischen
+Reihe vereinfacht werden zu}
+&=
+\sum_{n=0}^\infty
+(-1)^n k^2\binom{-\frac12}{n}
+\int_0^{\frac{\pi}2}
+\sin^{2n}\vartheta
+\,d\vartheta.
+\label{buch:elliptisch:beweis:ellharm2}
+\end{align}
+Der verallgemeinerte Binomialkoeffizient lässt sich nach
+\begin{align*}
+\binom{-\frac12}{n}
+&=
+\frac{(-\frac12)(-\frac32)(-\frac52)\cdot\ldots\cdot(-\frac12-n+1)}{n!}
+=
+(-1)^n
+\cdot
+\frac{1}{n!}
+\cdot
+\frac12\cdot\frac32\cdot\frac52\cdot\ldots\cdot\biggl(\frac12+n-1\biggr)
+=
+(-1)^n\frac{(\frac12)_n}{n!}
+\end{align*}
+vereinfachen.
+Setzt man dies in \eqref{buch:elliptisch:beweis:ellharm2} ein, erhält
+man
+\begin{align*}
+K(k)
+&=
+\sum_{n=0}^\infty
+(-1)^n k^{2n}
+\cdot
+(-1)^n
+\frac{(\frac12)_n}{n!}
+\cdot
+\int_0^{\frac{\pi}2} \sin^{2n}\vartheta\,d\vartheta
+=
+\sum_{n=0}^\infty
+\frac{(\frac12)_n}{n!}
+\int_0^{\frac{\pi}2} \sin^{2n}\vartheta\,d\vartheta
+\cdot (k^2)^n.
+\end{align*}
+Es muss jetzt also nur noch das Integral von $\sin^{2n}\vartheta$
+berechnet werden.
+Mit partieller Integration kann man
+\begin{align*}
+\int \sin^m\vartheta\,d\vartheta
+&=
+\int
+\underbrace{\sin \vartheta}_{\uparrow}
+\underbrace{\sin^{m-1}\vartheta}_{\downarrow}
+\,d\vartheta
+\\
+&=
+-\cos\vartheta\sin^{m-1}\vartheta
++
+\int \cos^2\vartheta (m-1)\sin^{m-2}\vartheta\,d\vartheta
+\\
+&=
+-\cos\vartheta \sin^{m-1}\vartheta
++
+(m-1)
+\int
+(1-\sin^2\vartheta)
+\sin^{m-2}\vartheta\,d\vartheta.
+\end{align*}
+Wegen $\sin 0=0$ und
+$\cos\frac{\pi}2=0$ verschwindet der erste Term im bestimmten Integral
+und der zweite wird
+\begin{align*}
+\int_0^{\frac{\pi}2}
+\sin^{m} \vartheta
+\,d\vartheta
+&=
+(m-1)
+\int_0^{\frac{\pi}2}
+\sin^{m-2}\vartheta\,d\vartheta
+-
+(m-1)
+\int_0^{\frac{\pi}2}
+\sin^m \vartheta\,d\vartheta
+\\
+m
+\int_0^{\frac{\pi}2}
+\sin^{m} \vartheta\,d\vartheta
+&=
+(m-1)
+\int_0^{\frac{\pi}2}
+\sin^{m-2} \vartheta\,d\vartheta
+\\
+\int_0^{\frac{\pi}2}
+\sin^{m} \vartheta\,d\vartheta
+&=
+\frac{m-1}{m}
+\int_0^{\frac{\pi}2}
+\sin^{m-2} \vartheta\,d\vartheta.
+\end{align*}
+Mit dieser Rekursionsformel kann jetzt das Integral berechnet werden.
+Es folgt
+\begin{align*}
+\int_0^{\frac{\pi}2}
+\sin^{2n}\vartheta\,d\vartheta
+&=
+\frac{2n-1}{2n}
+\int_0^{\frac{\pi}2}
+\sin^{2n-2}\vartheta\,d\vartheta
+\\
+&=
+\frac{2n-1}{2n}
+\frac{2n-3}{2n-2}
+\frac{2n-5}{2n-4}
+\cdots
+\frac{2n-(2n-1)}{2(n-1)}
+\int_0^{\frac{\pi}2}
+\sin^{2n-4}\vartheta\,d\vartheta
+\\
+&=
+\frac{
+(n-\frac12)(n-\frac32)(n-\frac52)\cdot\ldots\cdot\frac32\cdot\frac12
+}{
+n!
+}
+\int_0^{\frac{\pi}2} 1\,d\vartheta
+\\
+&=
+\frac{(\frac12)_n}{n!}
+\cdot
+\frac{\pi}2.
+\end{align*}
+Damit wird die Reihenentwicklung für $K(k)$ jetzt zu
+\[
+K(k)
+=
+\frac{\pi}2
+\sum_{n=0}^\infty
+\frac{(\frac12)_n(\frac12)_n}{n!} \cdot \frac{(k^2)^n}{n!}
+=
+\frac{\pi}2
+\cdot
+\mathstrut_2F_1\biggl(\begin{matrix}\frac12,\frac12\\1\end{matrix};k^2\biggr),
+\]
+dies beweist die Behauptung.
+\end{proof}
@@ -247,6 +428,29 @@ Für den extremen Wert $\varepsilon=0$ entsteht der Umfang einer Ellipse,
also $E(0)=\frac{\pi}2$.
Für $\varepsilon=1$ ist $a=0$, es entsteht eine Strecke mit Länge $E(1)=1$.
+\begin{satz}
+\label{buch:elliptisch:satz:hyperE}
+Das volständige elliptische Integral $E(k)$ ist
+\[
+E(k)
+=
+\int_0^{\frac{\pi}2} \sqrt{1-k^2\sin^2\vartheta}\,d\vartheta
+=
+\frac{\pi}2
+\cdot
+\mathstrut_2F_1\biggl(
+\begin{matrix}-\frac12,\frac12\\1\end{matrix};
+k^2
+\biggr).
+\]
+\end{satz}
+
+\begin{proof}[Beweis]
+Die Identität kann wie im Satz~\ref{buch:elliptisch:satz:hyperK} mit
+Hilfe einer Entwicklung der Wurzel mit der Binomialreihe gefunden
+werden.
+\end{proof}
+
\subsubsection{Komplementäre Integrale}
\subsubsection{Ableitung}
diff --git a/buch/chapters/110-elliptisch/elltrigo.tex b/buch/chapters/110-elliptisch/elltrigo.tex
new file mode 100644
index 0000000..d600243
--- /dev/null
+++ b/buch/chapters/110-elliptisch/elltrigo.tex
@@ -0,0 +1,1012 @@
+%
+% elltrigo.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+%
+% elliptische Funktionen als Trigonometrie
+%
+\subsection{Elliptische Funktionen als Trigonometrie}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/ellipse.pdf}
+\caption{Kreis und Ellipse zum Vergleich und zur Herleitung der
+elliptischen Funktionen von Jacobi als ``trigonometrische'' Funktionen
+auf einer Ellipse.
+\label{buch:elliptisch:fig:ellipse}}
+\end{figure}
+% based on Willliam Schwalm, Elliptic functions and elliptic integrals
+% https://youtu.be/DCXItCajCyo
+
+%
+% Geometrie einer Ellipse
+%
+\subsubsection{Geometrie einer Ellipse}
+Eine {\em Ellipse} ist die Menge der Punkte der Ebene, für die die Summe
+\index{Ellipse}%
+der Entfernungen von zwei festen Punkten $F_1$ und $F_2$,
+den {\em Brennpunkten}, konstant ist.
+\index{Brennpunkt}%
+In Abbildung~\ref{buch:elliptisch:fig:ellipse} eine Ellipse
+mit Brennpunkten in $F_1=(-e,0)$ und $F_2=(e,0)$ dargestellt,
+die durch die Punkte $(\pm a,0)$ und $(0,\pm b)$ auf den Achsen geht.
+Der Punkt $(a,0)$ hat die Entfernungen $a+e$ und $a-e$ von den beiden
+Brennpunkten, also die Entfernungssumme $a+e+a-e=2a$.
+Jeder andere Punkt auf der Ellipse muss ebenfalls diese Entfernungssumme
+haben, insbesondere auch der Punkt $(0,b)$.
+Seine Entfernung zu jedem Brennpunkt muss aus Symmetriegründen gleich gross,
+also $a$ sein.
+Aus dem Satz von Pythagoras liest man daher ab, dass
+\[
+b^2+e^2=a^2
+\qquad\Rightarrow\qquad
+e^2 = a^2-b^2
+\]
+sein muss.
+Die Strecke $e$ heisst auch {\em (lineare) Exzentrizität} der Ellipse.
+Das Verhältnis $\varepsilon= e/a$ heisst die {\em numerische Exzentrizität}
+der Ellipse.
+
+%
+% Die Ellipsengleichung
+%
+\subsubsection{Ellipsengleichung}
+Der Punkt $P=(x,y)$ auf der Ellipse hat die Entfernungen
+\begin{equation}
+\begin{aligned}
+\overline{PF_1}^2
+&=
+y^2 + (x+e)^2
+\\
+\overline{PF_2}^2
+&=
+y^2 + (x-e)^2
+\end{aligned}
+\label{buch:elliptisch:eqn:wurzelausdruecke}
+\end{equation}
+von den Brennpunkten, für die
+\begin{equation}
+\overline{PF_1}+\overline{PF_2}
+=
+2a
+\label{buch:elliptisch:eqn:pf1pf2a}
+\end{equation}
+gelten muss.
+Man kann nachrechnen, dass ein Punkt $P$, der die Gleichung
+\[
+\frac{x^2}{a^2} + \frac{y^2}{b^2}=1
+\]
+erfüllt, auch die Eigenschaft~\eqref{buch:elliptisch:eqn:pf1pf2a}
+erfüllt.
+Zur Vereinfachung setzen wir $l_1=\overline{PF_1}$ und $l_2=\overline{PF_2}$.
+$l_1$ und $l_2$ sind Wurzeln aus der rechten Seite von
+\eqref{buch:elliptisch:eqn:wurzelausdruecke}.
+Das Quadrat von $l_1+l_2$ ist
+\[
+l_1^2 + 2l_1l_2 + l_2^2 = 4a^2.
+\]
+Um die Wurzeln ganz zu eliminieren, bringt man das Produkt $l_1l_2$ alleine
+auf die rechte Seite und quadriert.
+Man muss also verifizieren, dass
+\[
+(l_1^2 + l_2^2 -4a^2)^2 = 4l_1^2l_2^2.
+\]
+In den entstehenden Ausdrücken muss man ausserdem $e=\sqrt{a^2-b^2}$ und
+\[
+y=b\sqrt{1-\frac{x^2}{a^2}}
+\]
+substituieren.
+Diese Rechnung führt man am einfachsten mit Hilfe eines
+Computeralgebraprogramms durch, welches obige Behauptung bestätigt.
+
+%
+% Normierung
+%
+\subsubsection{Normierung}
+Die trigonometrischen Funktionen sind definiert als Verhältnisse
+von Seiten rechtwinkliger Dreiecke.
+Dadurch, dass man den die Hypothenuse auf Länge $1$ normiert,
+kann man die Sinus- und Kosinus-Funktion als Koordinaten eines
+Punktes auf dem Einheitskreis interpretieren.
+
+Für die Koordinaten eines Punktes auf der Ellipse ist dies nicht so einfach,
+weil es nicht nur eine Ellipse gibt, sondern für jede numerische Exzentrizität
+mindestens eine mit Halbeachse $1$.
+Wir wählen die Ellipsen so, dass $a$ die grosse Halbachse ist, also $a>b$.
+Als Normierungsbedingung verwenden wir, dass $b=1$ sein soll, wie in
+Abbildung~\ref{buch:elliptisch:fig:jacobidef}.
+Dann ist $a=1/\varepsilon>1$.
+In dieser Normierung haben Punkte $(x,y)$ auf der Ellipse $y$-Koordinaten
+zwischen $-1$ und $1$ und $x$-Koordinaten zwischen $-a$ und $a$.
+
+Im Zusammenhang mit elliptischen Funktionen wird die numerische Exzentrizität
+$\varepsilon$ auch mit
+\[
+k
+=
+\varepsilon
+=
+\frac{e}{a}
+=
+\frac{\sqrt{a^2-b^2}}{a}
+=
+\frac{\sqrt{a^2-1}}{a},
+\]
+die Zahl $k$ heisst auch der {\em Modulus}.
+Man kann $a$ auch durch $k$ ausdrücken, durch Quadrieren und Umstellen
+findet man
+\[
+k^2a^2 = a^2-1
+\quad\Rightarrow\quad
+1=a^2(k^2-1)
+\quad\Rightarrow\quad
+a=\frac{1}{\sqrt{k^2-1}}.
+\]
+
+Die Gleichung der ``Einheitsellipse'' zu diesem Modulus ist
+\[
+\frac{x^2}{a^2}+y^2=1
+\qquad\text{oder}\qquad
+x^2(k^2-1) + y^2 = 1.
+\]
+
+%
+% Definition der elliptischen Funktionen
+%
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/jacobidef.pdf}
+\caption{Definition der elliptischen Funktionen als Trigonometrie
+an einer Ellipse mit Halbachsen $a$ und $1$.
+\label{buch:elliptisch:fig:jacobidef}}
+\end{figure}
+\subsubsection{Definition der elliptischen Funktionen}
+Die elliptischen Funktionen für einen Punkt $P$ auf der Ellipse mit Modulus $k$
+können jetzt als Verhältnisse der Koordinaten des Punktes definieren.
+Es stellt sich aber die Frage, was man als Argument verwenden soll.
+Es soll so etwas wie den Winkel $\varphi$ zwischen der $x$-Achse und dem
+Radiusvektor zum Punkt $P$
+darstellen, aber wir haben hier noch eine Wahlfreiheit, die wir später
+ausnützen möchten.
+Im Moment müssen wir die Frage noch nicht beantworten und nennen das
+noch unbestimmte Argument $u$.
+Wir kümmern uns später um die Frage, wie $u$ von $\varphi$ abhängt.
+
+Die Funktionen, die wir definieren wollen, hängen ausserdem auch
+vom Modulus ab.
+Falls der verwendete Modulus aus dem Zusammenhang klar ist, lassen
+wir das $k$-Argument weg.
+
+Die Punkte auf dem Einheitskreis haben alle den gleichen Abstand vom
+Nullpunkt, dies ist gleichzeitig die definierende Gleichung $r^2=x^2+y^2=1$
+des Kreises.
+Die Punkte auf der Ellipse erfüllen die Gleichung $x^2/a^2+y^2=1$,
+die Entfernung der Punkte $r=\sqrt{x^2+y^2}$ vom Nullpunkt variert aber.
+
+In Analogie zu den trigonometrischen Funktionen setzen wir jetzt für
+die Funktionen
+\[
+\begin{aligned}
+&\text{sinus amplitudinis:}&
+{\color{red}\operatorname{sn}(u,k)}&= y \\
+&\text{cosinus amplitudinis:}&
+{\color{blue}\operatorname{cn}(u,k)}&= \frac{x}{a} \\
+&\text{delta amplitudinis:}&
+{\color{darkgreen}\operatorname{dn}(u,k)}&=\frac{r}{a},
+\end{aligned}
+\]
+die auch in Abbildung~\ref{buch:elliptisch:fig:jacobidef}
+dargestellt sind.
+Aus der Gleichung der Ellipse folgt sofort, dass
+\[
+\operatorname{sn}(u,k)^2 + \operatorname{cn}(u,k)^2 = 1
+\]
+ist.
+Der Satz von Pythagoras kann verwendet werden, um die Entfernung zu
+berechnen, also gilt
+\begin{equation}
+r^2
+=
+a^2 \operatorname{dn}(u,k)^2
+=
+x^2 + y^2
+=
+a^2\operatorname{cn}(u,k)^2 + \operatorname{sn}(u,k)^2
+\quad
+\Rightarrow
+\quad
+a^2 \operatorname{dn}(u,k)^2
+=
+a^2\operatorname{cn}(u,k)^2 + \operatorname{sn}(u,k)^2.
+\label{buch:elliptisch:eqn:sncndnrelation}
+\end{equation}
+Ersetzt man
+$
+a^2\operatorname{cn}(u,k)^2
+=
+a^2-a^2\operatorname{sn}(u,k)^2
+$, ergibt sich
+\[
+a^2 \operatorname{dn}(u,k)^2
+=
+a^2-a^2\operatorname{sn}(u,k)^2
++
+\operatorname{sn}(u,k)^2
+\quad
+\Rightarrow
+\quad
+\operatorname{dn}(u,k)^2
++
+\frac{a^2-1}{a^2}\operatorname{sn}(u,k)^2
+=
+1,
+\]
+woraus sich die Identität
+\[
+\operatorname{dn}(u,k)^2 + k^2 \operatorname{sn}(u,k)^2 = 1
+\]
+ergibt.
+Ebenso kann man aus~\eqref{buch:elliptisch:eqn:sncndnrelation}
+die Funktion $\operatorname{cn}(u,k)$ eliminieren, was auf
+\[
+a^2\operatorname{dn}(u,k)^2
+=
+a^2\operatorname{cn}(u,k)^2
++1-\operatorname{cn}(u,k)^2
+=
+(a^2-1)\operatorname{cn}(u,k)^2
++1.
+\]
+Nach Division durch $a^2$ ergibt sich
+\begin{align*}
+\operatorname{dn}(u,k)^2
+-
+k^2\operatorname{cn}(u,k)^2
+&=
+\frac{1}{a^2}
+=
+\frac{a^2-a^2+1}{a^2}
+=
+1-k^2 =: k^{\prime 2}.
+\end{align*}
+Wir stellen die hiermit gefundenen Relationen zwischen den grundlegenden
+Jacobischen elliptischen Funktionen für später zusammen in den Formeln
+\begin{equation}
+\begin{aligned}
+\operatorname{sn}^2(u,k)
++
+\operatorname{cn}^2(u,k)
+&=
+1
+\\
+\operatorname{dn}^2(u,k) + k^2\operatorname{sn}^2(u,k)
+&=
+1
+\\
+\operatorname{dn}^2(u,k) -k^2\operatorname{cn}^2(u,k)
+&=
+k^{\prime 2}.
+\end{aligned}
+\label{buch:elliptisch:eqn:jacobi-relationen}
+\end{equation}
+zusammen.
+So wie es möglich ist, $\sin\alpha$ durch $\cos\alpha$ auszudrücken,
+ist es mit
+\eqref{buch:elliptisch:eqn:jacobi-relationen}
+jetzt auch möglich jede grundlegende elliptische Funktion durch
+jede anderen auszudrücken.
+Die Resultate sind in der Tabelle~\ref{buch:elliptisch:fig:jacobi-relationen}
+zusammengestellt.
+
+\begin{table}
+\centering
+\renewcommand{\arraystretch}{2.1}
+\begin{tabular}{|>{$\displaystyle}c<{$}|>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}|}
+\hline
+&\operatorname{sn}(u,k)
+&\operatorname{cn}(u,k)
+&\operatorname{dn}(u,k)\\
+\hline
+\operatorname{sn}(u,k)
+&\operatorname{sn}(u,k)
+&\sqrt{1-\operatorname{cn}^2(u,k)}
+&\frac1k\sqrt{1-\operatorname{dn}^2(u,k)}
+\\
+\operatorname{cn}(u,k)
+&\sqrt{1-\operatorname{sn}^2(u,k)}
+&\operatorname{cn}(u,k)
+&\frac{1}{k}\sqrt{\operatorname{dn}^2(u,k)-k^{\prime2}}
+\\
+\operatorname{dn}(u,k)
+&\sqrt{1-k^2\operatorname{sn}^2(u,k)}
+&\sqrt{k^{\prime2}+k^2\operatorname{cn}^2(u,k)}
+&\operatorname{dn}(u,k)
+\\
+\hline
+\end{tabular}
+\caption{Jede der Jacobischen elliptischen Funktionen lässt sich
+unter Verwendung der Relationen~\eqref{buch:elliptisch:eqn:jacobi-relationen}
+durch jede andere ausdrücken.
+\label{buch:elliptisch:fig:jacobi-relationen}}
+\end{table}
+
+%
+% Ableitungen der Jacobi-ellpitischen Funktionen
+%
+\subsubsection{Ableitung}
+Die trigonometrischen Funktionen sind deshalb so besonders nützlich
+für die Lösung von Schwingungsdifferentialgleichungen, weil sie die
+Beziehungen
+\[
+\frac{d}{d\varphi} \cos\varphi = -\sin\varphi
+\qquad\text{und}\qquad
+\frac{d}{d\varphi} \sin\varphi = \cos\varphi
+\]
+erfüllen.
+So einfach können die Beziehungen natürlich nicht sein, sonst würde sich
+durch Integration ja wieder nur die trigonometrischen Funktionen ergeben.
+Durch geschickte Wahl des Arguments $u$ kann man aber erreichen, dass
+sie ähnlich nützliche Beziehungen zwischen den Ableitungen ergeben.
+
+Gesucht ist jetzt also eine Wahl für das Argument $u$ zum Beispiel in
+Abhängigkeit von $\varphi$, dass sich einfache und nützliche
+Ableitungsformeln ergeben.
+Wir setzen daher $u(\varphi)$ voraus und beachten, dass $x$ und $y$
+ebenfalls von $\varphi$ abhängen, es ist
+$y=\sin\varphi$ und $x=a\cos\varphi$.
+Die Ableitungen von $x$ und $y$ nach $\varphi$ sind
+\begin{align*}
+\frac{dy}{d\varphi}
+&=
+\cos\varphi
+=
+\frac{1}{a} x
+=
+\operatorname{cn}(u,k)
+\\
+\frac{dx}{d\varphi}
+&=
+-a\sin\varphi
+=
+-a y
+=
+-a\operatorname{sn}(u,k).
+\end{align*}
+Daraus kann man jetzt die folgenden Ausdrücke für die Ableitungen der
+elliptischen Funktionen nach $\varphi$ ableiten:
+\begin{align*}
+\frac{d}{d\varphi} \operatorname{sn}(u,z)
+&=
+\frac{d}{d\varphi} y(\varphi)
+=
+\cos\varphi
+=
+\frac{x}{a}
+=
+\operatorname{cn}(u,k)
+&&\Rightarrow&
+\frac{d}{du}
+\operatorname{sn}(u,k)
+&=
+\operatorname{cn}(u,k) \frac{d\varphi}{du}
+\\
+\frac{d}{d\varphi} \operatorname{cn}(u,z)
+&=
+\frac{d}{d\varphi} \frac{x(\varphi)}{a}
+=
+-\sin\varphi
+=
+-\operatorname{sn}(u,k)
+&&\Rightarrow&
+\frac{d}{du}\operatorname{cn}(u,k)
+&=
+-\operatorname{sn}(u,k) \frac{d\varphi}{du}
+\\
+\frac{d}{d\varphi} \operatorname{dn}(u,z)
+&=
+\frac{1}{a}\frac{dr}{d\varphi}
+=
+\frac{1}{a}\frac{d\sqrt{x^2+y^2}}{d\varphi}
+%\\
+%&
+\rlap{$\displaystyle\mathstrut
+=
+\frac{x}{ar} \frac{dx}{d\varphi}
++
+\frac{y}{ar} \frac{dy}{d\varphi}
+%\\
+%&
+=
+\frac{x}{ar} (-a\operatorname{sn}(u,k))
++
+\frac{y}{ar} \operatorname{cn}(u,k)
+$}
+\\
+&
+\rlap{$\displaystyle\mathstrut
+=
+\frac{x}{ar}(-ay)
++
+\frac{y}{ar} \frac{x}{a}
+%\rlap{$\displaystyle
+=
+\frac{xy(-1+\frac{1}{a^2})}{r}
+%$}
+%\\
+%&
+=
+-\frac{xy(a^2-1)}{a^2r}
+$}
+\\
+&=
+-\frac{a^2-1}{ar}
+\operatorname{cn}(u,k) \operatorname{sn}(u,k)
+%\\
+%&
+\rlap{$\displaystyle\mathstrut
+=
+-k^2
+\frac{a}{r}
+\operatorname{cn}(u,k) \operatorname{sn}(u,k)
+$}
+\\
+&=
+-k^2\frac{\operatorname{cn}(u,k)\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)}
+&&\Rightarrow&
+\frac{d}{du} \operatorname{dn}(u,k)
+&=
+-k^2\frac{\operatorname{cn}(u,k)
+\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)}
+\frac{d\varphi}{du}.
+\end{align*}
+Die einfachsten Beziehungen ergeben sich offenbar, wenn man $u$ so
+wählt, dass
+\[
+\frac{d\varphi}{du}
+=
+\operatorname{dn}(u,k)
+=
+\frac{r}{a}.
+\]
+Damit haben wir die grundlegenden Ableitungsregeln
+
+\begin{satz}
+\label{buch:elliptisch:satz:ableitungen}
+Die Jacobischen elliptischen Funktionen haben die Ableitungen
+\begin{equation}
+\begin{aligned}
+\frac{d}{du}\operatorname{sn}(u,k)
+&=
+\phantom{-}\operatorname{cn}(u,k)\operatorname{dn}(u,k)
+\\
+\frac{d}{du}\operatorname{cn}(u,k)
+&=
+-\operatorname{sn}(u,k)\operatorname{dn}(u,k)
+\\
+\frac{d}{du}\operatorname{dn}(u,k)
+&=
+-k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k).
+\end{aligned}
+\label{buch:elliptisch:eqn:ableitungsregeln}
+\end{equation}
+\end{satz}
+
+%
+% Der Grenzfall $k=1$
+%
+\subsubsection{Der Grenzwert $k\to1$}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/sncnlimit.pdf}
+\caption{Grenzfälle der Jacobischen elliptischen Funktionen
+für die Werte $0$ und $1$ des Parameters $k$.
+\label{buch:elliptisch:fig:sncnlimit}}
+\end{figure}
+Für $k=1$ ist $k^{\prime2}=1-k^2=$ und es folgt aus den
+Relationen~\eqref{buch:elliptisch:eqn:jacobi-relationen}
+\[
+\operatorname{cn}^2(u,k)
+-
+k^2
+\operatorname{dn}^2(u,k)
+=
+k^{\prime2}
+=
+0
+\qquad\Rightarrow\qquad
+\operatorname{cn}^2(u,1)
+=
+\operatorname{dn}^2(u,1),
+\]
+die beiden Funktionen
+$\operatorname{cn}(u,k)$
+und
+$\operatorname{dn}(u,k)$
+fallen also zusammen.
+Die Ableitungsregeln werden dadurch vereinfacht:
+\begin{align*}
+\operatorname{sn}'(u,1)
+&=
+\operatorname{cn}(u,1)
+\operatorname{dn}(u,1)
+=
+\operatorname{cn}^2(u,1)
+=
+1-\operatorname{sn}^2(u,1)
+&&\Rightarrow& y'&=1-y^2
+\\
+\operatorname{cn}'(u,1)
+&=
+-
+\operatorname{sn}(u,1)
+\operatorname{dn}(u,1)
+=
+-
+\operatorname{sn}(u,1)\operatorname{cn}(u,1)
+&&\Rightarrow&
+\frac{z'}{z}&=(\log z)' = -y
+\end{align*}
+Die erste Differentialgleichung für $y$ lässt sich separieren, man findet
+die Lösung
+\[
+\frac{y'}{1-y^2}
+=
+1
+\quad\Rightarrow\quad
+\int \frac{dy}{1-y^2} = \int \,du
+\quad\Rightarrow\quad
+\operatorname{artanh}(y) = u
+\quad\Rightarrow\quad
+\operatorname{sn}(u,1)=\tanh u.
+\]
+Damit kann man jetzt auch $z$ berechnen:
+\begin{align*}
+(\log \operatorname{cn}(u,1))'
+&=
+\tanh u
+&&\Rightarrow&
+\log\operatorname{cn}(u,1)
+&=
+-\int\tanh u\,du
+=
+-\log\cosh u
+\\
+&
+&&\Rightarrow&
+\operatorname{cn}(u,1)
+&=
+\frac{1}{\cosh u}
+=
+\operatorname{sech}u.
+\end{align*}
+Die Grenzfunktionen sind in Abbildung~\ref{buch:elliptisch:fig:sncnlimit}
+dargestellt.
+
+%
+% Das Argument u
+%
+\subsubsection{Das Argument $u$}
+Die Gleichung
+\begin{equation}
+\frac{d\varphi}{du}
+=
+\operatorname{dn}(u,k)
+\label{buch:elliptisch:eqn:uableitung}
+\end{equation}
+ermöglicht, $\varphi$ in Abhängigkeit von $u$ zu berechnen, ohne jedoch
+die geometrische Bedeutung zu klären.
+Das beginnt bereits damit, dass der Winkel $\varphi$ nicht nicht der
+Polarwinkel des Punktes $P$ in Abbildung~\ref{buch:elliptisch:fig:jacobidef}
+ist, diesen nennen wir $\vartheta$.
+Der Zusammenhang zwischen $\varphi$ und $\vartheta$ ist
+\begin{equation}
+\frac1{a}\tan\varphi = \tan\vartheta
+\label{buch:elliptisch:eqn:phitheta}
+\end{equation}
+
+Um die geometrische Bedeutung besser zu verstehen, nehmen wir jetzt an,
+dass die Ellipse mit einem Parameter $t$ parametrisiert ist, dass also
+$\varphi(t)$, $\vartheta(t)$ und $u(t)$ Funktionen von $t$ sind.
+Die Ableitung von~\eqref{buch:elliptisch:eqn:phitheta} ist
+\[
+\frac1{a}\cdot \frac{1}{\cos^2\varphi}\cdot \dot{\varphi}
+=
+\frac{1}{\cos^2\vartheta}\cdot \dot{\vartheta}.
+\]
+Daraus kann die Ableitung von $\vartheta$ nach $\varphi$ bestimmt
+werden, sie ist
+\[
+\frac{d\vartheta}{d\varphi}
+=
+\frac{\dot{\vartheta}}{\dot{\varphi}}
+=
+\frac{1}{a}
+\cdot
+\frac{\cos^2\vartheta}{\cos^2\varphi}
+=
+\frac{1}{a}
+\cdot
+\frac{(x/r)^2}{(x/a)^2}
+=
+\frac{1}{a}\cdot
+\frac{a^2}{r^2}
+=
+\frac{1}{a}\cdot\frac{1}{\operatorname{dn}^2(u,k)}.
+\]
+Damit kann man jetzt mit Hilfe von~\eqref{buch:elliptisch:eqn:uableitung}
+Die Ableitung von $\vartheta$ nach $u$ ermitteln, sie ist
+\[
+\frac{d\vartheta}{du}
+=
+\frac{d\vartheta}{d\varphi}
+\cdot
+\frac{d\varphi}{du}
+=
+\frac{1}{a}\cdot\frac{1}{\operatorname{dn}^2(u,k)}
+\cdot
+\operatorname{dn}(u,k)
+=
+\frac{1}{a}
+\cdot
+\frac{1}{\operatorname{dn}(u,k)}
+=
+\frac{1}{a}
+\cdot\frac{a}{r}
+=
+\frac{1}{r},
+\]
+wobei wir auch die Definition der Funktion $\operatorname{dn}(u,k)$
+verwendet haben.
+
+In der Parametrisierung mit dem Parameter $t$ kann man jetzt die Ableitung
+von $u$ nach $t$ berechnen als
+\[
+\frac{du}{dt}
+=
+\frac{du}{d\vartheta}
+\frac{d\vartheta}{dt}
+=
+r
+\dot{\vartheta}.
+\]
+Darin ist $\dot{\vartheta}$ die Winkelgeschwindigkeit des Punktes um
+das Zentrum $O$ und $r$ ist die aktuelle Entfernung des Punktes $P$
+von $O$.
+$r\dot{\vartheta}$ ist also die Geschwindigkeitskomponenten des Punktes
+$P$ senkrecht auf den aktuellen Radiusvektor.
+Der Parameter $u$, der zum Punkt $P$ gehört, ist also das Integral
+\[
+u(P) = \int_0^P r\,d\vartheta.
+\]
+Für einen Kreis ist die Geschwindigkeit von $P$ immer senkrecht
+auf dem Radiusvektor und der Radius ist konstant, so dass
+$u(P)=\vartheta(P)$ ist.
+
+%
+% Die abgeleiteten elliptischen Funktionen
+%
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobi12.pdf}
+\caption{Die Verhältnisse der Funktionen
+$\operatorname{sn}(u,k)$,
+$\operatorname{cn}(u,k)$
+udn
+$\operatorname{dn}(u,k)$
+geben Anlass zu neun weitere Funktionen, die sich mit Hilfe
+des Strahlensatzes geometrisch interpretieren lassen.
+\label{buch:elliptisch:fig:jacobi12}}
+\end{figure}
+\begin{table}
+\centering
+\renewcommand{\arraystretch}{2.5}
+\begin{tabular}{|>{$\displaystyle}c<{$}|>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}|}
+\hline
+\cdot &
+\frac{1}{1} &
+\frac{1}{\operatorname{sn}(u,k)} &
+\frac{1}{\operatorname{cn}(u,k)} &
+\frac{1}{\operatorname{dn}(u,k)}
+\\[5pt]
+\hline
+1&
+&%\operatorname{nn}(u,k)=\frac{1}{1} &
+\operatorname{ns}(u,k)=\frac{1}{\operatorname{sn}(u,k)} &
+\operatorname{nc}(u,k)=\frac{1}{\operatorname{cn}(u,k)} &
+\operatorname{nd}(u,k)=\frac{1}{\operatorname{dn}(u,k)}
+\\
+\operatorname{sn}(u,k) &
+\operatorname{sn}(u,k)=\frac{\operatorname{sn}(u,k)}{1}&
+&%\operatorname{ss}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{sn}(u,k)}&
+\operatorname{sc}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}&
+\operatorname{sd}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)}
+\\
+\operatorname{cn}(u,k) &
+\operatorname{cn}(u,k)=\frac{\operatorname{cn}(u,k)}{1} &
+\operatorname{cs}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{sn}(u,k)}&
+&%\operatorname{cc}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{cn}(u,k)}&
+\operatorname{cd}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{dn}(u,k)}
+\\
+\operatorname{dn}(u,k) &
+\operatorname{dn}(u,k)=\frac{\operatorname{dn}(u,k)}{1} &
+\operatorname{ds}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{sn}(u,k)}&
+\operatorname{dc}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{cn}(u,k)}&
+%\operatorname{dd}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{dn}(u,k)}
+\\[5pt]
+\hline
+\end{tabular}
+\caption{Zusammenstellung der abgeleiteten Jacobischen elliptischen
+Funktionen in hinteren drei Spalten als Quotienten der grundlegenden
+Jacobischen elliptischen Funktionen.
+Die erste Spalte zum Nenner $1$ enthält die grundlegenden
+Jacobischen elliptischen Funktionen.
+\label{buch:elliptisch:table:abgeleitetjacobi}}
+\end{table}
+
+%
+% Die abgeleiteten elliptischen Funktionen
+%
+\subsubsection{Die abgeleiteten elliptischen Funktionen}
+Zusätzlich zu den grundlegenden Jacobischen elliptischen Funktioenn
+lassen sich weitere elliptische Funktionen bilden, die unglücklicherweise
+die {\em abgeleiteten elliptischen Funktionen} genannt werden.
+Ähnlich wie die trigonometrischen Funktionen $\tan\alpha$, $\cot\alpha$,
+$\sec\alpha$ und $\csc\alpha$ als Quotienten von $\sin\alpha$ und
+$\cos\alpha$ definiert sind, sind die abgeleiteten elliptischen Funktionen
+die in Tabelle~\ref{buch:elliptisch:table:abgeleitetjacobi} zusammengestellten
+Quotienten der grundlegenden Jacobischen elliptischen Funktionen.
+Die Bezeichnungskonvention ist, dass die Funktion $\operatorname{pq}(u,k)$
+ein Quotient ist, dessen Zähler durch den Buchstaben p bestimmt ist,
+der Nenner durch den Buchstaben q.
+Der Buchstabe n steht für eine $1$, die Buchstaben s, c und d stehen für
+die Anfangsbuchstaben der grundlegenden Jacobischen elliptischen
+Funktionen.
+Meint man irgend eine der Jacobischen elliptischen Funktionen, schreibt
+man manchmal auch $\operatorname{zn}(u,k)$.
+
+In Abbildung~\ref{buch:elliptisch:fig:jacobi12} sind die Quotienten auch
+geometrisch interpretiert.
+Der Wert der Funktion $\operatorname{nq}(u,k)$ ist die auf dem Strahl
+mit Polarwinkel $\varphi$ abgetragene Länge bis zu den vertikalen
+Geraden, die den verschiedenen möglichen Nennern entsprechen.
+Entsprechend ist der Wert der Funktion $\operatorname{dq}(u,k)$ die
+Länge auf dem Strahl mit Polarwinkel $\vartheta$.
+
+Die Relationen~\ref{buch:elliptisch:eqn:jacobi-relationen}
+ermöglichen, jede Funktion $\operatorname{zn}(u,k)$ durch jede
+andere auszudrücken.
+Die schiere Anzahl solcher Beziehungen macht es unmöglich, sie
+übersichtlich in einer Tabelle zusammenzustellen, daher soll hier
+nur an einem Beispiel das Vorgehen gezeigt werden:
+
+\begin{beispiel}
+Die Funktion $\operatorname{sc}(u,k)$ soll durch $\operatorname{cd}(u,k)$
+ausgedrückt werden.
+Zunächst ist
+\[
+\operatorname{sc}(u,k)
+=
+\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}
+\]
+nach Definition.
+Im Resultat sollen nur noch $\operatorname{cn}(u,k)$ und
+$\operatorname{dn}(u,k)$ vorkommen.
+Daher eliminieren wir zunächst die Funktion $\operatorname{sn}(u,k)$
+mit Hilfe von \eqref{buch:elliptisch:eqn:jacobi-relationen} und erhalten
+\begin{equation}
+\operatorname{sc}(u,k)
+=
+\frac{\sqrt{1-\operatorname{cn}^2(u,k)}}{\operatorname{cn}(u,k)}.
+\label{buch:elliptisch:eqn:allgausdruecken}
+\end{equation}
+Nun genügt es, die Funktion $\operatorname{cn}(u,k)$ durch
+$\operatorname{cd}(u,k)$ auszudrücken.
+Aus der Definition und der
+dritten Relation in \eqref{buch:elliptisch:eqn:jacobi-relationen}
+erhält man
+\begin{align*}
+\operatorname{cd}^2(u,k)
+&=
+\frac{\operatorname{cn}^2(u,k)}{\operatorname{dn}^2(u,k)}
+=
+\frac{\operatorname{cn}^2(u,k)}{k^{\prime2}+k^2\operatorname{cn}^2(u,k)}
+\\
+\Rightarrow
+\qquad
+k^{\prime 2}
+\operatorname{cd}^2(u,k)
++
+k^2\operatorname{cd}^2(u,k)\operatorname{cn}^2(u,k)
+&=
+\operatorname{cn}^2(u,k)
+\\
+\operatorname{cn}^2(u,k)
+-
+k^2\operatorname{cd}^2(u,k)\operatorname{cn}^2(u,k)
+&=
+k^{\prime 2}
+\operatorname{cd}^2(u,k)
+\\
+\operatorname{cn}^2(u,k)
+&=
+\frac{
+k^{\prime 2}
+\operatorname{cd}^2(u,k)
+}{
+1 - k^2\operatorname{cd}^2(u,k)
+}
+\end{align*}
+Für den Zähler brauchen wir $1-\operatorname{cn}^2(u,k)$, also
+\[
+1-\operatorname{cn}^2(u,k)
+=
+\frac{
+1
+-
+k^2\operatorname{cd}^2(u,k)
+-
+k^{\prime 2}
+\operatorname{cd}^2(u,k)
+}{
+1
+-
+k^2\operatorname{cd}^2(u,k)
+}
+=
+\frac{1-\operatorname{cd}^2(u,k)}{1-k^2\operatorname{cd}^2(u,k)}
+\]
+Einsetzen in~\eqref{buch:elliptisch:eqn:allgausdruecken} gibt
+\begin{align*}
+\operatorname{sc}(u,k)
+&=
+\frac{
+\sqrt{1-\operatorname{cd}^2(u,k)}
+}{\sqrt{1-k^2\operatorname{cd}^2(u,k)}}
+\cdot
+\frac{
+\sqrt{1 - k^2\operatorname{cd}^2(u,k)}
+}{
+k'
+\operatorname{cd}(u,k)
+}
+=
+\frac{
+\sqrt{1-\operatorname{cd}^2(u,k)}
+}{
+k'
+\operatorname{cd}(u,k)
+}.
+\qedhere
+\end{align*}
+\end{beispiel}
+
+\subsubsection{Ableitung der abgeleiteten elliptischen Funktionen}
+Aus den Ableitungen der grundlegenden Jacobischen elliptischen Funktionen
+können mit der Quotientenregel nun auch beliebige Ableitungen der
+abgeleiteten Jacobischen elliptischen Funktionen gefunden werden.
+Als Beispiel berechnen wir die Ableitung von $\operatorname{sc}(u,k)$.
+Sie ist
+\begin{align*}
+\frac{d}{du}
+\operatorname{sc}(u,k)
+&=
+\frac{d}{du}
+\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}
+=
+\frac{
+\operatorname{sn}'(u,k)\operatorname{cn}(u,k)
+-
+\operatorname{sn}(u,k)\operatorname{cn}'(u,k)}{
+\operatorname{cn}^2(u,k)
+}
+\\
+&=
+\frac{
+\operatorname{cn}^2(u,k)\operatorname{dn}(u,k)
++
+\operatorname{sn}^2(u,k)\operatorname{dn}(u,k)
+}{
+\operatorname{cn}^2(u,k)
+}
+=
+\frac{(
+\operatorname{sn}^2(u,k)
++
+\operatorname{cn}^2(u,k)
+)\operatorname{dn}(u,k)}{
+\operatorname{cn}^2(u,k)
+}
+\\
+&=
+\frac{1}{\operatorname{cn}(u,k)}
+\cdot
+\frac{\operatorname{dn}(u,k)}{\operatorname{cn}(u,k)}
+=
+\operatorname{nc}(u,k)
+\operatorname{dc}(u,k).
+\end{align*}
+Man beachte, dass das Quadrat der Nennerfunktion im Resultat
+der Quotientenregel zur Folge hat, dass die
+beiden Funktionen im Resultat beide den gleichen Nenner haben wie
+die Funktion, die abgeleitet wird.
+
+Mit etwas Fleiss kann man nach diesem Muster alle Ableitungen
+\begin{equation}
+%\small
+\begin{aligned}
+\operatorname{sn}'(u,k)
+&=
+\phantom{-}
+\operatorname{cn}(u,k)\,\operatorname{dn}(u,k)
+&&\qquad&
+\operatorname{ns}'(u,k)
+&=
+-
+\operatorname{cs}(u,k)\,\operatorname{ds}(u,k)
+\\
+\operatorname{cn}'(u,k)
+&=
+-
+\operatorname{sn}(u,k)\,\operatorname{dn}(u,k)
+&&&
+\operatorname{nc}'(u,k)
+&=
+\phantom{-}
+\operatorname{sc}(u,k)\,\operatorname{dc}(u,k)
+\\
+\operatorname{dn}'(u,k)
+&=
+-k^2
+\operatorname{sn}(u,k)\,\operatorname{cn}(u,k)
+&&&
+\operatorname{nd}'(u,k)
+&=
+\phantom{-}
+k^2
+\operatorname{sd}(u,k)\,\operatorname{cd}(u,k)
+\\
+\operatorname{sc}'(u,k)
+&=
+\phantom{-}
+\operatorname{dc}(u,k)\,\operatorname{nc}(u,k)
+&&&
+\operatorname{cs}'(u,k)
+&=
+-
+\operatorname{ds}(u,k)\,\operatorname{ns}(u,k)
+\\
+\operatorname{cd}'(u,k)
+&=
+-k^{\prime2}
+\operatorname{sd}(u,k)\,\operatorname{nd}(u,k)
+&&&
+\operatorname{dc}'(u,k)
+&=
+\phantom{-}
+k^{\prime2}
+\operatorname{dc}(u,k)\,\operatorname{nc}(u,k)
+\\
+\operatorname{ds}'(d,k)
+&=
+-
+\operatorname{cs}(u,k)\,\operatorname{ns}(u,k)
+&&&
+\operatorname{sd}'(d,k)
+&=
+\phantom{-}
+\operatorname{cd}(u,k)\,\operatorname{nd}(u,k)
+\end{aligned}
+\label{buch:elliptisch:eqn:alleableitungen}
+\end{equation}
+finden.
+Man beachte, dass in jeder Identität alle Funktionen den gleichen
+zweiten Buchstaben haben.
+
+\subsubsection{TODO}
+XXX algebraische Beziehungen \\
+XXX Additionstheoreme \\
+XXX Perioden
+% use https://math.stackexchange.com/questions/3013692/how-to-show-that-jacobi-sine-function-is-doubly-periodic
+
+
diff --git a/buch/chapters/110-elliptisch/images/Makefile b/buch/chapters/110-elliptisch/images/Makefile
index 68322b6..a7c9e74 100644
--- a/buch/chapters/110-elliptisch/images/Makefile
+++ b/buch/chapters/110-elliptisch/images/Makefile
@@ -5,7 +5,7 @@
#
all: lemniskate.pdf ellipsenumfang.pdf unvollstaendig.pdf rechteck.pdf \
ellipse.pdf pendel.pdf jacobiplots.pdf jacobidef.pdf jacobi12.pdf \
- sncnlimit.pdf
+ sncnlimit.pdf slcl.pdf
lemniskate.pdf: lemniskate.tex
pdflatex lemniskate.tex
@@ -71,3 +71,10 @@ jacobi12.pdf: jacobi12.tex
sncnlimit.pdf: sncnlimit.tex
pdflatex sncnlimit.tex
+slcl: slcl.cpp
+ g++ -O -Wall -std=c++11 slcl.cpp -o slcl `pkg-config --cflags gsl` `pkg-config --libs gsl`
+
+slcldata.tex: slcl
+ ./slcl --outfile=slcldata.tex --a=0 --b=13.4 --steps=200
+slcl.pdf: slcl.tex slcldata.tex
+ pdflatex slcl.tex
diff --git a/buch/chapters/110-elliptisch/images/jacobiplots.pdf b/buch/chapters/110-elliptisch/images/jacobiplots.pdf
index 88cf119..f0e6e78 100644
--- a/buch/chapters/110-elliptisch/images/jacobiplots.pdf
+++ b/buch/chapters/110-elliptisch/images/jacobiplots.pdf
Binary files differ
diff --git a/buch/chapters/110-elliptisch/images/lemniskate.pdf b/buch/chapters/110-elliptisch/images/lemniskate.pdf
index 063a3e1..9e02c3c 100644
--- a/buch/chapters/110-elliptisch/images/lemniskate.pdf
+++ b/buch/chapters/110-elliptisch/images/lemniskate.pdf
Binary files differ
diff --git a/buch/chapters/110-elliptisch/images/lemniskate.tex b/buch/chapters/110-elliptisch/images/lemniskate.tex
index f74a81f..fe90631 100644
--- a/buch/chapters/110-elliptisch/images/lemniskate.tex
+++ b/buch/chapters/110-elliptisch/images/lemniskate.tex
@@ -27,13 +27,16 @@
\draw[color=red,line width=2.0pt]
plot[domain=45:\a,samples=100] ({\x}:{sqrt(2*cos(2*\x))});
-\draw[->] (-1.5,0) -- (1.5,0) coordinate[label={$x$}];
-\draw[->] (0,-0.7) -- (0,0.7) coordinate[label={right:$y$}];
+\draw[->] (-1.5,0) -- (1.7,0) coordinate[label={$X$}];
+\draw[->] (0,-0.7) -- (0,0.7) coordinate[label={right:$Y$}];
\fill[color=white] (1,0) circle[radius=0.02];
\draw (1,0) circle[radius=0.02];
+\node at ({1},0) [below] {$\displaystyle a\mathstrut$};
+
\fill[color=white] (-1,0) circle[radius=0.02];
\draw (-1,0) circle[radius=0.02];
+\node at ({-1},0) [below] {$\displaystyle\llap{$-$}a\mathstrut$};
\node[color=blue] at (\a:{0.6*sqrt(2*cos(2*\a))}) [below] {$r$};
\node[color=red] at ({\b}:{sqrt(2*cos(2*\b))}) [above] {$s$};
@@ -41,6 +44,14 @@
\fill[color=white] (\a:{sqrt(2*cos(2*\a))}) circle[radius=0.02];
\draw[color=red] (\a:{sqrt(2*cos(2*\a))}) circle[radius=0.02];
+\draw ({sqrt(2)},{-0.1/\skala}) -- ({sqrt(2)},{0.1/\skala});
+\node at ({sqrt(2)},0) [below right]
+ {$\displaystyle a\mathstrut\sqrt{2}$};
+\draw ({-sqrt(2)},{-0.1/\skala}) -- ({-sqrt(2)},{0.1/\skala});
+\node at ({-sqrt(2)},0) [below left]
+ {$\displaystyle -a\mathstrut\sqrt{2}$};
+
+
\end{tikzpicture}
\end{document}
diff --git a/buch/chapters/110-elliptisch/images/slcl.cpp b/buch/chapters/110-elliptisch/images/slcl.cpp
new file mode 100644
index 0000000..8584e94
--- /dev/null
+++ b/buch/chapters/110-elliptisch/images/slcl.cpp
@@ -0,0 +1,128 @@
+/*
+ * slcl.cpp
+ *
+ * (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+ */
+#include <cstdlib>
+#include <cstdio>
+#include <cmath>
+#include <iostream>
+#include <fstream>
+#include <sstream>
+#include <getopt.h>
+#include <vector>
+#include <gsl/gsl_sf_elljac.h>
+
+namespace slcl {
+
+static struct option longopts[] {
+{ "outfile", required_argument, NULL, 'o' },
+{ "a", required_argument, NULL, 'a' },
+{ "b", required_argument, NULL, 'b' },
+{ "steps", required_argument, NULL, 'n' },
+{ NULL, 0, NULL, 0 }
+};
+
+class plot {
+ typedef std::pair<double, double> point_t;
+ typedef std::vector<point_t> curve_t;
+ curve_t _sl;
+ curve_t _cl;
+ double _a;
+ double _b;
+ int _steps;
+public:
+ double a() const { return _a; }
+ double b() const { return _b; }
+ int steps() const { return _steps; }
+public:
+ plot(double a, double b, int steps) : _a(a), _b(b), _steps(steps) {
+ double l = sqrt(2);
+ double k = 1 / l;
+ double m = k * k;
+ double h = (b - a) / steps;
+ for (int i = 0; i <= steps; i++) {
+ double x = a + h * i;
+ double sn, cn, dn;
+ gsl_sf_elljac_e(x, m, &sn, &cn, &dn);
+ _sl.push_back(std::make_pair(l * x, k * sn / dn));
+ _cl.push_back(std::make_pair(l * x, cn));
+ }
+ }
+private:
+ std::string point(const point_t p) const {
+ char buffer[128];
+ snprintf(buffer, sizeof(buffer), "({%.4f*\\dx},{%.4f*\\dy})",
+ p.first, p.second);
+ return std::string(buffer);
+ }
+ std::string path(const curve_t& curve) const {
+ std::ostringstream out;
+ auto i = curve.begin();
+ out << point(*(i++));
+ do {
+ out << std::endl << " -- " << point(*(i++));
+ } while (i != curve.end());
+ out.flush();
+ return out.str();
+ }
+public:
+ std::string slpath() const {
+ return path(_sl);
+ }
+ std::string clpath() const {
+ return path(_cl);
+ }
+};
+
+/**
+ * \brief Main function for the slcl program
+ */
+int main(int argc, char *argv[]) {
+ int longindex;
+ int c;
+ double a = 0;
+ double b = 10;
+ int steps = 100;
+ std::ostream *out = &std::cout;
+ while (EOF != (c = getopt_long(argc, argv, "a:b:o:n:",
+ longopts, &longindex)))
+ switch (c) {
+ case 'a':
+ a = std::stod(optarg);
+ break;
+ case 'b':
+ b = std::stod(optarg) / sqrt(2);
+ break;
+ case 'n':
+ steps = std::stol(optarg);
+ break;
+ case 'o':
+ out = new std::ofstream(optarg);
+ break;
+ }
+
+ plot p(a, b, steps);
+ (*out) << "\\def\\slpath{ " << p.slpath();
+ (*out) << std::endl << " }" << std::endl;
+ (*out) << "\\def\\clpath{ " << p.clpath();
+ (*out) << std::endl << " }" << std::endl;
+
+ out->flush();
+ //out->close();
+ return EXIT_SUCCESS;
+}
+
+} // namespace slcl
+
+int main(int argc, char *argv[]) {
+ try {
+ return slcl::main(argc, argv);
+ } catch (const std::exception& e) {
+ std::cerr << "terminated by exception: " << e.what();
+ std::cerr << std::endl;
+ } catch (...) {
+ std::cerr << "terminated by unknown exception" << std::endl;
+ }
+ return EXIT_FAILURE;
+}
diff --git a/buch/chapters/110-elliptisch/images/slcl.pdf b/buch/chapters/110-elliptisch/images/slcl.pdf
new file mode 100644
index 0000000..c15051b
--- /dev/null
+++ b/buch/chapters/110-elliptisch/images/slcl.pdf
Binary files differ
diff --git a/buch/chapters/110-elliptisch/images/slcl.tex b/buch/chapters/110-elliptisch/images/slcl.tex
new file mode 100644
index 0000000..0af1027
--- /dev/null
+++ b/buch/chapters/110-elliptisch/images/slcl.tex
@@ -0,0 +1,88 @@
+%
+% tikztemplate.tex -- template for standalon tikz images
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math}
+\begin{document}
+\input{slcldata.tex}
+\def\skala{1}
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+% add image content here
+\def\lemniscateconstant{2.6220575542}
+\pgfmathparse{(3.1415926535/2)/\lemniscateconstant}
+\xdef\scalechange{\pgfmathresult}
+
+\pgfmathparse{\scalechange*(180/3.1415926535)}
+\xdef\ts{\pgfmathresult}
+
+\def\dx{1}
+\def\dy{3}
+
+\draw[line width=0.3pt]
+ ({\lemniscateconstant*\dx},0)
+ --
+ ({\lemniscateconstant*\dx},{1*\dy});
+\draw[line width=0.3pt]
+ ({2*\lemniscateconstant*\dx},0)
+ --
+ ({2*\lemniscateconstant*\dx},{-1*\dy});
+\draw[line width=0.3pt]
+ ({3*\lemniscateconstant*\dx},0)
+ --
+ ({3*\lemniscateconstant*\dx},{-1*\dy});
+\draw[line width=0.3pt]
+ ({4*\lemniscateconstant*\dx},0)
+ --
+ ({4*\lemniscateconstant*\dx},{1*\dy});
+\draw[line width=0.3pt]
+ ({5*\lemniscateconstant*\dx},0)
+ --
+ ({5*\lemniscateconstant*\dx},{1*\dy});
+
+\draw[color=red!40,line width=1.4pt]
+ plot[domain=0:13,samples=200] ({\x},{\dy*sin(\ts*\x)});
+\draw[color=blue!40,line width=1.4pt]
+ plot[domain=0:13,samples=200] ({\x},{\dy*cos(\ts*\x)});
+
+\draw[color=red,line width=1.4pt] \slpath;
+\draw[color=blue,line width=1.4pt] \clpath;
+
+\draw[->] (0,{-1*\dy-0.1}) -- (0,{1*\dy+0.4}) coordinate[label={right:$r$}];
+\draw[->] (-0.1,0) -- (13.6,0) coordinate[label={$s$}];
+
+\foreach \i in {1,2,3,4,5}{
+ \draw ({\lemniscateconstant*\i},-0.1) -- ({\lemniscateconstant*\i},0.1);
+}
+\node at ({\lemniscateconstant*\dx},0) [below left] {$\frac{\varpi}2\mathstrut$};
+\node at ({2*\lemniscateconstant*\dx},0) [below left] {$\varpi\mathstrut$};
+\node at ({3*\lemniscateconstant*\dx},0) [below right] {$\frac{3\varpi}2\mathstrut$};
+\node at ({4*\lemniscateconstant*\dx},0) [below right] {$2\varpi\mathstrut$};
+\node at ({5*\lemniscateconstant*\dx},0) [below left] {$\frac{5\varpi}2\mathstrut$};
+
+\node[color=red] at ({1.6*\lemniscateconstant*\dx},{0.6*\dy})
+ [below left] {$\operatorname{sl}(s)$};
+\node[color=red!50] at ({1.5*\lemniscateconstant*\dx},{sin(1.5*90)*\dy*0.90})
+ [above right] {$\sin \bigl(\frac{\pi}{\varpi}s\bigr)$};
+
+\node[color=blue] at ({1.4*\lemniscateconstant*\dx},{-0.6*\dy})
+ [above right] {$\operatorname{cl}(s)$};
+\node[color=blue!50] at ({1.5*\lemniscateconstant*\dx},{cos(1.5*90)*\dy*0.90})
+ [below left] {$\cos\bigl(\frac{\pi}{\varpi}s\bigr)$};
+
+\draw (-0.1,{1*\dy}) -- (0.1,{1*\dy});
+\draw (-0.1,{-1*\dy}) -- (0.1,{-1*\dy});
+\node at (0,{1*\dy}) [left] {$1\mathstrut$};
+\node at (0,0) [left] {$0\mathstrut$};
+\node at (0,{-1*\dy}) [left] {$-1\mathstrut$};
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/chapters/110-elliptisch/jacobi.tex b/buch/chapters/110-elliptisch/jacobi.tex
index f1e0987..166ea41 100644
--- a/buch/chapters/110-elliptisch/jacobi.tex
+++ b/buch/chapters/110-elliptisch/jacobi.tex
@@ -22,1597 +22,5 @@ dann muss man die Umkehrfunktionen der elliptischen Integrale dafür ins
Auge fassen.
-%
-% ellpitische Funktionen als Trigonometrie
-%
-\subsection{Elliptische Funktionen als Trigonometrie}
-\begin{figure}
-\centering
-\includegraphics{chapters/110-elliptisch/images/ellipse.pdf}
-\caption{Kreis und Ellipse zum Vergleich und zur Herleitung der
-elliptischen Funktionen von Jacobi als ``trigonometrische'' Funktionen
-auf einer Ellipse.
-\label{buch:elliptisch:fig:ellipse}}
-\end{figure}
-% based on Willliam Schwalm, Elliptic functions and elliptic integrals
-% https://youtu.be/DCXItCajCyo
-
-%
-% Geometrie einer Ellipse
-%
-\subsubsection{Geometrie einer Ellipse}
-Eine {\em Ellipse} ist die Menge der Punkte der Ebene, für die die Summe
-\index{Ellipse}%
-der Entfernungen von zwei festen Punkten $F_1$ und $F_2$,
-den {\em Brennpunkten}, konstant ist.
-\index{Brennpunkt}%
-In Abbildung~\ref{buch:elliptisch:fig:ellipse} eine Ellipse
-mit Brennpunkten in $F_1=(-e,0)$ und $F_2=(e,0)$ dargestellt,
-die durch die Punkte $(\pm a,0)$ und $(0,\pm b)$ auf den Achsen geht.
-Der Punkt $(a,0)$ hat die Entfernungen $a+e$ und $a-e$ von den beiden
-Brennpunkten, also die Entfernungssumme $a+e+a-e=2a$.
-Jeder andere Punkt auf der Ellipse muss ebenfalls diese Entfernungssumme
-haben, insbesondere auch der Punkt $(0,b)$.
-Seine Entfernung zu jedem Brennpunkt muss aus Symmetriegründen gleich gross,
-also $a$ sein.
-Aus dem Satz von Pythagoras liest man daher ab, dass
-\[
-b^2+e^2=a^2
-\qquad\Rightarrow\qquad
-e^2 = a^2-b^2
-\]
-sein muss.
-Die Strecke $e$ heisst auch {\em (lineare) Exzentrizität} der Ellipse.
-Das Verhältnis $\varepsilon= e/a$ heisst die {\em numerische Exzentrizität}
-der Ellipse.
-
-%
-% Die Ellipsengleichung
-%
-\subsubsection{Ellipsengleichung}
-Der Punkt $P=(x,y)$ auf der Ellipse hat die Entfernungen
-\begin{equation}
-\begin{aligned}
-\overline{PF_1}^2
-&=
-y^2 + (x+e)^2
-\\
-\overline{PF_2}^2
-&=
-y^2 + (x-e)^2
-\end{aligned}
-\label{buch:elliptisch:eqn:wurzelausdruecke}
-\end{equation}
-von den Brennpunkten, für die
-\begin{equation}
-\overline{PF_1}+\overline{PF_2}
-=
-2a
-\label{buch:elliptisch:eqn:pf1pf2a}
-\end{equation}
-gelten muss.
-Man kann nachrechnen, dass ein Punkt $P$, der die Gleichung
-\[
-\frac{x^2}{a^2} + \frac{y^2}{b^2}=1
-\]
-erfüllt, auch die Eigenschaft~\eqref{buch:elliptisch:eqn:pf1pf2a}
-erfüllt.
-Zur Vereinfachung setzen wir $l_1=\overline{PF_1}$ und $l_2=\overline{PF_2}$.
-$l_1$ und $l_2$ sind Wurzeln aus der rechten Seite von
-\eqref{buch:elliptisch:eqn:wurzelausdruecke}.
-Das Quadrat von $l_1+l_2$ ist
-\[
-l_1^2 + 2l_1l_2 + l_2^2 = 4a^2.
-\]
-Um die Wurzeln ganz zu eliminieren, bringt man das Produkt $l_1l_2$ alleine
-auf die rechte Seite und quadriert.
-Man muss also verifizieren, dass
-\[
-(l_1^2 + l_2^2 -4a^2)^2 = 4l_1^2l_2^2.
-\]
-In den entstehenden Ausdrücken muss man ausserdem $e=\sqrt{a^2-b^2}$ und
-\[
-y=b\sqrt{1-\frac{x^2}{a^2}}
-\]
-substituieren.
-Diese Rechnung führt man am einfachsten mit Hilfe eines
-Computeralgebraprogramms durch, welches obige Behauptung bestätigt.
-
-%
-% Normierung
-%
-\subsubsection{Normierung}
-Die trigonometrischen Funktionen sind definiert als Verhältnisse
-von Seiten rechtwinkliger Dreiecke.
-Dadurch, dass man den die Hypothenuse auf Länge $1$ normiert,
-kann man die Sinus- und Kosinus-Funktion als Koordinaten eines
-Punktes auf dem Einheitskreis interpretieren.
-
-Für die Koordinaten eines Punktes auf der Ellipse ist dies nicht so einfach,
-weil es nicht nur eine Ellipse gibt, sondern für jede numerische Exzentrizität
-mindestens eine mit Halbeachse $1$.
-Wir wählen die Ellipsen so, dass $a$ die grosse Halbachse ist, also $a>b$.
-Als Normierungsbedingung verwenden wir, dass $b=1$ sein soll, wie in
-Abbildung~\ref{buch:elliptisch:fig:jacobidef}.
-Dann ist $a=1/\varepsilon>1$.
-In dieser Normierung haben Punkte $(x,y)$ auf der Ellipse $y$-Koordinaten
-zwischen $-1$ und $1$ und $x$-Koordinaten zwischen $-a$ und $a$.
-
-Im Zusammenhang mit elliptischen Funktionen wird die numerische Exzentrizität
-$\varepsilon$ auch mit
-\[
-k
-=
-\varepsilon
-=
-\frac{e}{a}
-=
-\frac{\sqrt{a^2-b^2}}{a}
-=
-\frac{\sqrt{a^2-1}}{a},
-\]
-die Zahl $k$ heisst auch der {\em Modulus}.
-Man kann $a$ auch durch $k$ ausdrücken, durch Quadrieren und Umstellen
-findet man
-\[
-k^2a^2 = a^2-1
-\quad\Rightarrow\quad
-1=a^2(k^2-1)
-\quad\Rightarrow\quad
-a=\frac{1}{\sqrt{k^2-1}}.
-\]
-
-Die Gleichung der ``Einheitsellipse'' zu diesem Modulus ist
-\[
-\frac{x^2}{a^2}+y^2=1
-\qquad\text{oder}\qquad
-x^2(k^2-1) + y^2 = 1.
-\]
-
-%
-% Definition der elliptischen Funktionen
-%
-\begin{figure}
-\centering
-\includegraphics{chapters/110-elliptisch/images/jacobidef.pdf}
-\caption{Definition der elliptischen Funktionen als Trigonometrie
-an einer Ellipse mit Halbachsen $a$ und $1$.
-\label{buch:elliptisch:fig:jacobidef}}
-\end{figure}
-\subsubsection{Definition der elliptischen Funktionen}
-Die elliptischen Funktionen für einen Punkt $P$ auf der Ellipse mit Modulus $k$
-können jetzt als Verhältnisse der Koordinaten des Punktes definieren.
-Es stellt sich aber die Frage, was man als Argument verwenden soll.
-Es soll so etwas wie den Winkel $\varphi$ zwischen der $x$-Achse und dem
-Radiusvektor zum Punkt $P$
-darstellen, aber wir haben hier noch eine Wahlfreiheit, die wir später
-ausnützen möchten.
-Im Moment müssen wir die Frage noch nicht beantworten und nennen das
-noch unbestimmte Argument $u$.
-Wir kümmern uns später um die Frage, wie $u$ von $\varphi$ abhängt.
-
-Die Funktionen, die wir definieren wollen, hängen ausserdem auch
-vom Modulus ab.
-Falls der verwendete Modulus aus dem Zusammenhang klar ist, lassen
-wir das $k$-Argument weg.
-
-Die Punkte auf dem Einheitskreis haben alle den gleichen Abstand vom
-Nullpunkt, dies ist gleichzeitig die definierende Gleichung $r^2=x^2+y^2=1$
-des Kreises.
-Die Punkte auf der Ellipse erfüllen die Gleichung $x^2/a^2+y^2=1$,
-die Entfernung der Punkte $r=\sqrt{x^2+y^2}$ vom Nullpunkt variert aber.
-
-In Analogie zu den trigonometrischen Funktionen setzen wir jetzt für
-die Funktionen
-\[
-\begin{aligned}
-&\text{sinus amplitudinis:}&
-{\color{red}\operatorname{sn}(u,k)}&= y \\
-&\text{cosinus amplitudinis:}&
-{\color{blue}\operatorname{cn}(u,k)}&= \frac{x}{a} \\
-&\text{delta amplitudinis:}&
-{\color{darkgreen}\operatorname{dn}(u,k)}&=\frac{r}{a},
-\end{aligned}
-\]
-die auch in Abbildung~\ref{buch:elliptisch:fig:jacobidef}
-dargestellt sind.
-Aus der Gleichung der Ellipse folgt sofort, dass
-\[
-\operatorname{sn}(u,k)^2 + \operatorname{cn}(u,k)^2 = 1
-\]
-ist.
-Der Satz von Pythagoras kann verwendet werden, um die Entfernung zu
-berechnen, also gilt
-\begin{equation}
-r^2
-=
-a^2 \operatorname{dn}(u,k)^2
-=
-x^2 + y^2
-=
-a^2\operatorname{cn}(u,k)^2 + \operatorname{sn}(u,k)^2
-\quad
-\Rightarrow
-\quad
-a^2 \operatorname{dn}(u,k)^2
-=
-a^2\operatorname{cn}(u,k)^2 + \operatorname{sn}(u,k)^2.
-\label{buch:elliptisch:eqn:sncndnrelation}
-\end{equation}
-Ersetzt man
-$
-a^2\operatorname{cn}(u,k)^2
-=
-a^2-a^2\operatorname{sn}(u,k)^2
-$, ergibt sich
-\[
-a^2 \operatorname{dn}(u,k)^2
-=
-a^2-a^2\operatorname{sn}(u,k)^2
-+
-\operatorname{sn}(u,k)^2
-\quad
-\Rightarrow
-\quad
-\operatorname{dn}(u,k)^2
-+
-\frac{a^2-1}{a^2}\operatorname{sn}(u,k)^2
-=
-1,
-\]
-woraus sich die Identität
-\[
-\operatorname{dn}(u,k)^2 + k^2 \operatorname{sn}(u,k)^2 = 1
-\]
-ergibt.
-Ebenso kann man aus~\eqref{buch:elliptisch:eqn:sncndnrelation}
-die Funktion $\operatorname{cn}(u,k)$ eliminieren, was auf
-\[
-a^2\operatorname{dn}(u,k)^2
-=
-a^2\operatorname{cn}(u,k)^2
-+1-\operatorname{cn}(u,k)^2
-=
-(a^2-1)\operatorname{cn}(u,k)^2
-+1.
-\]
-Nach Division durch $a^2$ ergibt sich
-\begin{align*}
-\operatorname{dn}(u,k)^2
--
-k^2\operatorname{cn}(u,k)^2
-&=
-\frac{1}{a^2}
-=
-\frac{a^2-a^2+1}{a^2}
-=
-1-k^2 =: k^{\prime 2}.
-\end{align*}
-Wir stellen die hiermit gefundenen Relationen zwischen den grundlegenden
-Jacobischen elliptischen Funktionen für später zusammen in den Formeln
-\begin{equation}
-\begin{aligned}
-\operatorname{sn}^2(u,k)
-+
-\operatorname{cn}^2(u,k)
-&=
-1
-\\
-\operatorname{dn}^2(u,k) + k^2\operatorname{sn}^2(u,k)
-&=
-1
-\\
-\operatorname{dn}^2(u,k) -k^2\operatorname{cn}^2(u,k)
-&=
-k^{\prime 2}.
-\end{aligned}
-\label{buch:elliptisch:eqn:jacobi-relationen}
-\end{equation}
-zusammen.
-So wie es möglich ist, $\sin\alpha$ durch $\cos\alpha$ auszudrücken,
-ist es mit
-\eqref{buch:elliptisch:eqn:jacobi-relationen}
-jetzt auch möglich jede grundlegende elliptische Funktion durch
-jede anderen auszudrücken.
-Die Resultate sind in der Tabelle~\ref{buch:elliptisch:fig:jacobi-relationen}
-zusammengestellt.
-
-\begin{table}
-\centering
-\renewcommand{\arraystretch}{2.1}
-\begin{tabular}{|>{$\displaystyle}c<{$}|>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}|}
-\hline
-&\operatorname{sn}(u,k)
-&\operatorname{cn}(u,k)
-&\operatorname{dn}(u,k)\\
-\hline
-\operatorname{sn}(u,k)
-&\operatorname{sn}(u,k)
-&\sqrt{1-\operatorname{cn}^2(u,k)}
-&\frac1k\sqrt{1-\operatorname{dn}^2(u,k)}
-\\
-\operatorname{cn}(u,k)
-&\sqrt{1-\operatorname{sn}^2(u,k)}
-&\operatorname{cn}(u,k)
-&\frac{1}{k}\sqrt{\operatorname{dn}^2(u,k)-k^{\prime2}}
-\\
-\operatorname{dn}(u,k)
-&\sqrt{1-k^2\operatorname{sn}^2(u,k)}
-&\sqrt{k^{\prime2}+k^2\operatorname{cn}^2(u,k)}
-&\operatorname{dn}(u,k)
-\\
-\hline
-\end{tabular}
-\caption{Jede der Jacobischen elliptischen Funktionen lässt sich
-unter Verwendung der Relationen~\eqref{buch:elliptisch:eqn:jacobi-relationen}
-durch jede andere ausdrücken.
-\label{buch:elliptisch:fig:jacobi-relationen}}
-\end{table}
-
-%
-% Ableitungen der Jacobi-ellpitischen Funktionen
-%
-\subsubsection{Ableitung}
-Die trigonometrischen Funktionen sind deshalb so besonders nützlich
-für die Lösung von Schwingungsdifferentialgleichungen, weil sie die
-Beziehungen
-\[
-\frac{d}{d\varphi} \cos\varphi = -\sin\varphi
-\qquad\text{und}\qquad
-\frac{d}{d\varphi} \sin\varphi = \cos\varphi
-\]
-erfüllen.
-So einfach können die Beziehungen natürlich nicht sein, sonst würde sich
-durch Integration ja wieder nur die trigonometrischen Funktionen ergeben.
-Durch geschickte Wahl des Arguments $u$ kann man aber erreichen, dass
-sie ähnlich nützliche Beziehungen zwischen den Ableitungen ergeben.
-
-Gesucht ist jetzt also eine Wahl für das Argument $u$ zum Beispiel in
-Abhängigkeit von $\varphi$, dass sich einfache und nützliche
-Ableitungsformeln ergeben.
-Wir setzen daher $u(\varphi)$ voraus und beachten, dass $x$ und $y$
-ebenfalls von $\varphi$ abhängen, es ist
-$y=\sin\varphi$ und $x=a\cos\varphi$.
-Die Ableitungen von $x$ und $y$ nach $\varphi$ sind
-\begin{align*}
-\frac{dy}{d\varphi}
-&=
-\cos\varphi
-=
-\frac{1}{a} x
-=
-\operatorname{cn}(u,k)
-\\
-\frac{dx}{d\varphi}
-&=
--a\sin\varphi
-=
--a y
-=
--a\operatorname{sn}(u,k).
-\end{align*}
-Daraus kann man jetzt die folgenden Ausdrücke für die Ableitungen der
-elliptischen Funktionen nach $\varphi$ ableiten:
-\begin{align*}
-\frac{d}{d\varphi} \operatorname{sn}(u,z)
-&=
-\frac{d}{d\varphi} y(\varphi)
-=
-\cos\varphi
-=
-\frac{x}{a}
-=
-\operatorname{cn}(u,k)
-&&\Rightarrow&
-\frac{d}{du}
-\operatorname{sn}(u,k)
-&=
-\operatorname{cn}(u,k) \frac{d\varphi}{du}
-\\
-\frac{d}{d\varphi} \operatorname{cn}(u,z)
-&=
-\frac{d}{d\varphi} \frac{x(\varphi)}{a}
-=
--\sin\varphi
-=
--\operatorname{sn}(u,k)
-&&\Rightarrow&
-\frac{d}{du}\operatorname{cn}(u,k)
-&=
--\operatorname{sn}(u,k) \frac{d\varphi}{du}
-\\
-\frac{d}{d\varphi} \operatorname{dn}(u,z)
-&=
-\frac{1}{a}\frac{dr}{d\varphi}
-=
-\frac{1}{a}\frac{d\sqrt{x^2+y^2}}{d\varphi}
-\\
-&=
-\frac{x}{ar} \frac{dx}{d\varphi}
-+
-\frac{y}{ar} \frac{dy}{d\varphi}
-\\
-&=
-\frac{x}{ar} (-a\operatorname{sn}(u,k))
-+
-\frac{y}{ar} \operatorname{cn}(u,k)
-\\
-&=
-\frac{x}{ar}(-ay)
-+
-\frac{y}{ar} \frac{x}{a}
-=
-\frac{xy(-1+\frac{1}{a^2})}{r}
-\\
-&=
--\frac{xy(a^2-1)}{a^2r}
-\\
-&=
--\frac{a^2-1}{ar}
-\operatorname{cn}(u,k) \operatorname{sn}(u,k)
-\\
-&=-k^2
-\frac{a}{r}
-\operatorname{cn}(u,k) \operatorname{sn}(u,k)
-\\
-&=
--k^2\frac{\operatorname{cn}(u,k)\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)}
-&&\Rightarrow&
-\frac{d}{du} \operatorname{dn}(u,k)
-&=
--k^2\frac{\operatorname{cn}(u,k)
-\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)}
-\frac{d\varphi}{du}
-\end{align*}
-Die einfachsten Beziehungen ergeben sich offenbar, wenn man $u$ so
-wählt, dass
-\[
-\frac{d\varphi}{du}
-=
-\operatorname{dn}(u,k)
-=
-\frac{r}{a}
-\]
-Damit haben wir die grundlegenden Ableitungsregeln
-\begin{align*}
-\frac{d}{du}\operatorname{sn}(u,k)
-&=
-\phantom{-}\operatorname{cn}(u,k)\operatorname{dn}(u,k)
-\\
-\frac{d}{du}\operatorname{cn}(u,k)
-&=
--\operatorname{sn}(u,k)\operatorname{dn}(u,k)
-\\
-\frac{d}{du}\operatorname{dn}(u,k)
-&=
--k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k)
-\end{align*}
-der elliptischen Funktionen nach Jacobi.
-
-%
-% Der Grenzfall $k=1$
-%
-\subsubsection{Der Grenzwert $k\to1$}
-\begin{figure}
-\centering
-\includegraphics{chapters/110-elliptisch/images/sncnlimit.pdf}
-\caption{Grenzfälle der Jacobischen elliptischen Funktionen
-für die Werte $0$ und $1$ des Parameters $k$.
-\label{buch:elliptisch:fig:sncnlimit}}
-\end{figure}
-Für $k=1$ ist $k^{\prime2}=1-k^2=$ und es folgt aus den
-Relationen~\eqref{buch:elliptisch:eqn:jacobi-relationen}
-\[
-\operatorname{cn}^2(u,k)
--
-k^2
-\operatorname{dn}^2(u,k)
-=
-k^{\prime2}
-=
-0
-\qquad\Rightarrow\qquad
-\operatorname{cn}^2(u,1)
-=
-\operatorname{dn}^2(u,1),
-\]
-die beiden Funktionen
-$\operatorname{cn}(u,k)$
-und
-$\operatorname{dn}(u,k)$
-fallen also zusammen.
-Die Ableitungsregeln werden dadurch vereinfacht:
-\begin{align*}
-\operatorname{sn}'(u,1)
-&=
-\operatorname{cn}(u,1)
-\operatorname{dn}(u,1)
-=
-\operatorname{cn}^2(u,1)
-=
-1-\operatorname{sn}^2(u,1)
-&&\Rightarrow& y'&=1-y^2
-\\
-\operatorname{cn}'(u,1)
-&=
--
-\operatorname{sn}(u,1)
-\operatorname{dn}(u,1)
-=
--
-\operatorname{sn}(u,1)\operatorname{cn}(u,1)
-&&\Rightarrow&
-\frac{z'}{z}&=(\log z)' = -y
-\end{align*}
-Die erste Differentialgleichung für $y$ lässt sich separieren, man findet
-die Lösung
-\[
-\frac{y'}{1-y^2}
-=
-1
-\quad\Rightarrow\quad
-\int \frac{dy}{1-y^2} = \int \,du
-\quad\Rightarrow\quad
-\operatorname{artanh}(y) = u
-\quad\Rightarrow\quad
-\operatorname{sn}(u,1)=\tanh u.
-\]
-Damit kann man jetzt auch $z$ berechnen:
-\begin{align*}
-(\log \operatorname{cn}(u,1))'
-&=
-\tanh u
-&&\Rightarrow&
-\log\operatorname{cn}(u,1)
-&=
--\int\tanh u\,du
-=
--\log\cosh u
-\\
-&
-&&\Rightarrow&
-\operatorname{cn}(u,1)
-&=
-\frac{1}{\cosh u}
-=
-\operatorname{sech}u.
-\end{align*}
-Die Grenzfunktionen sind in Abbildung~\ref{buch:elliptisch:fig:sncnlimit}
-dargestellt.
-
-%
-% Das Argument u
-%
-\subsubsection{Das Argument $u$}
-Die Gleichung
-\begin{equation}
-\frac{d\varphi}{du}
-=
-\operatorname{dn}(u,k)
-\label{buch:elliptisch:eqn:uableitung}
-\end{equation}
-ermöglicht, $\varphi$ in Abhängigkeit von $u$ zu berechnen, ohne jedoch
-die geometrische Bedeutung zu klären.
-Das beginnt bereits damit, dass der Winkel $\varphi$ nicht nicht der
-Polarwinkel des Punktes $P$ in Abbildung~\ref{buch:elliptisch:fig:jacobidef}
-ist, diesen nennen wir $\vartheta$.
-Der Zusammenhang zwischen $\varphi$ und $\vartheta$ ist
-\begin{equation}
-\frac1{a}\tan\varphi = \tan\vartheta
-\label{buch:elliptisch:eqn:phitheta}
-\end{equation}
-
-Um die geometrische Bedeutung besser zu verstehen, nehmen wir jetzt an,
-dass die Ellipse mit einem Parameter $t$ parametrisiert ist, dass also
-$\varphi(t)$, $\vartheta(t)$ und $u(t)$ Funktionen von $t$ sind.
-Die Ableitung von~\eqref{buch:elliptisch:eqn:phitheta} ist
-\[
-\frac1{a}\cdot \frac{1}{\cos^2\varphi}\cdot \dot{\varphi}
-=
-\frac{1}{\cos^2\vartheta}\cdot \dot{\vartheta}.
-\]
-Daraus kann die Ableitung von $\vartheta$ nach $\varphi$ bestimmt
-werden, sie ist
-\[
-\frac{d\vartheta}{d\varphi}
-=
-\frac{\dot{\vartheta}}{\dot{\varphi}}
-=
-\frac{1}{a}
-\cdot
-\frac{\cos^2\vartheta}{\cos^2\varphi}
-=
-\frac{1}{a}
-\cdot
-\frac{(x/r)^2}{(x/a)^2}
-=
-\frac{1}{a}\cdot
-\frac{a^2}{r^2}
-=
-\frac{1}{a}\cdot\frac{1}{\operatorname{dn}^2(u,k)}.
-\]
-Damit kann man jetzt mit Hilfe von~\eqref{buch:elliptisch:eqn:uableitung}
-Die Ableitung von $\vartheta$ nach $u$ ermitteln, sie ist
-\[
-\frac{d\vartheta}{du}
-=
-\frac{d\vartheta}{d\varphi}
-\cdot
-\frac{d\varphi}{du}
-=
-\frac{1}{a}\cdot\frac{1}{\operatorname{dn}^2(u,k)}
-\cdot
-\operatorname{dn}(u,k)
-=
-\frac{1}{a}
-\cdot
-\frac{1}{\operatorname{dn}(u,k)}
-=
-\frac{1}{a}
-\cdot\frac{a}{r}
-=
-\frac{1}{r},
-\]
-wobei wir auch die Definition der Funktion $\operatorname{dn}(u,k)$
-verwendet haben.
-
-In der Parametrisierung mit dem Parameter $t$ kann man jetzt die Ableitung
-von $u$ nach $t$ berechnen als
-\[
-\frac{du}{dt}
-=
-\frac{du}{d\vartheta}
-\frac{d\vartheta}{dt}
-=
-r
-\dot{\vartheta}.
-\]
-Darin ist $\dot{\vartheta}$ die Winkelgeschwindigkeit des Punktes um
-das Zentrum $O$ und $r$ ist die aktuelle Entfernung des Punktes $P$
-von $O$.
-$r\dot{\vartheta}$ ist also die Geschwindigkeitskomponenten des Punktes
-$P$ senkrecht auf den aktuellen Radiusvektor.
-Der Parameter $u$, der zum Punkt $P$ gehört, ist also das Integral
-\[
-u(P) = \int_0^P r\,d\vartheta.
-\]
-Für einen Kreis ist die Geschwindigkeit von $P$ immer senkrecht
-auf dem Radiusvektor und der Radius ist konstant, so dass
-$u(P)=\vartheta(P)$ ist.
-
-%
-% Die abgeleiteten elliptischen Funktionen
-%
-\begin{figure}
-\centering
-\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobi12.pdf}
-\caption{Die Verhältnisse der Funktionen
-$\operatorname{sn}(u,k)$,
-$\operatorname{cn}(u,k)$
-udn
-$\operatorname{dn}(u,k)$
-geben Anlass zu neun weitere Funktionen, die sich mit Hilfe
-des Strahlensatzes geometrisch interpretieren lassen.
-\label{buch:elliptisch:fig:jacobi12}}
-\end{figure}
-\begin{table}
-\centering
-\renewcommand{\arraystretch}{2.5}
-\begin{tabular}{|>{$\displaystyle}c<{$}|>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}>{$\displaystyle}c<{$}|}
-\hline
-\cdot &
-\frac{1}{1} &
-\frac{1}{\operatorname{sn}(u,k)} &
-\frac{1}{\operatorname{cn}(u,k)} &
-\frac{1}{\operatorname{dn}(u,k)}
-\\[5pt]
-\hline
-1&
-&%\operatorname{nn}(u,k)=\frac{1}{1} &
-\operatorname{ns}(u,k)=\frac{1}{\operatorname{sn}(u,k)} &
-\operatorname{nc}(u,k)=\frac{1}{\operatorname{cn}(u,k)} &
-\operatorname{nd}(u,k)=\frac{1}{\operatorname{dn}(u,k)}
-\\
-\operatorname{sn}(u,k) &
-\operatorname{sn}(u,k)=\frac{\operatorname{sn}(u,k)}{1}&
-&%\operatorname{ss}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{sn}(u,k)}&
-\operatorname{sc}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}&
-\operatorname{sd}(u,k)=\frac{\operatorname{sn}(u,k)}{\operatorname{dn}(u,k)}
-\\
-\operatorname{cn}(u,k) &
-\operatorname{cn}(u,k)=\frac{\operatorname{cn}(u,k)}{1} &
-\operatorname{cs}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{sn}(u,k)}&
-&%\operatorname{cc}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{cn}(u,k)}&
-\operatorname{cd}(u,k)=\frac{\operatorname{cn}(u,k)}{\operatorname{dn}(u,k)}
-\\
-\operatorname{dn}(u,k) &
-\operatorname{dn}(u,k)=\frac{\operatorname{dn}(u,k)}{1} &
-\operatorname{ds}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{sn}(u,k)}&
-\operatorname{dc}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{cn}(u,k)}&
-%\operatorname{dd}(u,k)=\frac{\operatorname{dn}(u,k)}{\operatorname{dn}(u,k)}
-\\[5pt]
-\hline
-\end{tabular}
-\caption{Zusammenstellung der abgeleiteten Jacobischen elliptischen
-Funktionen in hinteren drei Spalten als Quotienten der grundlegenden
-Jacobischen elliptischen Funktionen.
-Die erste Spalte zum Nenner $1$ enthält die grundlegenden
-Jacobischen elliptischen Funktionen.
-\label{buch:elliptisch:table:abgeleitetjacobi}}
-\end{table}
-\subsubsection{Die abgeleiteten elliptischen Funktionen}
-Zusätzlich zu den grundlegenden Jacobischen elliptischen Funktioenn
-lassen sich weitere elliptische Funktionen bilden, die unglücklicherweise
-die {\em abgeleiteten elliptischen Funktionen} genannt werden.
-Ähnlich wie die trigonometrischen Funktionen $\tan\alpha$, $\cot\alpha$,
-$\sec\alpha$ und $\csc\alpha$ als Quotienten von $\sin\alpha$ und
-$\cos\alpha$ definiert sind, sind die abgeleiteten elliptischen Funktionen
-die in Tabelle~\ref{buch:elliptisch:table:abgeleitetjacobi} zusammengestellten
-Quotienten der grundlegenden Jacobischen elliptischen Funktionen.
-Die Bezeichnungskonvention ist, dass die Funktion $\operatorname{pq}(u,k)$
-ein Quotient ist, dessen Zähler durch den Buchstaben p bestimmt ist,
-der Nenner durch den Buchstaben q.
-Der Buchstabe n steht für eine $1$, die Buchstaben s, c und d stehen für
-die Anfangsbuchstaben der grundlegenden Jacobischen elliptischen
-Funktionen.
-Meint man irgend eine der Jacobischen elliptischen Funktionen, schreibt
-man manchmal auch $\operatorname{zn}(u,k)$.
-
-In Abbildung~\ref{buch:elliptisch:fig:jacobi12} sind die Quotienten auch
-geometrisch interpretiert.
-Der Wert der Funktion $\operatorname{nq}(u,k)$ ist die auf dem Strahl
-mit Polarwinkel $\varphi$ abgetragene Länge bis zu den vertikalen
-Geraden, die den verschiedenen möglichen Nennern entsprechen.
-Entsprechend ist der Wert der Funktion $\operatorname{dq}(u,k)$ die
-Länge auf dem Strahl mit Polarwinkel $\vartheta$.
-
-Die Relationen~\ref{buch:elliptisch:eqn:jacobi-relationen}
-ermöglichen, jede Funktion $\operatorname{zn}(u,k)$ durch jede
-andere auszudrücken.
-Die schiere Anzahl solcher Beziehungen macht es unmöglich, sie
-übersichtlich in einer Tabelle zusammenzustellen, daher soll hier
-nur an einem Beispiel das Vorgehen gezeigt werden:
-
-\begin{beispiel}
-Die Funktion $\operatorname{sc}(u,k)$ soll durch $\operatorname{cd}(u,k)$
-ausgedrückt werden.
-Zunächst ist
-\[
-\operatorname{sc}(u,k)
-=
-\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}
-\]
-nach Definition.
-Im Resultat sollen nur noch $\operatorname{cn}(u,k)$ und
-$\operatorname{dn}(u,k)$ vorkommen.
-Daher eliminieren wir zunächst die Funktion $\operatorname{sn}(u,k)$
-mit Hilfe von \eqref{buch:elliptisch:eqn:jacobi-relationen} und erhalten
-\begin{equation}
-\operatorname{sc}(u,k)
-=
-\frac{\sqrt{1-\operatorname{cn}^2(u,k)}}{\operatorname{cn}(u,k)}.
-\label{buch:elliptisch:eqn:allgausdruecken}
-\end{equation}
-Nun genügt es, die Funktion $\operatorname{cn}(u,k)$ durch
-$\operatorname{cd}(u,k)$ auszudrücken.
-Aus der Definition und der
-dritten Relation in \eqref{buch:elliptisch:eqn:jacobi-relationen}
-erhält man
-\begin{align*}
-\operatorname{cd}^2(u,k)
-&=
-\frac{\operatorname{cn}^2(u,k)}{\operatorname{dn}^2(u,k)}
-=
-\frac{\operatorname{cn}^2(u,k)}{k^{\prime2}+k^2\operatorname{cn}^2(u,k)}
-\\
-\Rightarrow
-\qquad
-k^{\prime 2}
-\operatorname{cd}^2(u,k)
-+
-k^2\operatorname{cd}^2(u,k)\operatorname{cn}^2(u,k)
-&=
-\operatorname{cn}^2(u,k)
-\\
-\operatorname{cn}^2(u,k)
--
-k^2\operatorname{cd}^2(u,k)\operatorname{cn}^2(u,k)
-&=
-k^{\prime 2}
-\operatorname{cd}^2(u,k)
-\\
-\operatorname{cn}^2(u,k)
-&=
-\frac{
-k^{\prime 2}
-\operatorname{cd}^2(u,k)
-}{
-1 - k^2\operatorname{cd}^2(u,k)
-}
-\end{align*}
-Für den Zähler brauchen wir $1-\operatorname{cn}^2(u,k)$, also
-\[
-1-\operatorname{cn}^2(u,k)
-=
-\frac{
-1
--
-k^2\operatorname{cd}^2(u,k)
--
-k^{\prime 2}
-\operatorname{cd}^2(u,k)
-}{
-1
--
-k^2\operatorname{cd}^2(u,k)
-}
-=
-\frac{1-\operatorname{cd}^2(u,k)}{1-k^2\operatorname{cd}^2(u,k)}
-\]
-Einsetzen in~\eqref{buch:elliptisch:eqn:allgausdruecken} gibt
-\begin{align*}
-\operatorname{sc}(u,k)
-&=
-\frac{
-\sqrt{1-\operatorname{cd}^2(u,k)}
-}{\sqrt{1-k^2\operatorname{cd}^2(u,k)}}
-\cdot
-\frac{
-\sqrt{1 - k^2\operatorname{cd}^2(u,k)}
-}{
-k'
-\operatorname{cd}(u,k)
-}
-=
-\frac{
-\sqrt{1-\operatorname{cd}^2(u,k)}
-}{
-k'
-\operatorname{cd}(u,k)
-}.
-\qedhere
-\end{align*}
-\end{beispiel}
-
-\subsubsection{Ableitung der abgeleiteten elliptischen Funktionen}
-Aus den Ableitungen der grundlegenden Jacobischen elliptischen Funktionen
-können mit der Quotientenregel nun auch beliebige Ableitungen der
-abgeleiteten Jacobischen elliptischen Funktionen gefunden werden.
-Als Beispiel berechnen wir die Ableitung von $\operatorname{sc}(u,k)$.
-Sie ist
-\begin{align*}
-\frac{d}{du}
-\operatorname{sc}(u,k)
-&=
-\frac{d}{du}
-\frac{\operatorname{sn}(u,k)}{\operatorname{cn}(u,k)}
-=
-\frac{
-\operatorname{sn}'(u,k)\operatorname{cn}(u,k)
--
-\operatorname{sn}(u,k)\operatorname{cn}'(u,k)}{
-\operatorname{cn}^2(u,k)
-}
-\\
-&=
-\frac{
-\operatorname{cn}^2(u,k)\operatorname{dn}(u,k)
-+
-\operatorname{sn}^2(u,k)\operatorname{dn}(u,k)
-}{
-\operatorname{cn}^2(u,k)
-}
-=
-\frac{(
-\operatorname{sn}^2(u,k)
-+
-\operatorname{cn}^2(u,k)
-)\operatorname{dn}(u,k)}{
-\operatorname{cn}^2(u,k)
-}
-\\
-&=
-\frac{1}{\operatorname{cn}(u,k)}
-\cdot
-\frac{\operatorname{dn}(u,k)}{\operatorname{cn}(u,k)}
-=
-\operatorname{nc}(u,k)
-\operatorname{dc}(u,k).
-\end{align*}
-Man beachte, dass das Quadrat der Nennerfunktion im Resultat
-der Quotientenregel zur Folge hat, dass die
-beiden Funktionen im Resultat beide den gleichen Nenner haben wie
-die Funktion, die abgeleitet wird.
-
-Mit etwas Fleiss kann man nach diesem Muster alle Ableitungen
-\begin{equation}
-%\small
-\begin{aligned}
-\operatorname{sn}'(u,k)
-&=
-\phantom{-}
-\operatorname{cn}(u,k)\,\operatorname{dn}(u,k)
-&&\qquad&
-\operatorname{ns}'(u,k)
-&=
--
-\operatorname{cs}(u,k)\,\operatorname{ds}(u,k)
-\\
-\operatorname{cn}'(u,k)
-&=
--
-\operatorname{sn}(u,k)\,\operatorname{dn}(u,k)
-&&&
-\operatorname{nc}'(u,k)
-&=
-\phantom{-}
-\operatorname{sc}(u,k)\,\operatorname{dc}(u,k)
-\\
-\operatorname{dn}'(u,k)
-&=
--k^2
-\operatorname{sn}(u,k)\,\operatorname{cn}(u,k)
-&&&
-\operatorname{nd}'(u,k)
-&=
-\phantom{-}
-k^2
-\operatorname{sd}(u,k)\,\operatorname{cd}(u,k)
-\\
-\operatorname{sc}'(u,k)
-&=
-\phantom{-}
-\operatorname{dc}(u,k)\,\operatorname{nc}(u,k)
-&&&
-\operatorname{cs}'(u,k)
-&=
--
-\operatorname{ds}(u,k)\,\operatorname{ns}(u,k)
-\\
-\operatorname{cd}'(u,k)
-&=
--k^{\prime2}
-\operatorname{sd}(u,k)\,\operatorname{nd}(u,k)
-&&&
-\operatorname{dc}'(u,k)
-&=
-\phantom{-}
-k^{\prime2}
-\operatorname{dc}(u,k)\,\operatorname{nc}(u,k)
-\\
-\operatorname{ds}'(d,k)
-&=
--
-\operatorname{cs}(u,k)\,\operatorname{ns}(u,k)
-&&&
-\operatorname{sd}'(d,k)
-&=
-\phantom{-}
-\operatorname{cd}(u,k)\,\operatorname{nd}(u,k)
-\end{aligned}
-\label{buch:elliptisch:eqn:alleableitungen}
-\end{equation}
-finden.
-Man beachte, dass in jeder Identität alle Funktionen den gleichen
-zweiten Buchstaben haben.
-
-\subsubsection{TODO}
-XXX algebraische Beziehungen \\
-XXX Additionstheoreme \\
-XXX Perioden
-% use https://math.stackexchange.com/questions/3013692/how-to-show-that-jacobi-sine-function-is-doubly-periodic
-
-
-XXX Ableitungen \\
-XXX Werte \\
-
-%
-% Lösung von Differentialgleichungen
-%
-\subsection{Lösungen von Differentialgleichungen}
-Die elliptischen Funktionen ermöglichen die Lösung gewisser nichtlinearer
-Differentialgleichungen in geschlossener Form.
-Ziel dieses Abschnitts ist, Differentialgleichungen der Form
-\(
-\ddot{x}(t)
-=
-p(x(t))
-\)
-mit einem Polynom dritten Grades als rechter Seite lösen zu können.
-
-%
-% Die Differentialgleichung der elliptischen Funktionen
-%
-\subsubsection{Die Differentialgleichungen der elliptischen Funktionen}
-Um Differentialgleichungen mit elliptischen Funktion lösen zu
-können, muss man als erstes die Differentialgleichungen derselben
-finden.
-Quadriert man die Ableitungsregel für $\operatorname{sn}(u,k)$, erhält
-man
-\[
-\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2
-=
-\operatorname{cn}(u,k)^2 \operatorname{dn}(u,k)^2.
-\]
-Die Funktionen auf der rechten Seite können durch $\operatorname{sn}(u,k)$
-ausgedrückt werden.
-\begin{align*}
-\biggl(\frac{d}{du}\operatorname{sn}(u,k)\biggr)^2
-&=
-\biggl(
-1-\operatorname{sn}(u,k)^2
-\biggr)
-\biggl(
-1-k^2 \operatorname{sn}(u,k)^2
-\biggr)
-\\
-&=
-k^2\operatorname{sn}(u,k)^4
--(1+k^2)
-\operatorname{sn}(u,k)^2
-+1.
-\end{align*}
-Für die Funktion $\operatorname{cn}(u,k)$ ergibt analoge Rechnung
-\begin{align*}
-\frac{d}{du}\operatorname{cn}(u,k)
-&=
--\operatorname{sn}(u,k) \operatorname{dn}(u,k)
-\\
-\biggl(\frac{d}{du}\operatorname{cn}(u,k)\biggr)^2
-&=
-\operatorname{sn}(u,k)^2 \operatorname{dn}(u,k)^2
-\\
-&=
-\biggl(1-\operatorname{cn}(u,k)^2\biggr)
-\biggl(1-k^2+k^2 \operatorname{cn}(u,k)^2\biggr)
-\\
-&=
--k^2\operatorname{cn}(u,k)^4
--
-(1-k^2-k^2)\operatorname{cn}(u,k)^2
-+
-(1-k^2)
-\\
-\frac{d}{du}\operatorname{dn}(u,k)
-&=
--k^2\operatorname{sn}(u,k)\operatorname{cn}(u,k)
-\\
-\biggl(
-\frac{d}{du}\operatorname{dn}(u,k)
-\biggr)^2
-&=
-\bigl(k^2 \operatorname{sn}(u,k)^2\bigr)
-\bigl(k^2 \operatorname{cn}(u,k)^2\bigr)
-\\
-&=
-\biggl(
-1-\operatorname{dn}(u,k)^2
-\biggr)
-\biggl(
-\operatorname{dn}(u,k)^2-k^2+1
-\biggr)
-\\
-&=
--\operatorname{dn}(u,k)^4
--
-2\operatorname{dn}(u,k)^2
--k^2+1.
-\end{align*}
-\begin{table}
-\centering
-\renewcommand{\arraystretch}{2}
-\begin{tabular}{|>{$}l<{$}|>{$}l<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}>{$}c<{$}>{$}c<{$}|}
-\hline
-\text{Funktion $y=$}&\text{Differentialgleichung}&\alpha&\beta&\gamma&\multicolumn{3}{c|}{Signatur}\\
-\hline
-\operatorname{sn}(u,k)
- & y'^2 = \phantom{-}(1-y^2)(1-k^2y^2)
- &k^2&1&1 &+&+&+
-\\
-\operatorname{cn}(u,k)
- &y'^2 = \phantom{-}(1-y^2)(1-k^2+k^2y^2)
- &-k^2 &2k^2-1&1-k^2 &-&&+
-\\
-\operatorname{dn}(u,k)
- & y'^2 = -(1-y^2)(1-k^2-y^2)
- &1 &1-k^2 &-(1-k^2)&+&+&-
-\\
-\hline
-\end{tabular}
-\caption{Elliptische Funktionen als Lösungsfunktionen für verschiedene
-nichtlineare Differentialgleichungen der Art
-\eqref{buch:elliptisch:eqn:1storderdglell}.
-Die Vorzeichen der Koeffizienten $\alpha$, $\beta$ und $\gamma$
-entscheidet darüber, welche Funktion für die Lösung verwendet werden
-muss.
-\label{buch:elliptisch:tabelle:loesungsfunktionen}}
-\end{table}
-
-Die elliptischen Funktionen genügen also alle einer nichtlinearen
-Differentialgleichung erster Ordnung der selben Art.
-Das Quadrat der Ableitung ist ein Polynom vierten Grades der Funktion.
-Um dies besser einzufangen, schreiben wir $\operatorname{zn}(u,k)$,
-wenn wir eine beliebige der drei Funktionen
-$\operatorname{sn}(u,k)$,
-$\operatorname{cn}(u,k)$
-oder
-$\operatorname{dn}(u,k)$
-meinen.
-Die Funktion $\operatorname{zn}(u,k)$ ist also Lösung der
-Differentialgleichung
-\begin{equation}
-\operatorname{zn}'(u,k)^2
-=
-\alpha \operatorname{zn}(u,k)^4 + \beta \operatorname{zn}(u,)^2 + \gamma,
-\label{buch:elliptisch:eqn:1storderdglell}
-\end{equation}
-wobei wir mit $\operatorname{zn}'(u,k)$ die Ableitung von
-$\operatorname{zn}(u,k)$ nach dem ersten Argument meinen.
-Die Koeffizienten $\alpha$, $\beta$ und $\gamma$ hängen von $k$ ab,
-vor allem aber haben Sie verschiedene Vorzeichen.
-Je nach Vorzeichen sind also eine andere elliptische Funktion als
-Lösung zu verwenden.
-
-%
-% Jacobischen elliptische Funktionen und elliptische Integrale
-%
-\subsubsection{Jacobische elliptische Funktionen als elliptische Integrale}
-Die in Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen}
-zusammengestellten Differentialgleichungen ermöglichen nun, den
-Zusammenhang zwischen den Funktionen
-$\operatorname{sn}(u,k)$, $\operatorname{cn}(u,k)$ und $\operatorname{dn}(u,k)$
-und den unvollständigen elliptischen Integralen herzustellen.
-Die Differentialgleichungen sind alle von der Form
-\begin{equation}
-\biggl(
-\frac{d y}{d u}
-\biggr)^2
-=
-p(u),
-\label{buch:elliptisch:eqn:allgdgl}
-\end{equation}
-wobei $p(u)$ ein Polynom vierten Grades in $y$ ist.
-Diese Differentialgleichung lässt sich mit Separation lösen.
-Dazu zieht man aus~\eqref{buch:elliptisch:eqn:allgdgl} die
-Wurzel
-\begin{align}
-\frac{dy}{du}
-=
-\sqrt{p(y)}
-\notag
-\intertext{und trennt die Variablen. Man erhält}
-\int\frac{dy}{\sqrt{p(y)}} = u+C.
-\label{buch:elliptisch:eqn:yintegral}
-\end{align}
-Solange $p(y)>0$ ist, ist der Integrand auf der linken Seite
-von~\eqref{buch:elliptisch:eqn:yintegral} ebenfalls positiv und
-das Integral ist eine monoton wachsende Funktion $F(y)$.
-Insbesondere ist $F(y)$ invertierbar.
-Die Lösung $y(u)$ der Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl}
-ist daher
-\[
-y(u) = F^{-1}(u+C).
-\]
-Die Jacobischen elliptischen Funktionen sind daher inverse Funktionen
-der unvollständigen elliptischen Integrale.
-
-\subsubsection{Differentialgleichung zweiter Ordnung}
-Leitet die Differentialgleichung ~\eqref{buch:elliptisch:eqn:1storderdglell}
-man dies nochmals nach $u$ ab, erhält man die Differentialgleichung
-\[
-2\operatorname{zn}''(u,k)\operatorname{zn}'(u,k)
-=
-4\alpha \operatorname{zn}(u,k)^3\operatorname{zn}'(u,k) + 2\beta \operatorname{zn}'(u,k)\operatorname{zn}(u,k).
-\]
-Teilt man auf beiden Seiten durch $2\operatorname{zn}'(u,k)$,
-bleibt die nichtlineare
-Differentialgleichung
-\[
-\frac{d^2\operatorname{zn}}{du^2}
-=
-\beta \operatorname{zn} + 2\alpha \operatorname{zn}^3.
-\]
-Dies ist die Gleichung eines harmonischen Oszillators mit einer
-Anharmonizität der Form $2\alpha z^3$.
-
-%
-% Differentialgleichung des anharmonischen Oszillators
-%
-\subsubsection{Differentialgleichung des anharmonischen Oszillators}
-Wir möchten die nichtlineare Differentialgleichung
-\begin{equation}
-\biggl(
-\frac{dx}{dt}
-\biggr)^2
-=
-Ax^4+Bx^2 + C
-\label{buch:elliptisch:eqn:allgdgl}
-\end{equation}
-mit Hilfe elliptischer Funktionen lösen.
-Wir nehmen also an, dass die gesuchte Lösung eine Funktion der Form
-\begin{equation}
-x(t) = a\operatorname{zn}(bt,k)
-\label{buch:elliptisch:eqn:loesungsansatz}
-\end{equation}
-ist.
-Die erste Ableitung von $x(t)$ ist
-\[
-\dot{x}(t)
-=
-a\operatorname{zn}'(bt,k).
-\]
-
-Indem wir diesen Lösungsansatz in die
-Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl}
-einsetzen, erhalten wir
-\begin{equation}
-a^2b^2 \operatorname{zn}'(bt,k)^2
-=
-a^4A\operatorname{zn}(bt,k)^4
-+
-a^2B\operatorname{zn}(bt,k)^2
-+C
-\label{buch:elliptisch:eqn:dglx}
-\end{equation}
-Andererseits wissen wir, dass $\operatorname{zn}(u,k)$ einer
-Differentilgleichung der Form~\eqref{buch:elliptisch:eqn:1storderdglell}
-erfüllt.
-Wenn wir \eqref{buch:elliptisch:eqn:dglx} durch $a^2b^2$ teilen, können wir
-die rechte Seite von \eqref{buch:elliptisch:eqn:dglx} mit der rechten
-Seite von \eqref{buch:elliptisch:eqn:1storderdglell} vergleichen:
-\[
-\frac{a^2A}{b^2}\operatorname{zn}(bt,k)^4
-+
-\frac{B}{b^2}\operatorname{zn}(bt,k)^2
-+\frac{C}{a^2b^2}
-=
-\alpha\operatorname{zn}(bt,k)^4
-+
-\beta\operatorname{zn}(bt,k)^2
-+
-\gamma\operatorname{zn}(bt,k).
-\]
-Daraus ergeben sich die Gleichungen
-\begin{align}
-\alpha &= \frac{a^2A}{b^2},
-&
-\beta &= \frac{B}{b^2}
-&&\text{und}
-&
-\gamma &= \frac{C}{a^2b^2}
-\label{buch:elliptisch:eqn:koeffvergl}
-\intertext{oder aufgelöst nach den Koeffizienten der ursprünglichen
-Differentialgleichung}
-A&=\frac{\alpha b^2}{a^2}
-&
-B&=\beta b^2
-&&\text{und}&
-C &= \gamma a^2b^2
-\label{buch:elliptisch:eqn:koeffABC}
-\end{align}
-für die Koeffizienten der Differentialgleichung der zu verwendenden
-Funktion.
-
-Man beachte, dass nach \eqref{buch:elliptisch:eqn:koeffvergl} die
-Koeffizienten $A$, $B$ und $C$ die gleichen Vorzeichen haben wie
-$\alpha$, $\beta$ und $\gamma$, da in
-\eqref{buch:elliptisch:eqn:koeffvergl} nur mit Quadraten multipliziert
-wird, die immer positiv sind.
-Diese Vorzeichen bestimmen, welche der Funktionen gewählt werden muss.
-
-In den Differentialgleichungen für die elliptischen Funktionen gibt
-es nur den Parameter $k$, der angepasst werden kann.
-Es folgt, dass die Gleichungen
-\eqref{buch:elliptisch:eqn:koeffvergl}
-auch $a$ und $b$ bestimmen.
-Zum Beispiel folgt aus der letzten Gleichung, dass
-\[
-b = \pm\sqrt{\frac{B}{\beta}}.
-\]
-Damit folgt dann aus der zweiten
-\[
-a=\pm\sqrt{\frac{\beta C}{\gamma B}}.
-\]
-Die verbleibende Gleichung legt $k$ fest.
-Das folgende Beispiel illustriert das Vorgehen am Beispiel einer
-Gleichung, die Lösungsfunktion $\operatorname{sn}(u,k)$ verlangt.
-
-\begin{beispiel}
-Wir nehmen an, dass die Vorzeichen von $A$, $B$ und $C$ gemäss
-Tabelle~\ref{buch:elliptische:tabelle:loesungsfunktionen} verlangen,
-dass die Funktion $\operatorname{sn}(u,k)$ für die Lösung verwendet
-werden muss.
-Die Tabelle sagt dann auch, dass
-$\alpha=k^2$, $\beta=1$ und $\gamma=1$ gewählt werden müssen.
-Aus dem Koeffizientenvergleich~\eqref{buch:elliptisch:eqn:koeffvergl}
-folgt dann der Reihe nach
-\begin{align*}
-b&=\pm \sqrt{B}
-\\
-a&=\pm \sqrt{\frac{C}{B}}
-\\
-k^2
-&=
-\frac{AC}{B^2}.
-\end{align*}
-Man beachte, dass man $k^2$ durch Einsetzen von
-\eqref{buch:elliptisch:eqn:koeffABC}
-auch direkt aus den Koeffizienten $\alpha$, $\beta$ und $\gamma$
-erhalten kann, nämlich
-\[
-\frac{AC}{B^2}
-=
-\frac{\frac{\alpha b^2}{a^2} \gamma a^2b^2}{\beta^2 b^4}
-=
-\frac{\alpha\gamma}{\beta^2}.
-\qedhere
-\]
-\end{beispiel}
-
-Da alle Parameter im
-Lösungsansatz~\eqref{buch:elliptisch:eqn:loesungsansatz} bereits
-festgelegt sind stellt sich die Frage, woher man einen weiteren
-Parameter nehmen kann, mit dem Anfangsbedingungen erfüllen kann.
-Die Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} ist
-autonom, die Koeffizienten der rechten Seite der Differentialgleichung
-sind nicht von der Zeit abhängig.
-Damit ist eine zeitverschobene Funktion $x(t-t_0)$ ebenfalls eine
-Lösung der Differentialgleichung.
-Die allgmeine Lösung der
-Differentialgleichung~\eqref{buch:elliptisch:eqn:allgdgl} hat
-also die Form
-\[
-x(t) = a\operatorname{zn}(b(t-t_0)),
-\]
-wobei die Funktion $\operatorname{zn}(u,k)$ auf Grund der Vorzeichen
-von $A$, $B$ und $C$ gewählt werden müssen.
-
-%
-% Das mathematische Pendel
-%
-\subsection{Das mathematische Pendel
-\label{buch:elliptisch:subsection:mathpendel}}
-\begin{figure}
-\centering
-\includegraphics{chapters/110-elliptisch/images/pendel.pdf}
-\caption{Mathematisches Pendel
-\label{buch:elliptisch:fig:mathpendel}}
-\end{figure}
-Das in Abbildung~\ref{buch:elliptisch:fig:mathpendel} dargestellte
-Mathematische Pendel besteht aus einem Massepunkt der Masse $m$
-im Punkt $P$,
-der über eine masselose Stange der Länge $l$ mit dem Drehpunkt $O$
-verbunden ist.
-Das Pendel bewegt sich unter dem Einfluss der Schwerebeschleunigung $g$.
-
-Das Trägheitsmoment des Massepunktes um den Drehpunkt $O$ ist
-\(
-I=ml^2
-\).
-Das Drehmoment der Schwerkraft ist
-\(M=gl\sin\vartheta\).
-Die Bewegungsgleichung wird daher
-\[
-\begin{aligned}
-\frac{d}{dt} I\dot{\vartheta}
-&=
-M
-=
-gl\sin\vartheta
-\\
-ml^2\ddot{\vartheta}
-&=
-gl\sin\vartheta
-&&\Rightarrow&
-\ddot{\vartheta}
-&=\frac{g}{l}\sin\vartheta
-\end{aligned}
-\]
-Dies ist eine nichtlineare Differentialgleichung zweiter Ordnung, die
-wir nicht unmittelbar mit den Differentialgleichungen erster Ordnung
-der elliptischen Funktionen vergleichen können.
-
-Die Differentialgleichungen erster Ordnung der elliptischen Funktionen
-enthalten das Quadrat der ersten Ableitung.
-In unserem Fall entspricht das einer Gleichung, die $\dot{\vartheta}^2$
-enthält.
-Der Energieerhaltungssatz kann uns eine solche Gleichung geben.
-Die Summe von kinetischer und potentieller Energie muss konstant sein.
-Dies führt auf
-\[
-E_{\text{kinetisch}}
-+
-E_{\text{potentiell}}
-=
-\frac12I\dot{\vartheta}^2
-+
-mgl(1-\cos\vartheta)
-=
-\frac12ml^2\dot{\vartheta}^2
-+
-mgl(1-\cos\vartheta)
-=
-E
-\]
-Durch Auflösen nach $\dot{\vartheta}$ kann man jetzt die
-Differentialgleichung
-\[
-\dot{\vartheta}^2
-=
--
-\frac{2g}{l}(1-\cos\vartheta)
-+\frac{2E}{ml^2}
-\]
-finden.
-In erster Näherung, d.h. wenn man die rechte Seite bis zu vierten
-Potenzen in eine Taylor-Reihe in $\vartheta$ entwickelt, ist dies
-tatsächlich eine Differentialgleichung der Art, wie wir sie für
-elliptische Funktionen gefunden haben, wir möchten aber eine exakte
-Lösung konstruieren.
-
-Die maximale Energie für eine Bewegung, bei der sich das Pendel gerade
-über den höchsten Punkt hinweg zu bewegen vermag, ist
-$E=2lmg$.
-Falls $E<2mgl$ ist, erwarten wir Schwingungslösungen, bei denen
-der Winkel $\vartheta$ immer im offenen Interval $(-\pi,\pi)$
-bleibt.
-Für $E>2mgl$ wird sich das Pendel im Kreis bewegen, für sehr grosse
-Energie ist die kinetische Energie dominant, die Verlangsamung im
-höchsten Punkt wird immer weniger ausgeprägt sein.
-
-%
-% Koordinatentransformation auf elliptische Funktionen
-%
-\subsubsection{Koordinatentransformation auf elliptische Funktionen}
-Wir verwenden als neue Variable
-\[
-y = \sin\frac{\vartheta}2
-\]
-mit der Ableitung
-\[
-\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}.
-\]
-Man beachte, dass $y$ nicht eine Koordinate in
-Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist.
-
-Aus den Halbwinkelformeln finden wir
-\[
-\cos\vartheta
-=
-1-2\sin^2 \frac{\vartheta}2
-=
-1-2y^2.
-\]
-Dies können wir zusammen mit der
-Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$
-in die Energiegleichung einsetzen und erhalten
-\[
-\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E
-\qquad\Rightarrow\qquad
-\frac14 \dot{\vartheta}^2 = \frac{E}{2ml^2} - \frac{g}{2l}y^2.
-\]
-Der konstante Term auf der rechten Seite ist grösser oder kleiner als
-$1$ je nachdem, ob das Pendel sich im Kreis bewegt oder nicht.
-
-Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$
-erhalten wir auf der linken Seite einen Ausdruck, den wir
-als Funktion von $\dot{y}$ ausdrücken können.
-Wir erhalten
-\begin{align*}
-\frac14
-\cos^2\frac{\vartheta}2
-\cdot
-\dot{\vartheta}^2
-&=
-\frac14
-(1-y^2)
-\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr)
-\\
-\dot{y}^2
-&=
-\frac{1}{4}
-(1-y^2)
-\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr)
-\end{align*}
-Die letzte Gleichung hat die Form einer Differentialgleichung
-für elliptische Funktionen.
-Welche Funktion verwendet werden muss, hängt von der Grösse der
-Koeffizienten in der zweiten Klammer ab.
-Die Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen}
-zeigt, dass in der zweiten Klammer jeweils einer der Terme
-$1$ sein muss.
-
-%
-% Der Fall E < 2mgl
-%
-\subsubsection{Der Fall $E<2mgl$}
-\begin{figure}
-\centering
-\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf}
-\caption{%
-Abhängigkeit der elliptischen Funktionen von $u$ für
-verschiedene Werte von $k^2=m$.
-Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$,
-$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese
-sind in allen Plots in einer helleren Farbe eingezeichnet.
-Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig
-von den trigonometrischen Funktionen ab,
-es ist aber klar erkennbar, dass die anharmonischen Terme in der
-Differentialgleichung die Periode mit steigender Amplitude verlängern.
-Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass
-die Energie des Pendels fast ausreicht, dass es den höchsten Punkt
-erreichen kann, was es für $m$ macht.
-\label{buch:elliptisch:fig:jacobiplots}}
-\end{figure}
-
-
-Wir verwenden als neue Variable
-\[
-y = \sin\frac{\vartheta}2
-\]
-mit der Ableitung
-\[
-\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}.
-\]
-Man beachte, dass $y$ nicht eine Koordinate in
-Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist.
-
-Aus den Halbwinkelformeln finden wir
-\[
-\cos\vartheta
-=
-1-2\sin^2 \frac{\vartheta}2
-=
-1-2y^2.
-\]
-Dies können wir zusammen mit der
-Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$
-in die Energiegleichung einsetzen und erhalten
-\[
-\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E.
-\]
-Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$
-erhalten wir auf der linken Seite einen Ausdruck, den wir
-als Funktion von $\dot{y}$ ausdrücken können.
-Wir erhalten
-\begin{align*}
-\frac12ml^2
-\cos^2\frac{\vartheta}2
-\dot{\vartheta}^2
-&=
-(1-y^2)
-(E -mgly^2)
-\\
-\frac{1}{4}\cos^2\frac{\vartheta}{2}\dot{\vartheta}^2
-&=
-\frac{1}{2}
-(1-y^2)
-\biggl(\frac{E}{ml^2} -\frac{g}{l}y^2\biggr)
-\\
-\dot{y}^2
-&=
-\frac{E}{2ml^2}
-(1-y^2)\biggl(
-1-\frac{2gml}{E}y^2
-\biggr).
-\end{align*}
-Dies ist genau die Form der Differentialgleichung für die elliptische
-Funktion $\operatorname{sn}(u,k)$
-mit $k^2 = 2gml/E< 1$.
-
-%
-% Der Fall E > 2mgl
-%
-\subsection{Der Fall $E > 2mgl$}
-In diesem Fall hat das Pendel im höchsten Punkte immer noch genügend
-kinetische Energie, so dass es sich im Kreise dreht.
-Indem wir die Gleichung
-
-XXX Differentialgleichung \\
-XXX Mathematisches Pendel \\
-\subsection{Soliton-Lösungen der Sinus-Gordon-Gleichung}
-\subsection{Nichtlineare Differentialgleichung vierter Ordnung}
-XXX Möbius-Transformation \\
-XXX Reduktion auf die Differentialgleichung elliptischer Funktionen
diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex
index 7083b63..0df27a7 100644
--- a/buch/chapters/110-elliptisch/lemniskate.tex
+++ b/buch/chapters/110-elliptisch/lemniskate.tex
@@ -22,23 +22,46 @@ elliptischen Funktionen hergestellt werden.
\end{figure}
Die Lemniskate von Bernoulli ist die Kurve vierten Grades mit der Gleichung
\begin{equation}
-(x^2+y^2)^2 = 2a^2(x^2-y^2).
+(X^2+Y^2)^2 = 2a^2(X^2-Y^2).
\label{buch:elliptisch:eqn:lemniskate}
\end{equation}
Sie ist in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
dargestellt.
-Die beiden Scheitel der Lemniskate befinden sich bei $x=\pm a/\sqrt{2}$.
+Die beiden Scheitel der Lemniskate befinden sich bei $X_s=\pm a\sqrt{2}$.
+Dividiert man die Gleichung der Lemniskate durch $X_s^2=4a^4$ entsteht
+\begin{equation}
+\biggl(
+\biggl(\frac{X}{a\sqrt{2}}\biggr)^2
++
+\biggl(\frac{Y}{a\sqrt{2}}\biggr)^2
+\biggr)^2
+=
+2\frac{a^2}{2a^2}\biggl(
+\biggl(\frac{X}{a\sqrt{2}}\biggr)^2
+-
+\biggl(\frac{Y}{a\sqrt{2}}\biggr)^2
+\biggr).
+\qquad
+\Leftrightarrow
+\qquad
+(x^2+y^2)^2 = x^2-y^2,
+\label{buch:elliptisch:eqn:lemniskatenormiert}
+\end{equation}
+wobei wir $x=X/a\sqrt{2}$ und $y=Y/a\sqrt{2}$ gesetzt haben.
+In dieser Normierung liegen die Scheitel bei $\pm 1$.
+Dies ist die Skalierung, die für die Definition des lemniskatischen
+Sinus und Kosinus verwendet werden soll.
In Polarkoordinaten $x=r\cos\varphi$ und $y=r\sin\varphi$
-gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskate}
+gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskatenormiert}
\begin{equation}
r^4
=
-2a^2r^2(\cos^2\varphi-\sin^2\varphi)
+r^2(\cos^2\varphi-\sin^2\varphi)
=
-2a^2r^2\cos2\varphi
+r^2\cos2\varphi
\qquad\Rightarrow\qquad
-r^2 = 2a^2\cos 2\varphi
+r^2 = \cos 2\varphi
\label{buch:elliptisch:eqn:lemniskatepolar}
\end{equation}
als Darstellung der Lemniskate in Polardarstellung.
@@ -46,15 +69,7 @@ Sie gilt für Winkel $\varphi\in[-\frac{\pi}4,\frac{\pi}4]$ für das
rechte Blatt und $\varphi\in[\frac{3\pi}4,\frac{5\pi}4]$ für das linke
Blatt der Lemniskate.
-Für die Definition des lemniskatischen Sinus wird eine Skalierung
-verwendet, die den rechten Scheitel im Punkt $(1,0)$.
-Dies ist der Fall für $a=1/\sqrt{2}$, die Gleichung der Lemniskate
-wird dann zu
-\[
-(x^2+y^2)^2 = 2(x^2-y^2).
-\]
-
-\subsubsection{Bogelänge}
+\subsection{Bogenlänge}
Die Funktionen
\begin{equation}
x(r) = \frac{r}{\sqrt{2}}\sqrt{1+r^2},
@@ -76,7 +91,7 @@ r^4
\end{align*}
sie stellen also eine Parametrisierung der Lemniskate dar.
-Mit Hilfe der Parametrsierung~\eqref{buch:geometrie:eqn:lemniskateparam}
+Mit Hilfe der Parametrisierung~\eqref{buch:geometrie:eqn:lemniskateparam}
kann man die Länge $s$ des in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
dargestellten Bogens der Lemniskate berechnen.
Dazu benötigt man die Ableitungen nach $r$, die man mit der Produkt- und
@@ -123,11 +138,16 @@ s(r)
\label{buch:elliptisch:eqn:lemniskatebogenlaenge}
\end{equation}
-\subsubsection{Darstellung als elliptisches Integral}
+%
+% Als elliptisches Integral
+%
+\subsection{Darstellung als elliptisches Integral}
Das unvollständige elliptische Integral erster Art mit Parameter
-$m=-1$ ist
+$k^2=-1$ oder $k=i$ ist
\[
-K(r,-1)
+K(r,i)
+=
+\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-i^2 t^2)}}
=
\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-(-1)t^2)}}
=
@@ -136,11 +156,209 @@ K(r,-1)
s(r).
\]
Der lemniskatische Sinus ist also eine Umkehrfunktion des
-ellptischen Integrals erster Art für einen speziellen Wert des
-Parameters $m$
+elliptischen Integrals erster Art für den speziellen Wert $i$ des
+Parameters $k$.
+
+Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet
+und hat den numerischen Wert
+\[
+\varpi
+=
+2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt
+=
+2.6220575542.
+\]
+$\varpi$ ist auch als die {\em lemniskatische Konstante} bekannt.
+\index{lemniskatische Konstante}%
+Der Lemniskatenbogen zwischen dem Nullpunkt und $(1,0)$ hat die Länge
+$\varpi/2$.
+
+%
+% Bogenlängenparametrisierung
+%
+\subsection{Bogenlängenparametrisierung}
+Die Lemniskate mit der Gleichung
+\[
+(X^2+X^2)^2=2(X^2-X^2)
+\]
+(der Fall $a=1$ in \eqref{buch:elliptisch:eqn:lemniskate})
+kann mit Jacobischen elliptischen Funktionen
+parametrisiert werden.
+Dazu schreibt man
+\[
+\left.
+\begin{aligned}
+X(t)
+&=
+\sqrt{2}\operatorname{cn}(t,k) \operatorname{dn}(t,k)
+\\
+Y(t)
+&=
+\phantom{\sqrt{2}}
+\operatorname{cn}(t,k) \operatorname{sn}(t,k)
+\end{aligned}
+\quad\right\}
+\qquad\text{mit $k=\displaystyle\frac{1}{\sqrt{2}}$}
+\]
+und berechnet die beiden Seiten der definierenden Gleichung der
+Lemniskate.
+Zunächst ist
+\begin{align*}
+X(t)^2
+&=
+2\operatorname{cn}(t,k)^2
+\operatorname{dn}(t,k)^2
+\\
+Y(t)^2
+&=
+\operatorname{cn}(t,k)^2
+\operatorname{sn}(t,k)^2
+\\
+X(t)^2+Y(t)^2
+&=
+2\operatorname{cn}(t,k)^2
+\bigl(
+\underbrace{
+\operatorname{dn}(t,k)^2
++{\textstyle\frac12}
+\operatorname{sn}(t,k)^2
+}_{\displaystyle =1}
+\bigr)
+%\\
+%&
+=
+2\operatorname{cn}(t,k)^2
+\\
+X(t)^2-Y(t)^2
+&=
+\operatorname{cn}(t,k)^2
+\bigl(
+2\operatorname{dn}(t,k)^2 - \operatorname{sn}(t,k)^2
+\bigr)
+\\
+&=
+\operatorname{cn}(t,k)^2
+\bigl(
+2\bigl({\textstyle\frac12}+{\textstyle\frac12}\operatorname{cn}(t,k)^2\bigr)
+-
+\bigl(1-\operatorname{cn}(t,k)^2\bigr)
+\bigr)
+\\
+&=
+2\operatorname{cn}(t,k)^4
+\\
+\Rightarrow\qquad
+(X(t)^2+Y(t)^2)^2
+&=
+4\operatorname{cn}(t,k)^4
+=
+2(X(t)^2-Y(t)^2).
+\end{align*}
+Wir zeigen jetzt, dass dies tatsächlich eine Bogenlängenparametrisierung
+der Lemniskate ist.
+Dazu berechnen wir die Ableitungen
+\begin{align*}
+\dot{X}(t)
+&=
+\sqrt{2}\operatorname{cn}'(t,k)\operatorname{dn}(t,k)
++
+\sqrt{2}\operatorname{cn}(t,k)\operatorname{dn}'(t,k)
+\\
+&=
+-\sqrt{2}\operatorname{sn}(t,k)\operatorname{dn}(t,k)^2
+-\frac12\sqrt{2}\operatorname{sn}(t,k)\operatorname{cn}(t,k)^2
+\\
+&=
+-\sqrt{2}\operatorname{sn}(t,k)\bigl(
+1-{\textstyle\frac12}\operatorname{sn}(t,k)^2
++{\textstyle\frac12}-{\textstyle\frac12}\operatorname{sn}(u,t)^2
+\bigr)
+\\
+&=
+\sqrt{2}\operatorname{sn}(t,k)
+\bigl(
+{\textstyle \frac32}-\operatorname{sn}(t,k)^2
+\bigr)
+\\
+\dot{X}(t)^2
+&=
+2\operatorname{sn}(t,k)^2
+\bigl(
+{\textstyle \frac32}-\operatorname{sn}(t,k)^2
+\bigr)^2
+\\
+&=
+{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2
+-
+6\operatorname{sn}(t,k)^4
++2\operatorname{sn}(t,k)^6
+\\
+\dot{Y}(t)
+&=
+\operatorname{cn}'(t,k)\operatorname{sn}(t,k)
++
+\operatorname{cn}(t,k)\operatorname{sn}'(t,k)
+\\
+&=
+-\operatorname{sn}(t,k)^2
+\operatorname{dn}(t,k)
++\operatorname{cn}(t,k)^2
+\operatorname{dn}(t,k)
+\\
+&=
+\operatorname{dn}(t,k)\bigl(1-2\operatorname{sn}(t,k)^2\bigr)
+\\
+\dot{Y}(t)^2
+&=
+\bigl(1-{\textstyle\frac12}\operatorname{sn}(t,k)^2\bigr)
+\bigl(1-2\operatorname|{sn}(t,k)^2\bigr)^2
+\\
+&=
+1-{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2
++6\operatorname{sn}(t,k)^4
+-2\operatorname{sn}(t,k)^6
+\\
+\dot{X}(t)^2 + \dot{Y}(t)^2
+&=
+1.
+\end{align*}
+Dies bedeutet, dass die Bogenlänge zwischen den Parameterwerten $0$ und $s$
+\[
+\int_0^s
+\sqrt{\dot{X}(t)^2 + \dot{Y}(t)^2}
+\,dt
+=
+\int_0^s\,dt
+=
+s,
+\]
+der Parameter $t$ ist also ein Bogenlängenparameter.
+
+Die mit dem Faktor $1/\sqrt{2}$ skalierte Standard-Lemniskate mit der
+Gleichung
+\[
+(x^2+y^2)^2 = x^2-y^2
+\]
+hat daher eine Bogenlängenparametrisierung mit
+\begin{equation}
+\begin{aligned}
+x(t)
+&=
+\phantom{\frac{1}{\sqrt{2}}}
+\operatorname{cn}(\sqrt{2}t,k)\operatorname{dn}(\sqrt{2}t,k)
+\\
+y(t)
+&=
+\frac{1}{\sqrt{2}}\operatorname{cn}(\sqrt{2}t,k)\operatorname{sn}(\sqrt{2}t,k)
+\end{aligned}
+\label{buch:elliptisch:lemniskate:bogenlaenge}
+\end{equation}
+
+\subsection{Der lemniskatische Sinus und Kosinus}
+Der Sinus Berechnet die Gegenkathete zu einer gegebenen Bogenlänge des
+Kreises, er ist die Umkehrfunktion der Funktion, die der Gegenkathete
+die Bogenlänge zuordnet.
-\subsubsection{Der lemniskatische Sinus und Kosinus}
-Berechnet die Gegenkathete zu einer gegebenen Bogenlänge des Kreises.
Daher ist es naheliegend, die Umkehrfunktion von $s(r)$ in
\eqref{buch:elliptisch:eqn:lemniskatebogenlaenge}
den {\em lemniskatischen Sinus} zu nennen mit der Bezeichnung
@@ -150,22 +368,29 @@ Der Kosinus ist der Sinus des komplementären Winkels.
Auch für die lemniskatische Bogenlänge $s(r)$ lässt sich eine
komplementäre Bogenlänge definieren, nämlich die Bogenlänge zwischen
dem Punkt $(x(r), y(r))$ und $(1,0)$.
-Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet
-und hat den numerischen Wert
+
+Da die Parametrisierung~\eqref{buch:elliptisch:lemniskate:bogenlaenge}
+eine Bogenlängenparametrisierung ist, darf man $t=s$ schreiben.
+Dann kann man aber auch $r(s)$ daraus berechnen,
+es ist
\[
-\varphi
+r(s)^2
=
-2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt
+x(s)^2 + y(s)^2
=
-2.6220575542.
+\operatorname{cn}(s\sqrt{2},k)^2
+\qquad\Rightarrow\qquad
+r(s)
+=
+\operatorname{cn}(s\sqrt{2},k)
\]
-Lemniskatenbogens zwischen dem Nullpunkt und $(1,0)$ hat die Länge
-$\varpi/2$.
-
-Der {\em lemniskatische Kosinus} von $s$ ist derjenige Radiuswert $r$,
-für den der Lemniskatenbogen zwischen $(x(r), y(r))$ und $(1,0)$
-die Länge $s$ hat.
-
-XXX Algebraische Beziehungen \\
-XXX Ableitungen \\
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/slcl.pdf}
+\caption{
+Lemniskatischer Sinus und Kosinus sowie Sinus und Kosinus
+mit derart skaliertem Argument, dass die Funktionen die gleichen Nullstellen
+haben.
+\label{buch:elliptisch:figure:slcl}}
+\end{figure}
diff --git a/buch/chapters/110-elliptisch/mathpendel.tex b/buch/chapters/110-elliptisch/mathpendel.tex
new file mode 100644
index 0000000..d61bcf6
--- /dev/null
+++ b/buch/chapters/110-elliptisch/mathpendel.tex
@@ -0,0 +1,250 @@
+%
+% mathpendel.tex -- Das mathematische Pendel
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+
+\subsection{Das mathematische Pendel
+\label{buch:elliptisch:subsection:mathpendel}}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/pendel.pdf}
+\caption{Mathematisches Pendel
+\label{buch:elliptisch:fig:mathpendel}}
+\end{figure}
+Das in Abbildung~\ref{buch:elliptisch:fig:mathpendel} dargestellte
+Mathematische Pendel besteht aus einem Massepunkt der Masse $m$
+im Punkt $P$,
+der über eine masselose Stange der Länge $l$ mit dem Drehpunkt $O$
+verbunden ist.
+Das Pendel bewegt sich unter dem Einfluss der Schwerebeschleunigung $g$.
+
+Das Trägheitsmoment des Massepunktes um den Drehpunkt $O$ ist
+\(
+I=ml^2
+\).
+Das Drehmoment der Schwerkraft ist
+\(M=gl\sin\vartheta\).
+Die Bewegungsgleichung wird daher
+\[
+\begin{aligned}
+\frac{d}{dt} I\dot{\vartheta}
+&=
+M
+=
+gl\sin\vartheta
+\\
+ml^2\ddot{\vartheta}
+&=
+gl\sin\vartheta
+&&\Rightarrow&
+\ddot{\vartheta}
+&=\frac{g}{l}\sin\vartheta
+\end{aligned}
+\]
+Dies ist eine nichtlineare Differentialgleichung zweiter Ordnung, die
+wir nicht unmittelbar mit den Differentialgleichungen erster Ordnung
+der elliptischen Funktionen vergleichen können.
+
+Die Differentialgleichungen erster Ordnung der elliptischen Funktionen
+enthalten das Quadrat der ersten Ableitung.
+In unserem Fall entspricht das einer Gleichung, die $\dot{\vartheta}^2$
+enthält.
+Der Energieerhaltungssatz kann uns eine solche Gleichung geben.
+Die Summe von kinetischer und potentieller Energie muss konstant sein.
+Dies führt auf
+\[
+E_{\text{kinetisch}}
++
+E_{\text{potentiell}}
+=
+\frac12I\dot{\vartheta}^2
++
+mgl(1-\cos\vartheta)
+=
+\frac12ml^2\dot{\vartheta}^2
++
+mgl(1-\cos\vartheta)
+=
+E
+\]
+Durch Auflösen nach $\dot{\vartheta}$ kann man jetzt die
+Differentialgleichung
+\[
+\dot{\vartheta}^2
+=
+-
+\frac{2g}{l}(1-\cos\vartheta)
++\frac{2E}{ml^2}
+\]
+finden.
+In erster Näherung, d.h. wenn man die rechte Seite bis zu vierten
+Potenzen in eine Taylor-Reihe in $\vartheta$ entwickelt, ist dies
+tatsächlich eine Differentialgleichung der Art, wie wir sie für
+elliptische Funktionen gefunden haben, wir möchten aber eine exakte
+Lösung konstruieren.
+
+Die maximale Energie für eine Bewegung, bei der sich das Pendel gerade
+über den höchsten Punkt hinweg zu bewegen vermag, ist
+$E=2lmg$.
+Falls $E<2mgl$ ist, erwarten wir Schwingungslösungen, bei denen
+der Winkel $\vartheta$ immer im offenen Interval $(-\pi,\pi)$
+bleibt.
+Für $E>2mgl$ wird sich das Pendel im Kreis bewegen, für sehr grosse
+Energie ist die kinetische Energie dominant, die Verlangsamung im
+höchsten Punkt wird immer weniger ausgeprägt sein.
+
+%
+% Koordinatentransformation auf elliptische Funktionen
+%
+\subsubsection{Koordinatentransformation auf elliptische Funktionen}
+Wir verwenden als neue Variable
+\[
+y = \sin\frac{\vartheta}2
+\]
+mit der Ableitung
+\[
+\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}.
+\]
+Man beachte, dass $y$ nicht eine Koordinate in
+Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist.
+
+Aus den Halbwinkelformeln finden wir
+\[
+\cos\vartheta
+=
+1-2\sin^2 \frac{\vartheta}2
+=
+1-2y^2.
+\]
+Dies können wir zusammen mit der
+Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$
+in die Energiegleichung einsetzen und erhalten
+\[
+\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E
+\qquad\Rightarrow\qquad
+\frac14 \dot{\vartheta}^2 = \frac{E}{2ml^2} - \frac{g}{2l}y^2.
+\]
+Der konstante Term auf der rechten Seite ist grösser oder kleiner als
+$1$ je nachdem, ob das Pendel sich im Kreis bewegt oder nicht.
+
+Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$
+erhalten wir auf der linken Seite einen Ausdruck, den wir
+als Funktion von $\dot{y}$ ausdrücken können.
+Wir erhalten
+\begin{align*}
+\frac14
+\cos^2\frac{\vartheta}2
+\cdot
+\dot{\vartheta}^2
+&=
+\frac14
+(1-y^2)
+\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr)
+\\
+\dot{y}^2
+&=
+\frac{1}{4}
+(1-y^2)
+\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr)
+\end{align*}
+Die letzte Gleichung hat die Form einer Differentialgleichung
+für elliptische Funktionen.
+Welche Funktion verwendet werden muss, hängt von der Grösse der
+Koeffizienten in der zweiten Klammer ab.
+Die Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen}
+zeigt, dass in der zweiten Klammer jeweils einer der Terme
+$1$ sein muss.
+
+%
+% Der Fall E < 2mgl
+%
+\subsubsection{Der Fall $E<2mgl$}
+\begin{figure}
+\centering
+\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf}
+\caption{%
+Abhängigkeit der elliptischen Funktionen von $u$ für
+verschiedene Werte von $k^2=m$.
+Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$,
+$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese
+sind in allen Plots in einer helleren Farbe eingezeichnet.
+Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig
+von den trigonometrischen Funktionen ab,
+es ist aber klar erkennbar, dass die anharmonischen Terme in der
+Differentialgleichung die Periode mit steigender Amplitude verlängern.
+Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass
+die Energie des Pendels fast ausreicht, dass es den höchsten Punkt
+erreichen kann, was es für $m$ macht.
+\label{buch:elliptisch:fig:jacobiplots}}
+\end{figure}
+
+
+Wir verwenden als neue Variable
+\[
+y = \sin\frac{\vartheta}2
+\]
+mit der Ableitung
+\[
+\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}.
+\]
+Man beachte, dass $y$ nicht eine Koordinate in
+Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist.
+
+Aus den Halbwinkelformeln finden wir
+\[
+\cos\vartheta
+=
+1-2\sin^2 \frac{\vartheta}2
+=
+1-2y^2.
+\]
+Dies können wir zusammen mit der
+Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$
+in die Energiegleichung einsetzen und erhalten
+\[
+\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E.
+\]
+Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$
+erhalten wir auf der linken Seite einen Ausdruck, den wir
+als Funktion von $\dot{y}$ ausdrücken können.
+Wir erhalten
+\begin{align*}
+\frac12ml^2
+\cos^2\frac{\vartheta}2
+\dot{\vartheta}^2
+&=
+(1-y^2)
+(E -mgly^2)
+\\
+\frac{1}{4}\cos^2\frac{\vartheta}{2}\dot{\vartheta}^2
+&=
+\frac{1}{2}
+(1-y^2)
+\biggl(\frac{E}{ml^2} -\frac{g}{l}y^2\biggr)
+\\
+\dot{y}^2
+&=
+\frac{E}{2ml^2}
+(1-y^2)\biggl(
+1-\frac{2gml}{E}y^2
+\biggr).
+\end{align*}
+Dies ist genau die Form der Differentialgleichung für die elliptische
+Funktion $\operatorname{sn}(u,k)$
+mit $k^2 = 2gml/E< 1$.
+
+%%
+%% Der Fall E > 2mgl
+%%
+%\subsection{Der Fall $E > 2mgl$}
+%In diesem Fall hat das Pendel im höchsten Punkte immer noch genügend
+%kinetische Energie, so dass es sich im Kreise dreht.
+%Indem wir die Gleichung
+
+
+%\subsection{Soliton-Lösungen der Sinus-Gordon-Gleichung}
+
+%\subsection{Nichtlineare Differentialgleichung vierter Ordnung}
+%XXX Möbius-Transformation \\
+%XXX Reduktion auf die Differentialgleichung elliptischer Funktionen
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
index 8e4b39f..694f18a 100644
--- a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
+++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
@@ -28,9 +28,11 @@ for den anharmonischen Oszillator ab, die sie in der Form
$\frac12m\dot{x}^2 = f(x)$ schreiben.
\item
Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die
-Geschwindigkeit verschwindet.
+Geschwindigkeit $\dot{x}(t)$ verschwindet.
Leiten Sie die Amplitude aus der Differentialgleichung von
-\ref{buch:1101:basic-dgl} ab.
+%\ref{buch:1101:basic-dgl}
+Teilaufgabe c)
+ab.
Sie erhalten zwei Werte $x_{\pm}$, wobei der kleinere $x_-$
die Amplitude einer beschränkten Schwingung beschreibt,
während die $x_+$ die minimale Ausgangsamplitude einer gegen
@@ -66,13 +68,16 @@ wobei $k^2=x_-^2/x_+^2$ und $A$ geeignet gewählt werden müssen.
\label{buch:1101:teilaufgabe:dgl3}
Verwenden Sie $t(\tau) = \alpha\tau$
und
-$Y(\tau)=X(t(\tau))$ um eine Differentialgleichung für die Funktion
-$Y(\tau)$ zu gewinnen, die die Form der Differentialgleichung
-von $\operatorname{sn}(u,k)$ hat, für die also $A=0$ in
-\eqref{buch:1101:eqn:dgl3} ist.
+$Y(\tau)=X(t(\tau))=X(\alpha\tau)$ um eine Differentialgleichung für
+die Funktion $Y(\tau)$ zu gewinnen, die die Form der Differentialgleichung
+von $\operatorname{sn}(u,k)$ hat (Abschnitt
+\ref{buch:elliptisch:subsection:differentialgleichungen}),
+für die also $A=0$ in \eqref{buch:1101:eqn:dgl3} ist.
\item
Verwenden Sie die Lösung $\operatorname{sn}(u,k)$ der in
-\ref{buch:1101:teilaufgabe:dgl3} erhaltenen Differentialgleichung,
+Teilaufgabe h)
+%\ref{buch:1101:teilaufgabe:dgl3}
+erhaltenen Differentialgleichung,
um die Lösung $x(t)$ der ursprünglichen Gleichung aufzuschreiben.
\end{teilaufgaben}
@@ -262,15 +267,21 @@ Die Ableitung von $Y(\tau)=X(t(\tau))$ nach $\tau$ ist
=
\alpha
\dot{X}(t(\tau))
-\qquad\Rightarrow\qquad
-\frac{1}{\alpha^2}\frac{dY}{d\tau}
+\quad\Rightarrow\quad
+\frac{1}{\alpha}\frac{dY}{d\tau}
=
-\dot{X}(t(\tau)).
+\dot{X}(t(\tau))
+\quad\Rightarrow\quad
+\frac{1}{\alpha^2}\biggl(\frac{dY}{d\tau}\biggr)^2
+=
+\dot{X}(t(\tau))^2.
\]
Die Differentialgleichung für $Y(\tau)$ ist
\[
-\frac{2mk^2}{\delta x_+^2\alpha^2}
+\frac{2m}{\delta x_+^2\alpha^2}
+\biggl(
\frac{dY}{d\tau}
+\biggr)^2
=
(1-Y^2)(1-k^2Y^2).
\]
@@ -278,7 +289,7 @@ Der Koeffizient vor der Ableitung wird $1$, wenn man
\[
\alpha^2
=
-\frac{2mk^2}{\delta x_+^2}
+\frac{2m}{\delta x_+^2}
\]
wählt.
Diese Differentialgleichug hat die Lösung
@@ -294,9 +305,9 @@ x(t)
x_- X(t)
=
x_- \operatorname{sn}\biggl(
-t\sqrt{\frac{\delta x_+^2}{2mk^2} }
+t\sqrt{\frac{\delta x_+^2}{2m} }
,k
-\biggr)
+\biggr).
\end{align*}
Das Produkt $\delta x_+^2$ kann auch als
\[
diff --git a/buch/common/macros.tex b/buch/common/macros.tex
index 7c82180..bb6e9b0 100644
--- a/buch/common/macros.tex
+++ b/buch/common/macros.tex
@@ -23,7 +23,9 @@
\vfill\pagebreak}
\newenvironment{teilaufgaben}{
\begin{enumerate}
-\renewcommand{\labelenumi}{\alph{enumi})}
+\renewcommand{\theenumi}{\alph{enumi})}
+%\renewcommand{\labelenumi}{\alph{enumi})}
+\renewcommand{\labelenumi}{\theenumi}
}{\end{enumerate}}
% Aufgabe
\newcounter{problemcounter}[chapter]
diff --git a/buch/common/test-common.tex b/buch/common/test-common.tex
index 289e59c..3f49701 100644
--- a/buch/common/test-common.tex
+++ b/buch/common/test-common.tex
@@ -30,6 +30,7 @@
\usepackage{standalone}
\usepackage{environ}
\usepackage{tikz}
+\usepackage{xr}
\input{../common/linsys.tex}
\newcounter{beispiel}
\newenvironment{beispiele}{
diff --git a/buch/common/test3.tex b/buch/common/test3.tex
index 8b24262..22d6b63 100644
--- a/buch/common/test3.tex
+++ b/buch/common/test3.tex
@@ -4,6 +4,7 @@
% (c) 2021 Prof. Dr. Andreas Mueller, OST
%
\input{common/test-common.tex}
+\externaldocument{buch}
\begin{document}
{\parindent0pt\hbox to\hsize{%
diff --git a/buch/papers/common/addpapers.tex b/buch/papers/common/addpapers.tex
index dd2b07a..eb353d7 100644
--- a/buch/papers/common/addpapers.tex
+++ b/buch/papers/common/addpapers.tex
@@ -3,7 +3,6 @@
%
% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\input{papers/000template/main.tex}
\input{papers/lambertw/main.tex}
\input{papers/fm/main.tex}
\input{papers/parzyl/main.tex}
diff --git a/buch/papers/common/paperlist b/buch/papers/common/paperlist
index d4e5c20..f607279 100644
--- a/buch/papers/common/paperlist
+++ b/buch/papers/common/paperlist
@@ -1,4 +1,3 @@
-000template
lambertw
fm
parzyl
diff --git a/buch/papers/nav/images/Makefile b/buch/papers/nav/images/Makefile
new file mode 100644
index 0000000..a0d7b34
--- /dev/null
+++ b/buch/papers/nav/images/Makefile
@@ -0,0 +1,11 @@
+#
+# Makefile to build images
+#
+# (c) 2022
+#
+
+dreieck.pdf: dreieck.tex dreieckdata.tex macros.tex
+ pdflatex dreieck.tex
+
+dreieckdata.tex: pk.m
+ octave pk.m
diff --git a/buch/papers/nav/images/dreieck.tex b/buch/papers/nav/images/dreieck.tex
new file mode 100644
index 0000000..55f6a81
--- /dev/null
+++ b/buch/papers/nav/images/dreieck.tex
@@ -0,0 +1,68 @@
+%
+% dreieck.tex -- sphärische Dreiecke für Positionsbestimmung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\documentclass[tikz]{standalone}
+\usepackage{amsmath}
+\usepackage{times}
+\usepackage{txfonts}
+\usepackage{pgfplots}
+\usepackage{csvsimple}
+\usetikzlibrary{arrows,intersections,math,calc}
+\begin{document}
+
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+
+\def\skala{1}
+
+\def\punkt#1#2{
+ \fill[color=#2] #1 circle[radius=0.08];
+}
+
+\begin{tikzpicture}[>=latex,thick,scale=\skala]
+
+\input{dreieckdata.tex}
+\input{macros.tex}
+
+\def\punktbeschriftung{
+ \node at (A) [above] {$A$};
+ \node at (B) [left] {$B$};
+ \node at (C) [right] {$C$};
+ \node at (P) [below] {$P$};
+}
+
+\winkelKappa{gray}
+
+\winkelAlpha{red}
+\winkelGamma{blue}
+\winkelBeta{darkgreen}
+
+\winkelOmega{gray}
+\winkelBetaEins{brown}
+
+\seiteC{black}
+\seiteB{black}
+\seiteA{black}
+
+\seiteL{gray}
+\seitePB{gray}
+\seitePC{gray}
+
+\draw[line width=1.4pt] \kanteAB;
+\draw[line width=1.4pt] \kanteAC;
+\draw[color=gray] \kanteAP;
+\draw[line width=1.4pt] \kanteBC;
+\draw[color=gray] \kanteBP;
+\draw[color=gray] \kanteCP;
+
+\punkt{(A)}{black};
+\punkt{(B)}{black};
+\punkt{(C)}{black};
+\punkt{(P)}{gray};
+
+\punktbeschriftung
+
+\end{tikzpicture}
+\end{document}
+
diff --git a/buch/papers/nav/images/dreieckdata.tex b/buch/papers/nav/images/dreieckdata.tex
new file mode 100644
index 0000000..c0fb720
--- /dev/null
+++ b/buch/papers/nav/images/dreieckdata.tex
@@ -0,0 +1,16 @@
+\coordinate (P) at (0.0000,0.0000);
+\coordinate (A) at (1.0000,8.0000);
+\coordinate (B) at (-3.0000,3.0000);
+\coordinate (C) at (4.0000,4.0000);
+\def\kanteAB{(1.0000,8.0000) arc (114.77514:167.90524:7.1589)}
+\def\kanteBA{(-3.0000,3.0000) arc (167.90524:114.77514:7.1589)}
+\def\kanteAC{(1.0000,8.0000) arc (63.43495:10.30485:5.5902)}
+\def\kanteCA{(4.0000,4.0000) arc (10.30485:63.43495:5.5902)}
+\def\kanteAP{(1.0000,8.0000) arc (146.30993:199.44003:9.0139)}
+\def\kantePA{(0.0000,0.0000) arc (199.44003:146.30993:9.0139)}
+\def\kanteBC{(-3.0000,3.0000) arc (-95.90614:-67.83365:14.5774)}
+\def\kanteCB{(4.0000,4.0000) arc (-67.83365:-95.90614:14.5774)}
+\def\kanteBP{(-3.0000,3.0000) arc (-161.56505:-108.43495:4.7434)}
+\def\kantePB{(0.0000,0.0000) arc (-108.43495:-161.56505:4.7434)}
+\def\kanteCP{(4.0000,4.0000) arc (-30.96376:-59.03624:11.6619)}
+\def\kantePC{(0.0000,0.0000) arc (-59.03624:-30.96376:11.6619)}
diff --git a/buch/papers/nav/images/macros.tex b/buch/papers/nav/images/macros.tex
new file mode 100644
index 0000000..69a620d
--- /dev/null
+++ b/buch/papers/nav/images/macros.tex
@@ -0,0 +1,54 @@
+\def\winkelAlpha#1{
+ \begin{scope}
+ \clip (A) circle[radius=1.1];
+ \fill[color=#1!20] \kanteAB -- \kanteCA -- cycle;
+ \end{scope}
+ \node[color=#1] at ($(A)+(222:0.82)$) {$\alpha$};
+}
+
+\def\winkelOmega#1{
+ \begin{scope}
+ \clip (A) circle[radius=0.7];
+ \fill[color=#1!20] \kanteAP -- \kanteCA -- cycle;
+ \end{scope}
+ \node[color=#1] at ($(A)+(285:0.50)$) {$\omega$};
+}
+
+\def\winkelGamma#1{
+ \begin{scope}
+ \clip (C) circle[radius=1.0];
+ \fill[color=#1!20] \kanteCA -- \kanteBC -- cycle;
+ \end{scope}
+ \node[color=#1] at ($(C)+(155:0.60)$) {$\gamma$};
+}
+
+\def\winkelKappa#1{
+ \begin{scope}
+ \clip (B) circle[radius=1.2];
+ \fill[color=#1!20] \kanteBP -- \kanteAB -- cycle;
+ \end{scope}
+ \node[color=#1] at ($(B)+(15:1.00)$) {$\kappa$};
+}
+
+\def\winkelBeta#1{
+ \begin{scope}
+ \clip (B) circle[radius=0.8];
+ \fill[color=#1!20] \kanteBC -- \kanteAB -- cycle;
+ \end{scope}
+ \node[color=#1] at ($(B)+(35:0.40)$) {$\beta$};
+}
+
+\def\winkelBetaEins#1{
+ \begin{scope}
+ \clip (B) circle[radius=0.8];
+ \fill[color=#1!20] \kanteBP -- \kanteCB -- cycle;
+ \end{scope}
+ \node[color=#1] at ($(B)+(330:0.60)$) {$\beta_1$};
+}
+
+\def\seiteC#1{ \node[color=#1] at (-1.9,5.9) {$c$}; }
+\def\seiteB#1{ \node[color=#1] at (3.2,6.5) {$b$}; }
+\def\seiteL#1{ \node[color=#1] at (-0.2,4.5) {$l$}; }
+\def\seiteA#1{ \node[color=#1] at (2,3) {$a$}; }
+\def\seitePB#1{ \node[color=#1] at (-2.1,1) {$p_b$}; }
+\def\seitePC#1{ \node[color=#1] at (2.5,1.5) {$p_c$}; }
diff --git a/buch/papers/nav/images/pk.m b/buch/papers/nav/images/pk.m
new file mode 100644
index 0000000..6e89e9a
--- /dev/null
+++ b/buch/papers/nav/images/pk.m
@@ -0,0 +1,55 @@
+#
+# pk.m -- Punkte und Kanten für sphärisches Dreieck
+#
+# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+
+A = [ 1, 8 ];
+B = [ -3, 3 ];
+C = [ 4, 4 ];
+P = [ 0, 0 ];
+
+global fn;
+fn = fopen("dreieckdata.tex", "w");
+
+fprintf(fn, "\\coordinate (P) at (%.4f,%.4f);\n", P(1,1), P(1,2));
+fprintf(fn, "\\coordinate (A) at (%.4f,%.4f);\n", A(1,1), A(1,2));
+fprintf(fn, "\\coordinate (B) at (%.4f,%.4f);\n", B(1,1), B(1,2));
+fprintf(fn, "\\coordinate (C) at (%.4f,%.4f);\n", C(1,1), C(1,2));
+
+function retval = seite(A, B, l, nameA, nameB)
+ global fn;
+ d = fliplr(B - A);
+ d(1, 2) = -d(1, 2);
+ # Zentrum
+ C = 0.5 * (A + B) + l * d;
+ # Radius:
+ r = hypot(C(1,1)-A(1,1), C(1,2)-A(1,2))
+ # Winkel von
+ winkelvon = atan2(A(1,2)-C(1,2),A(1,1)-C(1,1));
+ # Winkel bis
+ winkelbis = atan2(B(1,2)-C(1,2),B(1,1)-C(1,1));
+ if (abs(winkelvon - winkelbis) > pi)
+ if (winkelbis < winkelvon)
+ winkelbis = winkelbis + 2 * pi
+ else
+ winkelvon = winkelvon + 2 * pi
+ end
+ end
+ # Kurve
+ fprintf(fn, "\\def\\kante%s%s{(%.4f,%.4f) arc (%.5f:%.5f:%.4f)}\n",
+ nameA, nameB,
+ A(1,1), A(1,2), winkelvon * 180 / pi, winkelbis * 180 / pi, r);
+ fprintf(fn, "\\def\\kante%s%s{(%.4f,%.4f) arc (%.5f:%.5f:%.4f)}\n",
+ nameB, nameA,
+ B(1,1), B(1,2), winkelbis * 180 / pi, winkelvon * 180 / pi, r);
+endfunction
+
+seite(A, B, -1, "A", "B");
+seite(A, C, 1, "A", "C");
+seite(A, P, -1, "A", "P");
+seite(B, C, -2, "B", "C");
+seite(B, P, -1, "B", "P");
+seite(C, P, 2, "C", "P");
+
+fclose(fn);
diff --git a/buch/papers/zeta/Makefile.inc b/buch/papers/zeta/Makefile.inc
index 11c7697..14babe2 100644
--- a/buch/papers/zeta/Makefile.inc
+++ b/buch/papers/zeta/Makefile.inc
@@ -7,8 +7,7 @@ dependencies-zeta = \
papers/zeta/packages.tex \
papers/zeta/main.tex \
papers/zeta/references.bib \
- papers/zeta/teil0.tex \
- papers/zeta/teil1.tex \
- papers/zeta/teil2.tex \
- papers/zeta/teil3.tex
+ papers/zeta/einleitung.tex \
+ papers/zeta/analytic_continuation.tex \
+ papers/zeta/zeta_gamma.tex \
diff --git a/buch/papers/zeta/analytic_continuation.tex b/buch/papers/zeta/analytic_continuation.tex
new file mode 100644
index 0000000..bb95b92
--- /dev/null
+++ b/buch/papers/zeta/analytic_continuation.tex
@@ -0,0 +1,264 @@
+\section{Analytische Fortsetzung} \label{zeta:section:analytische_fortsetzung}
+\rhead{Analytische Fortsetzung}
+
+%TODO missing Text
+
+\subsection{Fortsetzung auf $\Re(s) > 0$} \label{zeta:subsection:auf_bereich_ge_0}
+Zuerst definieren die Dirichletsche Etafunktion als
+\begin{equation}\label{zeta:equation:eta}
+ \eta(s)
+ =
+ \sum_{n=1}^{\infty}
+ \frac{(-1)^{n-1}}{n^s},
+\end{equation}
+wobei die Reihe bis auf die alternierenden Vorzeichen die selbe wie in der Zetafunktion ist.
+Diese Etafunktion konvergiert gemäss dem Leibnitz-Kriterium im Bereich $\Re(s) > 0$, da dann die einzelnen Glieder monoton fallend sind.
+
+Wenn wir es nun schaffen, die sehr ähnliche Zetafunktion mit der Etafunktion auszudrücken, dann haben die gesuchte Fortsetzung.
+Die folgenden Schritte zeigen, wie man dazu kommt:
+\begin{align}
+ \zeta(s)
+ &=
+ \sum_{n=1}^{\infty}
+ \frac{1}{n^s} \label{zeta:align1}
+ \\
+ \frac{1}{2^{s-1}}
+ \zeta(s)
+ &=
+ \sum_{n=1}^{\infty}
+ \frac{2}{(2n)^s} \label{zeta:align2}
+ \\
+ \left(1 - \frac{1}{2^{s-1}} \right)
+ \zeta(s)
+ &=
+ \frac{1}{1^s}
+ \underbrace{-\frac{2}{2^s} + \frac{1}{2^s}}_{-\frac{1}{2^s}}
+ + \frac{1}{3^s}
+ \underbrace{-\frac{2}{4^s} + \frac{1}{4^s}}_{-\frac{1}{4^s}}
+ \ldots
+ && \text{\eqref{zeta:align1}} - \text{\eqref{zeta:align2}}
+ \\
+ &= \eta(s)
+ \\
+ \zeta(s)
+ &=
+ \left(1 - \frac{1}{2^{s-1}} \right)^{-1} \eta(s).
+\end{align}
+
+\subsection{Fortsetzung auf ganz $\mathbb{C}$} \label{zeta:subsection:auf_ganz}
+Für die Fortsetzung auf den Rest von $\mathbb{C}$, verwenden wir den Zusammenhang von Gamma- und Zetafunktion aus \ref{zeta:section:zusammenhang_mit_gammafunktion}.
+Wir beginnen damit, die Gammafunktion für den halben Funktionswert zu berechnen als
+\begin{equation}
+ \Gamma \left( \frac{s}{2} \right)
+ =
+ \int_0^{\infty} t^{\frac{s}{2}-1} e^{-t} dt.
+\end{equation}
+Nun substituieren wir $t$ mit $t = \pi n^2 x$ und $dt=\pi n^2 dx$ und erhalten
+\begin{align}
+ \Gamma \left( \frac{s}{2} \right)
+ &=
+ \int_0^{\infty}
+ (\pi n^2)^{\frac{s}{2}}
+ x^{\frac{s}{2}-1}
+ e^{-\pi n^2 x}
+ dx
+ && \text{Division durch } (\pi n^2)^{\frac{s}{2}}
+ \\
+ \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}} n^s}
+ &=
+ \int_0^{\infty}
+ x^{\frac{s}{2}-1}
+ e^{-\pi n^2 x}
+ dx
+ && \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty}
+ \\
+ \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}}
+ \zeta(s)
+ &=
+ \int_0^{\infty}
+ x^{\frac{s}{2}-1}
+ \sum_{n=1}^{\infty}
+ e^{-\pi n^2 x}
+ dx. \label{zeta:equation:integral1}
+\end{align}
+Die Summe kürzen wir ab als $\psi(x) = \sum_{n=1}^{\infty} e^{-\pi n^2 x}$.
+%TODO Wieso folgendes -> aus Fourier Signal
+Es gilt
+\begin{equation}\label{zeta:equation:psi}
+ \psi(x)
+ =
+ - \frac{1}{2}
+ + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}}
+ + \frac{1}{2 \sqrt{x}}.
+\end{equation}
+
+Zunächst teilen wir nun das Integral aus \eqref{zeta:equation:integral1} auf als
+\begin{equation}\label{zeta:equation:integral2}
+ \int_0^{\infty}
+ x^{\frac{s}{2}-1}
+ \psi(x)
+ dx
+ =
+ \int_0^{1}
+ x^{\frac{s}{2}-1}
+ \psi(x)
+ dx
+ +
+ \int_1^{\infty}
+ x^{\frac{s}{2}-1}
+ \psi(x)
+ dx,
+\end{equation}
+wobei wir uns nun auf den ersten Teil konzentrieren werden.
+Dabei setzen wir das Wissen aus \eqref{zeta:equation:psi} ein und erhalten
+\begin{align}
+ \int_0^{1}
+ x^{\frac{s}{2}-1}
+ \psi(x)
+ dx
+ &=
+ \int_0^{1}
+ x^{\frac{s}{2}-1}
+ \left(
+ - \frac{1}{2}
+ + \frac{\psi\left(\frac{1}{x} \right)}{\sqrt{x}}
+ + \frac{1}{2 \sqrt{x}}.
+ \right)
+ dx
+ \\
+ &=
+ \int_0^{1}
+ x^{\frac{s}{2}-\frac{3}{2}}
+ \psi \left( \frac{1}{x} \right)
+ + \frac{1}{2}
+ \left(
+ x^{\frac{s}{2}-\frac{3}{2}}
+ -
+ x^{\frac{s}{2}-1}
+ \right)
+ dx
+ \\
+ &=
+ \int_0^{1}
+ x^{\frac{s}{2}-\frac{3}{2}}
+ \psi \left( \frac{1}{x} \right)
+ dx
+ + \frac{1}{2}
+ \int_0^1
+ x^{\frac{s}{2}-\frac{3}{2}}
+ -
+ x^{\frac{s}{2}-1}
+ dx. \label{zeta:equation:integral3}
+\end{align}
+Dabei kann das zweite Integral gelöst werden als
+\begin{equation}
+ \frac{1}{2}
+ \int_0^1
+ x^{\frac{s}{2}-\frac{3}{2}}
+ -
+ x^{\frac{s}{2}-1}
+ dx
+ =
+ \frac{1}{s(s-1)}.
+\end{equation}
+Das erste Integral aus \eqref{zeta:equation:integral3} mit $\psi \left(\frac{1}{x} \right)$ ist nicht lösbar in dieser Form.
+Deshalb substituieren wir $x = \frac{1}{u}$ und $dx = -\frac{1}{u^2}du$.
+Die untere Integralgrenze wechselt ebenfalls zu $x_0 = 0 \rightarrow u_0 = \infty$.
+Dies ergibt
+\begin{align}
+ \int_{\infty}^{1}
+ {\frac{1}{u}}^{\frac{s}{2}-\frac{3}{2}}
+ \psi(u)
+ \frac{-du}{u^2}
+ &=
+ \int_{1}^{\infty}
+ {\frac{1}{u}}^{\frac{s}{2}-\frac{3}{2}}
+ \psi(u)
+ \frac{du}{u^2}
+ \\
+ &=
+ \int_{1}^{\infty}
+ x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)}
+ \psi(x)
+ dx,
+\end{align}
+wobei wir durch Multiplikation mit $(-1)$ die Integralgrenzen tauschen dürfen.
+Es ist zu beachten das diese Grenzen nun identisch mit den Grenzen des zweiten Integrals von \eqref{zeta:equation:integral2} sind.
+Wir setzen beide Lösungen ein in Gleichung \eqref{zeta:equation:integral3} und erhalten
+\begin{equation}
+ \int_0^{1}
+ x^{\frac{s}{2}-1}
+ \psi(x)
+ dx
+ =
+ \int_{1}^{\infty}
+ x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)}
+ \psi(x)
+ dx
+ +
+ \frac{1}{s(s-1)}.
+\end{equation}
+Dieses Resultat setzen wir wiederum ein in \eqref{zeta:equation:integral2}, um schlussendlich
+\begin{align}
+ \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}}
+ \zeta(s)
+ &=
+ \int_0^{1}
+ x^{\frac{s}{2}-1}
+ \psi(x)
+ dx
+ +
+ \int_1^{\infty}
+ x^{\frac{s}{2}-1}
+ \psi(x)
+ dx
+ \nonumber
+ \\
+ &=
+ \frac{1}{s(s-1)}
+ +
+ \int_{1}^{\infty}
+ x^{(-1) \left(\frac{s}{2}+\frac{1}{2}\right)}
+ \psi(x)
+ dx
+ +
+ \int_1^{\infty}
+ x^{\frac{s}{2}-1}
+ \psi(x)
+ dx
+ \\
+ &=
+ \frac{1}{s(s-1)}
+ +
+ \int_{1}^{\infty}
+ \left(
+ x^{-\frac{s}{2}-\frac{1}{2}}
+ +
+ x^{\frac{s}{2}-1}
+ \right)
+ \psi(x)
+ dx
+ \\
+ &=
+ \frac{-1}{s(1-s)}
+ +
+ \int_{1}^{\infty}
+ \left(
+ x^{\frac{1-s}{2}}
+ +
+ x^{\frac{s}{2}}
+ \right)
+ \frac{\psi(x)}{x}
+ dx,
+\end{align}
+zu erhalten.
+Wenn wir dieses Resultat genau anschauen, erkennen wir dass sich nichts verändert wenn $s$ mit $1-s$ ersetzt wird.
+Somit haben wir die analytische Fortsetzung gefunden als
+\begin{equation}\label{zeta:equation:functional}
+ \frac{\Gamma \left( \frac{s}{2} \right)}{\pi^{\frac{s}{2}}}
+ \zeta(s)
+ =
+ \frac{\Gamma \left( \frac{1-s}{2} \right)}{\pi^{\frac{1-s}{2}}}
+ \zeta(1-s).
+\end{equation}
+
diff --git a/buch/papers/zeta/einleitung.tex b/buch/papers/zeta/einleitung.tex
new file mode 100644
index 0000000..3b70531
--- /dev/null
+++ b/buch/papers/zeta/einleitung.tex
@@ -0,0 +1,11 @@
+\section{Einleitung} \label{zeta:section:einleitung}
+\rhead{Einleitung}
+
+Die Riemannsche Zetafunktion ist für alle komplexe $s$ mit $\Re(s) > 1$ definiert als
+\begin{equation}\label{zeta:equation1}
+ \zeta(s)
+ =
+ \sum_{n=1}^{\infty}
+ \frac{1}{n^s}.
+\end{equation}
+
diff --git a/buch/papers/zeta/main.tex b/buch/papers/zeta/main.tex
index 1d9e059..e0ea8e1 100644
--- a/buch/papers/zeta/main.tex
+++ b/buch/papers/zeta/main.tex
@@ -3,34 +3,16 @@
%
% (c) 2020 Hochschule Rapperswil
%
-\chapter{Thema\label{chapter:zeta}}
-\lhead{Thema}
+\chapter{Riemannsche Zetafunktion\label{chapter:zeta}}
+\lhead{Riemannsche Zetafunktion}
\begin{refsection}
-\chapterauthor{Hans Muster}
+\chapterauthor{Raphael Unterer}
-Ein paar Hinweise für die korrekte Formatierung des Textes
-\begin{itemize}
-\item
-Absätze werden gebildet, indem man eine Leerzeile einfügt.
-Die Verwendung von \verb+\\+ ist nur in Tabellen und Arrays gestattet.
-\item
-Die explizite Platzierung von Bildern ist nicht erlaubt, entsprechende
-Optionen werden gelöscht.
-Verwenden Sie Labels und Verweise, um auf Bilder hinzuweisen.
-\item
-Beginnen Sie jeden Satz auf einer neuen Zeile.
-Damit ermöglichen Sie dem Versionsverwaltungssysteme, Änderungen
-in verschiedenen Sätzen von verschiedenen Autoren ohne Konflikt
-anzuwenden.
-\item
-Bilden Sie auch für Formeln kurze Zeilen, einerseits der besseren
-Übersicht wegen, aber auch um GIT die Arbeit zu erleichtern.
-\end{itemize}
+%TODO Einleitung
-\input{papers/zeta/teil0.tex}
-\input{papers/zeta/teil1.tex}
-\input{papers/zeta/teil2.tex}
-\input{papers/zeta/teil3.tex}
+\input{papers/zeta/einleitung.tex}
+\input{papers/zeta/zeta_gamma.tex}
+\input{papers/zeta/analytic_continuation.tex}
\printbibliography[heading=subbibliography]
\end{refsection}
diff --git a/buch/papers/zeta/teil0.tex b/buch/papers/zeta/teil0.tex
deleted file mode 100644
index 56c0b1b..0000000
--- a/buch/papers/zeta/teil0.tex
+++ /dev/null
@@ -1,22 +0,0 @@
-%
-% einleitung.tex -- Beispiel-File für die Einleitung
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 0\label{zeta:section:teil0}}
-\rhead{Teil 0}
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua \cite{zeta:bibtex}.
-At vero eos et accusam et justo duo dolores et ea rebum.
-Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum
-dolor sit amet.
-
-Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
-nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam
-erat, sed diam voluptua.
-At vero eos et accusam et justo duo dolores et ea rebum. Stet clita
-kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit
-amet.
-
-
diff --git a/buch/papers/zeta/teil1.tex b/buch/papers/zeta/teil1.tex
deleted file mode 100644
index 4017ee8..0000000
--- a/buch/papers/zeta/teil1.tex
+++ /dev/null
@@ -1,55 +0,0 @@
-%
-% teil1.tex -- Beispiel-File für das Paper
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 1
-\label{zeta:section:teil1}}
-\rhead{Problemstellung}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo.
-Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit
-aut fugit, sed quia consequuntur magni dolores eos qui ratione
-voluptatem sequi nesciunt
-\begin{equation}
-\int_a^b x^2\, dx
-=
-\left[ \frac13 x^3 \right]_a^b
-=
-\frac{b^3-a^3}3.
-\label{zeta:equation1}
-\end{equation}
-Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
-consectetur, adipisci velit, sed quia non numquam eius modi tempora
-incidunt ut labore et dolore magnam aliquam quaerat voluptatem.
-
-Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis
-suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?
-Quis autem vel eum iure reprehenderit qui in ea voluptate velit
-esse quam nihil molestiae consequatur, vel illum qui dolorem eum
-fugiat quo voluptas nulla pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{zeta:subsection:finibus}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga \eqref{000tempmlate:equation1}.
-
-Et harum quidem rerum facilis est et expedita distinctio
-\ref{zeta:section:loesung}.
-Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil
-impedit quo minus id quod maxime placeat facere possimus, omnis
-voluptas assumenda est, omnis dolor repellendus
-\ref{zeta:section:folgerung}.
-Temporibus autem quibusdam et aut officiis debitis aut rerum
-necessitatibus saepe eveniet ut et voluptates repudiandae sint et
-molestiae non recusandae.
-Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis
-voluptatibus maiores alias consequatur aut perferendis doloribus
-asperiores repellat.
-
-
diff --git a/buch/papers/zeta/teil2.tex b/buch/papers/zeta/teil2.tex
deleted file mode 100644
index 9e8a96e..0000000
--- a/buch/papers/zeta/teil2.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil2.tex -- Beispiel-File für teil2
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 2
-\label{zeta:section:teil2}}
-\rhead{Teil 2}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{zeta:subsection:bonorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/zeta/teil3.tex b/buch/papers/zeta/teil3.tex
deleted file mode 100644
index 6610cc3..0000000
--- a/buch/papers/zeta/teil3.tex
+++ /dev/null
@@ -1,40 +0,0 @@
-%
-% teil3.tex -- Beispiel-File für Teil 3
-%
-% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil
-%
-\section{Teil 3
-\label{zeta:section:teil3}}
-\rhead{Teil 3}
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem
-accusantium doloremque laudantium, totam rem aperiam, eaque ipsa
-quae ab illo inventore veritatis et quasi architecto beatae vitae
-dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
-aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
-eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam
-est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci
-velit, sed quia non numquam eius modi tempora incidunt ut labore
-et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima
-veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
-nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
-reprehenderit qui in ea voluptate velit esse quam nihil molestiae
-consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla
-pariatur?
-
-\subsection{De finibus bonorum et malorum
-\label{zeta:subsection:malorum}}
-At vero eos et accusamus et iusto odio dignissimos ducimus qui
-blanditiis praesentium voluptatum deleniti atque corrupti quos
-dolores et quas molestias excepturi sint occaecati cupiditate non
-provident, similique sunt in culpa qui officia deserunt mollitia
-animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis
-est et expedita distinctio. Nam libero tempore, cum soluta nobis
-est eligendi optio cumque nihil impedit quo minus id quod maxime
-placeat facere possimus, omnis voluptas assumenda est, omnis dolor
-repellendus. Temporibus autem quibusdam et aut officiis debitis aut
-rerum necessitatibus saepe eveniet ut et voluptates repudiandae
-sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
-sapiente delectus, ut aut reiciendis voluptatibus maiores alias
-consequatur aut perferendis doloribus asperiores repellat.
-
-
diff --git a/buch/papers/zeta/zeta_gamma.tex b/buch/papers/zeta/zeta_gamma.tex
new file mode 100644
index 0000000..59c8744
--- /dev/null
+++ b/buch/papers/zeta/zeta_gamma.tex
@@ -0,0 +1,53 @@
+\section{Zusammenhang mit Gammafunktion} \label{zeta:section:zusammenhang_mit_gammafunktion}
+\rhead{Zusammenhang mit Gammafunktion}
+
+Dieser Abschnitt stellt die Verbindung zwischen der Gamma- und der Zetafunktion her.
+
+%TODO ref Gamma
+Wenn in der Gammafunkion die Integrationsvariable $t$ substituieren mit $t = nu$ und $dt = n du$, dann können wir die Gleichung umstellen und erhalten den Zusammenhang mit der Zetafunktion
+\begin{align}
+ \Gamma(s)
+ &=
+ \int_0^{\infty} t^{s-1} e^{-t} dt
+ \\
+ &=
+ \int_0^{\infty} n^{s\cancel{-1}}u^{s-1} e^{-nu} \cancel{n}du
+ &&
+ \text{Division durch }n^s
+ \\
+ \frac{\Gamma(s)}{n^s}
+ &=
+ \int_0^{\infty} u^{s-1} e^{-nu}du
+ &&
+ \text{Zeta durch Summenbildung } \sum_{n=1}^{\infty}
+ \\
+ \Gamma(s) \zeta(s)
+ &=
+ \int_0^{\infty} u^{s-1}
+ \sum_{n=1}^{\infty}e^{-nu}
+ du.
+ \label{zeta:equation:zeta_gamma1}
+\end{align}
+Die Summe über $e^{-nu}$ können wir als geometrische Reihe schreiben und erhalten
+\begin{align}
+ \sum_{n=1}^{\infty}e^{-u^n}
+ &=
+ \sum_{n=0}^{\infty}e^{-u^n}
+ -
+ 1
+ \\
+ &=
+ \frac{1}{1 - e^{-u}} - 1
+ \\
+ &=
+ \frac{1}{e^u - 1}.
+\end{align}
+Wenn wir dieses Resultat einsetzen in \eqref{zeta:equation:zeta_gamma1} und durch $\Gamma(s)$ teilen, erhalten wir
+\begin{equation}\label{zeta:equation:zeta_gamma_final}
+ \zeta(s)
+ =
+ \frac{1}{\Gamma(s)}
+ \int_0^{\infty}
+ \frac{u^{s-1}}{e^u -1}
+ du.
+\end{equation}
diff --git a/vorlesungen/04_fresnel/common.tex b/vorlesungen/04_fresnel/common.tex
index 418b7a5..f4d919b 100644
--- a/vorlesungen/04_fresnel/common.tex
+++ b/vorlesungen/04_fresnel/common.tex
@@ -9,8 +9,8 @@
\usetheme[hideothersubsections,hidetitle]{Hannover}
}
\beamertemplatenavigationsymbolsempty
-\title[Klothoide]{Klothoide}
-\author[N.~Eswararajah]{Nilakshan Eswararajah}
+\title[Klothoide]{Fresnel-Integrale und Klothoide}
+\author[A.~Müller]{Prof.~Dr.~Andreas Müller}
\date[]{9.~Mai 2022}
\newboolean{presentation}
diff --git a/vorlesungen/04_fresnel/slides.tex b/vorlesungen/04_fresnel/slides.tex
index 5a7cce2..a46fe9e 100644
--- a/vorlesungen/04_fresnel/slides.tex
+++ b/vorlesungen/04_fresnel/slides.tex
@@ -3,4 +3,8 @@
%
% (c) 2017 Prof Dr Andreas Müller, Hochschule Rapperswil
%
-\folie{fresnel/test.tex}
+\folie{fresnel/integrale.tex}
+\folie{fresnel/numerik.tex}
+\folie{fresnel/kruemmung.tex}
+\folie{fresnel/klothoide.tex}
+\folie{fresnel/apfel.tex}
diff --git a/vorlesungen/slides/fresnel/Makefile b/vorlesungen/slides/fresnel/Makefile
new file mode 100644
index 0000000..77ad9a2
--- /dev/null
+++ b/vorlesungen/slides/fresnel/Makefile
@@ -0,0 +1,9 @@
+#
+# Makefile
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+#
+all: eulerpath.tex
+
+eulerpath.tex: eulerspirale.m
+ octave eulerspirale.m
diff --git a/vorlesungen/slides/fresnel/Makefile.inc b/vorlesungen/slides/fresnel/Makefile.inc
index c17b654..b6d11f0 100644
--- a/vorlesungen/slides/fresnel/Makefile.inc
+++ b/vorlesungen/slides/fresnel/Makefile.inc
@@ -4,4 +4,8 @@
# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
#
chapterfresnel = \
- ../slides/fresnel/test.tex
+ ../slides/fresnel/integrale.tex \
+ ../slides/fresnel/kruemmung.tex \
+ ../slides/fresnel/klothoide.tex \
+ ../slides/fresnel/numerik.tex \
+ ../slides/fresnel/apfel.tex
diff --git a/vorlesungen/slides/fresnel/apfel.jpg b/vorlesungen/slides/fresnel/apfel.jpg
new file mode 100644
index 0000000..96b975d
--- /dev/null
+++ b/vorlesungen/slides/fresnel/apfel.jpg
Binary files differ
diff --git a/vorlesungen/slides/fresnel/apfel.png b/vorlesungen/slides/fresnel/apfel.png
new file mode 100644
index 0000000..f413852
--- /dev/null
+++ b/vorlesungen/slides/fresnel/apfel.png
Binary files differ
diff --git a/vorlesungen/slides/fresnel/apfel.tex b/vorlesungen/slides/fresnel/apfel.tex
new file mode 100644
index 0000000..090c3d5
--- /dev/null
+++ b/vorlesungen/slides/fresnel/apfel.tex
@@ -0,0 +1,32 @@
+%
+% apfel.tex -- Apfelschale als Klothoide
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\input{../slides/fresnel/eulerpath.tex}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Apfelschale}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+\begin{scope}
+\clip(-1,-1) rectangle (7,6);
+\uncover<2->{
+\node at (3.1,2.2) [rotate=-3]
+ {\includegraphics[width=9.4cm]{../slides/fresnel/apfel.png}};
+}
+\end{scope}
+\draw[color=gray!50] (0,0) rectangle (4,4);
+\draw[->] (-0.5,0) -- (7.5,0) coordinate[label={$C(t)$}];
+\draw[->] (0,-0.5) -- (0,6.0) coordinate[label={left:$S(t)$}];
+\uncover<3->{
+\begin{scope}[scale=8]
+\draw[color=red,opacity=0.5,line width=1.4pt] \fresnela;
+\end{scope}
+}
+\end{tikzpicture}
+\end{center}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/fresnel/chapter.tex b/vorlesungen/slides/fresnel/chapter.tex
index dc5d031..916a3a9 100644
--- a/vorlesungen/slides/fresnel/chapter.tex
+++ b/vorlesungen/slides/fresnel/chapter.tex
@@ -3,4 +3,8 @@
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
-\folie{fresnel/test.tex}
+\folie{fresnel/integrale.tex}
+\folie{fresnel/kruemmung.tex}
+\folie{fresnel/klothoide.tex}
+\folie{fresnel/numerik.tex}
+\folie{fresnel/apfel.tex}
diff --git a/vorlesungen/slides/fresnel/eulerpath.tex b/vorlesungen/slides/fresnel/eulerpath.tex
new file mode 100644
index 0000000..ecd0b2b
--- /dev/null
+++ b/vorlesungen/slides/fresnel/eulerpath.tex
@@ -0,0 +1,4012 @@
+\def\fresnela{ (0,0)
+ -- (0.0100,0.0000)
+ -- (0.0200,0.0000)
+ -- (0.0300,0.0000)
+ -- (0.0400,0.0000)
+ -- (0.0500,0.0001)
+ -- (0.0600,0.0001)
+ -- (0.0700,0.0002)
+ -- (0.0800,0.0003)
+ -- (0.0900,0.0004)
+ -- (0.1000,0.0005)
+ -- (0.1100,0.0007)
+ -- (0.1200,0.0009)
+ -- (0.1300,0.0012)
+ -- (0.1400,0.0014)
+ -- (0.1500,0.0018)
+ -- (0.1600,0.0021)
+ -- (0.1700,0.0026)
+ -- (0.1800,0.0031)
+ -- (0.1899,0.0036)
+ -- (0.1999,0.0042)
+ -- (0.2099,0.0048)
+ -- (0.2199,0.0056)
+ -- (0.2298,0.0064)
+ -- (0.2398,0.0072)
+ -- (0.2498,0.0082)
+ -- (0.2597,0.0092)
+ -- (0.2696,0.0103)
+ -- (0.2796,0.0115)
+ -- (0.2895,0.0128)
+ -- (0.2994,0.0141)
+ -- (0.3093,0.0156)
+ -- (0.3192,0.0171)
+ -- (0.3290,0.0188)
+ -- (0.3389,0.0205)
+ -- (0.3487,0.0224)
+ -- (0.3585,0.0244)
+ -- (0.3683,0.0264)
+ -- (0.3780,0.0286)
+ -- (0.3878,0.0309)
+ -- (0.3975,0.0334)
+ -- (0.4072,0.0359)
+ -- (0.4168,0.0386)
+ -- (0.4264,0.0414)
+ -- (0.4359,0.0443)
+ -- (0.4455,0.0474)
+ -- (0.4549,0.0506)
+ -- (0.4644,0.0539)
+ -- (0.4738,0.0574)
+ -- (0.4831,0.0610)
+ -- (0.4923,0.0647)
+ -- (0.5016,0.0686)
+ -- (0.5107,0.0727)
+ -- (0.5198,0.0769)
+ -- (0.5288,0.0812)
+ -- (0.5377,0.0857)
+ -- (0.5466,0.0904)
+ -- (0.5553,0.0952)
+ -- (0.5640,0.1001)
+ -- (0.5726,0.1053)
+ -- (0.5811,0.1105)
+ -- (0.5895,0.1160)
+ -- (0.5978,0.1216)
+ -- (0.6059,0.1273)
+ -- (0.6140,0.1333)
+ -- (0.6219,0.1393)
+ -- (0.6298,0.1456)
+ -- (0.6374,0.1520)
+ -- (0.6450,0.1585)
+ -- (0.6524,0.1653)
+ -- (0.6597,0.1721)
+ -- (0.6668,0.1792)
+ -- (0.6737,0.1864)
+ -- (0.6805,0.1937)
+ -- (0.6871,0.2012)
+ -- (0.6935,0.2089)
+ -- (0.6998,0.2167)
+ -- (0.7058,0.2246)
+ -- (0.7117,0.2327)
+ -- (0.7174,0.2410)
+ -- (0.7228,0.2493)
+ -- (0.7281,0.2579)
+ -- (0.7331,0.2665)
+ -- (0.7379,0.2753)
+ -- (0.7425,0.2841)
+ -- (0.7469,0.2932)
+ -- (0.7510,0.3023)
+ -- (0.7548,0.3115)
+ -- (0.7584,0.3208)
+ -- (0.7617,0.3303)
+ -- (0.7648,0.3398)
+ -- (0.7676,0.3494)
+ -- (0.7702,0.3590)
+ -- (0.7724,0.3688)
+ -- (0.7744,0.3786)
+ -- (0.7760,0.3885)
+ -- (0.7774,0.3984)
+ -- (0.7785,0.4083)
+ -- (0.7793,0.4183)
+ -- (0.7797,0.4283)
+ -- (0.7799,0.4383)
+ -- (0.7797,0.4483)
+ -- (0.7793,0.4582)
+ -- (0.7785,0.4682)
+ -- (0.7774,0.4782)
+ -- (0.7759,0.4880)
+ -- (0.7741,0.4979)
+ -- (0.7721,0.5077)
+ -- (0.7696,0.5174)
+ -- (0.7669,0.5270)
+ -- (0.7638,0.5365)
+ -- (0.7604,0.5459)
+ -- (0.7567,0.5552)
+ -- (0.7526,0.5643)
+ -- (0.7482,0.5733)
+ -- (0.7436,0.5821)
+ -- (0.7385,0.5908)
+ -- (0.7332,0.5993)
+ -- (0.7276,0.6075)
+ -- (0.7217,0.6156)
+ -- (0.7154,0.6234)
+ -- (0.7089,0.6310)
+ -- (0.7021,0.6383)
+ -- (0.6950,0.6454)
+ -- (0.6877,0.6522)
+ -- (0.6801,0.6587)
+ -- (0.6722,0.6648)
+ -- (0.6641,0.6707)
+ -- (0.6558,0.6763)
+ -- (0.6473,0.6815)
+ -- (0.6386,0.6863)
+ -- (0.6296,0.6908)
+ -- (0.6205,0.6950)
+ -- (0.6112,0.6987)
+ -- (0.6018,0.7021)
+ -- (0.5923,0.7050)
+ -- (0.5826,0.7076)
+ -- (0.5728,0.7097)
+ -- (0.5630,0.7114)
+ -- (0.5531,0.7127)
+ -- (0.5431,0.7135)
+ -- (0.5331,0.7139)
+ -- (0.5231,0.7139)
+ -- (0.5131,0.7134)
+ -- (0.5032,0.7125)
+ -- (0.4933,0.7111)
+ -- (0.4834,0.7093)
+ -- (0.4737,0.7070)
+ -- (0.4641,0.7043)
+ -- (0.4546,0.7011)
+ -- (0.4453,0.6975)
+ -- (0.4361,0.6935)
+ -- (0.4272,0.6890)
+ -- (0.4185,0.6841)
+ -- (0.4100,0.6788)
+ -- (0.4018,0.6731)
+ -- (0.3939,0.6670)
+ -- (0.3862,0.6605)
+ -- (0.3790,0.6536)
+ -- (0.3720,0.6464)
+ -- (0.3655,0.6389)
+ -- (0.3593,0.6310)
+ -- (0.3535,0.6229)
+ -- (0.3482,0.6144)
+ -- (0.3433,0.6057)
+ -- (0.3388,0.5968)
+ -- (0.3348,0.5876)
+ -- (0.3313,0.5782)
+ -- (0.3283,0.5687)
+ -- (0.3258,0.5590)
+ -- (0.3238,0.5492)
+ -- (0.3224,0.5393)
+ -- (0.3214,0.5293)
+ -- (0.3211,0.5194)
+ -- (0.3212,0.5094)
+ -- (0.3219,0.4994)
+ -- (0.3232,0.4895)
+ -- (0.3250,0.4796)
+ -- (0.3273,0.4699)
+ -- (0.3302,0.4603)
+ -- (0.3336,0.4509)
+ -- (0.3376,0.4418)
+ -- (0.3420,0.4328)
+ -- (0.3470,0.4241)
+ -- (0.3524,0.4157)
+ -- (0.3584,0.4077)
+ -- (0.3648,0.4000)
+ -- (0.3716,0.3927)
+ -- (0.3788,0.3858)
+ -- (0.3865,0.3793)
+ -- (0.3945,0.3733)
+ -- (0.4028,0.3678)
+ -- (0.4115,0.3629)
+ -- (0.4204,0.3584)
+ -- (0.4296,0.3545)
+ -- (0.4391,0.3511)
+ -- (0.4487,0.3484)
+ -- (0.4584,0.3462)
+ -- (0.4683,0.3447)
+ -- (0.4783,0.3437)
+ -- (0.4883,0.3434)
+ -- (0.4982,0.3437)
+ -- (0.5082,0.3447)
+ -- (0.5181,0.3462)
+ -- (0.5278,0.3484)
+ -- (0.5374,0.3513)
+ -- (0.5468,0.3547)
+ -- (0.5560,0.3587)
+ -- (0.5648,0.3633)
+ -- (0.5734,0.3685)
+ -- (0.5816,0.3743)
+ -- (0.5894,0.3805)
+ -- (0.5967,0.3873)
+ -- (0.6036,0.3945)
+ -- (0.6100,0.4022)
+ -- (0.6159,0.4103)
+ -- (0.6212,0.4188)
+ -- (0.6259,0.4276)
+ -- (0.6300,0.4367)
+ -- (0.6335,0.4461)
+ -- (0.6363,0.4557)
+ -- (0.6384,0.4655)
+ -- (0.6399,0.4754)
+ -- (0.6407,0.4853)
+ -- (0.6408,0.4953)
+ -- (0.6401,0.5053)
+ -- (0.6388,0.5152)
+ -- (0.6368,0.5250)
+ -- (0.6340,0.5346)
+ -- (0.6306,0.5440)
+ -- (0.6266,0.5532)
+ -- (0.6218,0.5620)
+ -- (0.6165,0.5704)
+ -- (0.6105,0.5784)
+ -- (0.6040,0.5860)
+ -- (0.5970,0.5931)
+ -- (0.5894,0.5996)
+ -- (0.5814,0.6056)
+ -- (0.5729,0.6110)
+ -- (0.5641,0.6157)
+ -- (0.5550,0.6197)
+ -- (0.5455,0.6230)
+ -- (0.5359,0.6256)
+ -- (0.5261,0.6275)
+ -- (0.5161,0.6286)
+ -- (0.5061,0.6289)
+ -- (0.4961,0.6285)
+ -- (0.4862,0.6273)
+ -- (0.4764,0.6254)
+ -- (0.4668,0.6226)
+ -- (0.4574,0.6192)
+ -- (0.4483,0.6150)
+ -- (0.4396,0.6101)
+ -- (0.4313,0.6045)
+ -- (0.4235,0.5983)
+ -- (0.4161,0.5915)
+ -- (0.4094,0.5842)
+ -- (0.4033,0.5763)
+ -- (0.3978,0.5679)
+ -- (0.3930,0.5591)
+ -- (0.3889,0.5500)
+ -- (0.3856,0.5406)
+ -- (0.3831,0.5309)
+ -- (0.3814,0.5210)
+ -- (0.3805,0.5111)
+ -- (0.3805,0.5011)
+ -- (0.3812,0.4911)
+ -- (0.3828,0.4812)
+ -- (0.3853,0.4715)
+ -- (0.3885,0.4621)
+ -- (0.3925,0.4529)
+ -- (0.3973,0.4441)
+ -- (0.4028,0.4358)
+ -- (0.4090,0.4279)
+ -- (0.4158,0.4207)
+ -- (0.4233,0.4140)
+ -- (0.4313,0.4080)
+ -- (0.4397,0.4027)
+ -- (0.4487,0.3982)
+ -- (0.4579,0.3944)
+ -- (0.4675,0.3915)
+ -- (0.4773,0.3895)
+ -- (0.4872,0.3883)
+ -- (0.4972,0.3880)
+ -- (0.5072,0.3886)
+ -- (0.5171,0.3900)
+ -- (0.5268,0.3924)
+ -- (0.5362,0.3956)
+ -- (0.5454,0.3996)
+ -- (0.5541,0.4045)
+ -- (0.5624,0.4101)
+ -- (0.5701,0.4165)
+ -- (0.5772,0.4235)
+ -- (0.5836,0.4312)
+ -- (0.5893,0.4394)
+ -- (0.5942,0.4481)
+ -- (0.5983,0.4572)
+ -- (0.6015,0.4667)
+ -- (0.6038,0.4764)
+ -- (0.6053,0.4863)
+ -- (0.6057,0.4963)
+ -- (0.6052,0.5063)
+ -- (0.6038,0.5162)
+ -- (0.6015,0.5259)
+ -- (0.5982,0.5354)
+ -- (0.5941,0.5445)
+ -- (0.5891,0.5531)
+ -- (0.5833,0.5613)
+ -- (0.5767,0.5688)
+ -- (0.5695,0.5757)
+ -- (0.5616,0.5818)
+ -- (0.5531,0.5872)
+ -- (0.5442,0.5917)
+ -- (0.5349,0.5952)
+ -- (0.5253,0.5979)
+ -- (0.5154,0.5996)
+ -- (0.5054,0.6003)
+ -- (0.4954,0.6001)
+ -- (0.4855,0.5988)
+ -- (0.4758,0.5966)
+ -- (0.4663,0.5933)
+ -- (0.4572,0.5892)
+ -- (0.4486,0.5842)
+ -- (0.4405,0.5783)
+ -- (0.4331,0.5716)
+ -- (0.4263,0.5642)
+ -- (0.4204,0.5562)
+ -- (0.4153,0.5476)
+ -- (0.4111,0.5385)
+ -- (0.4079,0.5290)
+ -- (0.4057,0.5193)
+ -- (0.4045,0.5094)
+ -- (0.4043,0.4994)
+ -- (0.4052,0.4894)
+ -- (0.4071,0.4796)
+ -- (0.4100,0.4700)
+ -- (0.4139,0.4608)
+ -- (0.4188,0.4521)
+ -- (0.4246,0.4439)
+ -- (0.4311,0.4364)
+ -- (0.4385,0.4296)
+ -- (0.4465,0.4237)
+ -- (0.4551,0.4186)
+ -- (0.4643,0.4145)
+ -- (0.4738,0.4114)
+ -- (0.4835,0.4094)
+ -- (0.4935,0.4084)
+ -- (0.5035,0.4085)
+ -- (0.5134,0.4097)
+ -- (0.5231,0.4119)
+ -- (0.5326,0.4152)
+ -- (0.5416,0.4196)
+ -- (0.5501,0.4249)
+ -- (0.5579,0.4311)
+ -- (0.5650,0.4381)
+ -- (0.5713,0.4459)
+ -- (0.5767,0.4543)
+ -- (0.5811,0.4633)
+ -- (0.5845,0.4727)
+ -- (0.5868,0.4824)
+ -- (0.5880,0.4923)
+ -- (0.5880,0.5023)
+ -- (0.5869,0.5122)
+ -- (0.5848,0.5220)
+ -- (0.5815,0.5314)
+ -- (0.5771,0.5404)
+ -- (0.5718,0.5489)
+ -- (0.5655,0.5567)
+ -- (0.5584,0.5637)
+ -- (0.5505,0.5698)
+ -- (0.5419,0.5750)
+ -- (0.5329,0.5791)
+ -- (0.5233,0.5822)
+ -- (0.5135,0.5841)
+ -- (0.5036,0.5849)
+ -- (0.4936,0.5845)
+ -- (0.4837,0.5830)
+ -- (0.4741,0.5803)
+ -- (0.4649,0.5764)
+ -- (0.4562,0.5715)
+ -- (0.4481,0.5656)
+ -- (0.4408,0.5588)
+ -- (0.4343,0.5512)
+ -- (0.4289,0.5428)
+ -- (0.4244,0.5338)
+ -- (0.4211,0.5244)
+ -- (0.4189,0.5147)
+ -- (0.4180,0.5047)
+ -- (0.4182,0.4947)
+ -- (0.4197,0.4848)
+ -- (0.4223,0.4752)
+ -- (0.4261,0.4660)
+ -- (0.4311,0.4573)
+ -- (0.4370,0.4492)
+ -- (0.4439,0.4420)
+ -- (0.4516,0.4357)
+ -- (0.4601,0.4303)
+ -- (0.4691,0.4261)
+ -- (0.4786,0.4230)
+ -- (0.4885,0.4211)
+ -- (0.4984,0.4205)
+ -- (0.5084,0.4211)
+ -- (0.5182,0.4230)
+ -- (0.5277,0.4261)
+ -- (0.5368,0.4304)
+ -- (0.5452,0.4358)
+ -- (0.5528,0.4422)
+ -- (0.5596,0.4495)
+ -- (0.5654,0.4576)
+ -- (0.5701,0.4665)
+ -- (0.5737,0.4758)
+ -- (0.5760,0.4855)
+ -- (0.5771,0.4955)
+ -- (0.5768,0.5054)
+ -- (0.5753,0.5153)
+ -- (0.5725,0.5249)
+ -- (0.5684,0.5341)
+ -- (0.5633,0.5426)
+ -- (0.5570,0.5504)
+ -- (0.5498,0.5573)
+ -- (0.5417,0.5632)
+ -- (0.5329,0.5680)
+ -- (0.5236,0.5716)
+ -- (0.5139,0.5739)
+ -- (0.5040,0.5749)
+ -- (0.4940,0.5746)
+ -- (0.4841,0.5730)
+ -- (0.4746,0.5700)
+ -- (0.4655,0.5658)
+ -- (0.4571,0.5604)
+ -- (0.4494,0.5540)
+ -- (0.4428,0.5466)
+ -- (0.4371,0.5383)
+ -- (0.4327,0.5294)
+ -- (0.4295,0.5199)
+ -- (0.4276,0.5101)
+ -- (0.4270,0.5001)
+ -- (0.4279,0.4902)
+ -- (0.4301,0.4804)
+ -- (0.4336,0.4711)
+ -- (0.4383,0.4623)
+ -- (0.4443,0.4542)
+ -- (0.4512,0.4471)
+ -- (0.4591,0.4410)
+ -- (0.4678,0.4360)
+ -- (0.4771,0.4323)
+ -- (0.4868,0.4299)
+ -- (0.4967,0.4289)
+ -- (0.5067,0.4293)
+ -- (0.5165,0.4311)
+ -- (0.5260,0.4343)
+ -- (0.5350,0.4387)
+ -- (0.5432,0.4444)
+ -- (0.5505,0.4512)
+ -- (0.5568,0.4590)
+ -- (0.5619,0.4676)
+ -- (0.5658,0.4768)
+ -- (0.5683,0.4864)
+ -- (0.5694,0.4964)
+ -- (0.5690,0.5064)
+ -- (0.5672,0.5162)
+ -- (0.5641,0.5257)
+ -- (0.5595,0.5346)
+ -- (0.5538,0.5427)
+ -- (0.5469,0.5500)
+ -- (0.5391,0.5562)
+ -- (0.5304,0.5611)
+ -- (0.5211,0.5648)
+ -- (0.5114,0.5670)
+ -- (0.5014,0.5678)
+ -- (0.4914,0.5671)
+ -- (0.4817,0.5650)
+ -- (0.4723,0.5615)
+ -- (0.4636,0.5566)
+ -- (0.4557,0.5504)
+ -- (0.4488,0.5432)
+ -- (0.4431,0.5350)
+ -- (0.4386,0.5261)
+ -- (0.4355,0.5166)
+ -- (0.4339,0.5067)
+ -- (0.4338,0.4968)
+ -- (0.4352,0.4869)
+ -- (0.4380,0.4773)
+ -- (0.4423,0.4682)
+ -- (0.4479,0.4600)
+ -- (0.4546,0.4526)
+ -- (0.4624,0.4464)
+ -- (0.4711,0.4414)
+ -- (0.4804,0.4378)
+ -- (0.4902,0.4357)
+ -- (0.5002,0.4351)
+ -- (0.5101,0.4360)
+ -- (0.5198,0.4384)
+ -- (0.5290,0.4423)
+ -- (0.5375,0.4476)
+ -- (0.5450,0.4541)
+ -- (0.5515,0.4618)
+ -- (0.5567,0.4703)
+ -- (0.5605,0.4795)
+ -- (0.5628,0.4892)
+ -- (0.5636,0.4992)
+ -- (0.5628,0.5092)
+ -- (0.5605,0.5189)
+ -- (0.5567,0.5281)
+ -- (0.5514,0.5366)
+ -- (0.5449,0.5442)
+ -- (0.5373,0.5506)
+ -- (0.5288,0.5558)
+ -- (0.5195,0.5595)
+ -- (0.5098,0.5617)
+ -- (0.4998,0.5624)
+ -- (0.4898,0.5614)
+ -- (0.4802,0.5589)
+ -- (0.4710,0.5549)
+ -- (0.4627,0.5494)
+ -- (0.4553,0.5427)
+ -- (0.4491,0.5348)
+ -- (0.4443,0.5261)
+ -- (0.4409,0.5167)
+ -- (0.4391,0.5069)
+ -- (0.4389,0.4969)
+ -- (0.4403,0.4870)
+ -- (0.4434,0.4775)
+ -- (0.4479,0.4686)
+ -- (0.4538,0.4605)
+ -- (0.4610,0.4536)
+ -- (0.4692,0.4479)
+ -- (0.4783,0.4437)
+ -- (0.4879,0.4410)
+ -- (0.4978,0.4399)
+ -- (0.5078,0.4405)
+ -- (0.5175,0.4427)
+ -- (0.5268,0.4465)
+ -- (0.5352,0.4518)
+ -- (0.5427,0.4584)
+ -- (0.5490,0.4662)
+ -- (0.5538,0.4749)
+ -- (0.5572,0.4844)
+ -- (0.5589,0.4942)
+ -- (0.5589,0.5042)
+ -- (0.5572,0.5140)
+ -- (0.5539,0.5235)
+ -- (0.5491,0.5322)
+ -- (0.5428,0.5400)
+ -- (0.5354,0.5466)
+ -- (0.5269,0.5518)
+ -- (0.5176,0.5556)
+ -- (0.5078,0.5576)
+ -- (0.4978,0.5580)
+ -- (0.4879,0.5567)
+ -- (0.4784,0.5537)
+ -- (0.4696,0.5491)
+ -- (0.4616,0.5430)
+ -- (0.4548,0.5357)
+ -- (0.4494,0.5273)
+ -- (0.4456,0.5181)
+ -- (0.4434,0.5083)
+ -- (0.4429,0.4984)
+ -- (0.4442,0.4884)
+ -- (0.4471,0.4789)
+ -- (0.4517,0.4700)
+ -- (0.4578,0.4621)
+ -- (0.4652,0.4554)
+ -- (0.4736,0.4500)
+ -- (0.4828,0.4462)
+ -- (0.4926,0.4442)
+ -- (0.5026,0.4438)
+ -- (0.5125,0.4453)
+ -- (0.5219,0.4484)
+ -- (0.5307,0.4532)
+ -- (0.5385,0.4595)
+ -- (0.5450,0.4671)
+ -- (0.5500,0.4757)
+ -- (0.5535,0.4851)
+ -- (0.5552,0.4949)
+ -- (0.5551,0.5049)
+ -- (0.5533,0.5147)
+ -- (0.5496,0.5240)
+ -- (0.5444,0.5325)
+ -- (0.5377,0.5400)
+ -- (0.5298,0.5460)
+ -- (0.5210,0.5506)
+ -- (0.5114,0.5535)
+ -- (0.5015,0.5546)
+ -- (0.4915,0.5538)
+ -- (0.4818,0.5513)
+ -- (0.4728,0.5470)
+ -- (0.4647,0.5412)
+ -- (0.4578,0.5339)
+ -- (0.4524,0.5256)
+ -- (0.4486,0.5163)
+ -- (0.4466,0.5066)
+ -- (0.4464,0.4966)
+ -- (0.4480,0.4867)
+ -- (0.4514,0.4774)
+ -- (0.4566,0.4688)
+ -- (0.4632,0.4613)
+ -- (0.4711,0.4552)
+ -- (0.4800,0.4507)
+ -- (0.4896,0.4479)
+ -- (0.4995,0.4470)
+ -- (0.5095,0.4479)
+ -- (0.5191,0.4507)
+ -- (0.5280,0.4552)
+ -- (0.5358,0.4614)
+ -- (0.5424,0.4689)
+ -- (0.5475,0.4775)
+ -- (0.5508,0.4869)
+ -- (0.5522,0.4968)
+ -- (0.5518,0.5068)
+ -- (0.5495,0.5165)
+ -- (0.5454,0.5256)
+ -- (0.5396,0.5337)
+ -- (0.5324,0.5406)
+ -- (0.5239,0.5460)
+ -- (0.5147,0.5496)
+ -- (0.5048,0.5514)
+ -- (0.4949,0.5513)
+ -- (0.4851,0.5493)
+ -- (0.4759,0.5454)
+ -- (0.4676,0.5398)
+ -- (0.4606,0.5327)
+ -- (0.4550,0.5244)
+ -- (0.4512,0.5152)
+ -- (0.4493,0.5054)
+ -- (0.4493,0.4954)
+ -- (0.4512,0.4856)
+ -- (0.4551,0.4764)
+ -- (0.4606,0.4681)
+ -- (0.4677,0.4611)
+ -- (0.4760,0.4555)
+ -- (0.4852,0.4518)
+ -- (0.4951,0.4499)
+ -- (0.5050,0.4500)
+ -- (0.5148,0.4520)
+ -- (0.5240,0.4560)
+ -- (0.5322,0.4617)
+ -- (0.5391,0.4689)
+ -- (0.5444,0.4773)
+ -- (0.5480,0.4866)
+ -- (0.5496,0.4965)
+ -- (0.5492,0.5065)
+ -- (0.5469,0.5162)
+ -- (0.5426,0.5252)
+ -- (0.5366,0.5332)
+ -- (0.5292,0.5398)
+ -- (0.5205,0.5448)
+ -- (0.5110,0.5479)
+ -- (0.5011,0.5491)
+ -- (0.4912,0.5482)
+ -- (0.4816,0.5454)
+ -- (0.4728,0.5406)
+ -- (0.4652,0.5342)
+ -- (0.4590,0.5264)
+ -- (0.4546,0.5174)
+ -- (0.4520,0.5078)
+ -- (0.4515,0.4978)
+ -- (0.4531,0.4879)
+ -- (0.4566,0.4786)
+ -- (0.4620,0.4702)
+ -- (0.4690,0.4631)
+ -- (0.4773,0.4575)
+ -- (0.4866,0.4538)
+ -- (0.4964,0.4521)
+ -- (0.5064,0.4525)
+ -- (0.5161,0.4549)
+ -- (0.5250,0.4593)
+ -- (0.5329,0.4654)
+ -- (0.5393,0.4731)
+ -- (0.5440,0.4819)
+ -- (0.5467,0.4915)
+ -- (0.5474,0.5015)
+ -- (0.5460,0.5113)
+ -- (0.5425,0.5207)
+ -- (0.5372,0.5291)
+ -- (0.5302,0.5362)
+ -- (0.5218,0.5417)
+ -- (0.5125,0.5453)
+ -- (0.5027,0.5469)
+ -- (0.4927,0.5463)
+ -- (0.4831,0.5436)
+ -- (0.4742,0.5390)
+ -- (0.4666,0.5326)
+ -- (0.4605,0.5247)
+ -- (0.4562,0.5157)
+ -- (0.4539,0.5060)
+ -- (0.4538,0.4960)
+ -- (0.4558,0.4862)
+ -- (0.4598,0.4771)
+ -- (0.4657,0.4690)
+ -- (0.4732,0.4624)
+ -- (0.4820,0.4576)
+ -- (0.4915,0.4548)
+ -- (0.5015,0.4541)
+ -- (0.5114,0.4556)
+ -- (0.5207,0.4591)
+ -- (0.5290,0.4646)
+ -- (0.5359,0.4718)
+ -- (0.5411,0.4803)
+ -- (0.5444,0.4898)
+ -- (0.5455,0.4997)
+ -- (0.5444,0.5096)
+ -- (0.5411,0.5191)
+ -- (0.5359,0.5276)
+ -- (0.5290,0.5347)
+ -- (0.5206,0.5402)
+ -- (0.5112,0.5437)
+ -- (0.5014,0.5450)
+ -- (0.4914,0.5441)
+ -- (0.4819,0.5411)
+ -- (0.4733,0.5360)
+ -- (0.4660,0.5292)
+ -- (0.4605,0.5209)
+ -- (0.4569,0.5116)
+ -- (0.4555,0.5017)
+ -- (0.4563,0.4918)
+ -- (0.4592,0.4822)
+ -- (0.4643,0.4736)
+ -- (0.4711,0.4664)
+ -- (0.4794,0.4608)
+ -- (0.4887,0.4573)
+ -- (0.4986,0.4559)
+ -- (0.5086,0.4568)
+ -- (0.5181,0.4599)
+ -- (0.5266,0.4650)
+ -- (0.5338,0.4719)
+ -- (0.5392,0.4803)
+ -- (0.5426,0.4897)
+ -- (0.5437,0.4996)
+ -- (0.5426,0.5095)
+ -- (0.5393,0.5189)
+ -- (0.5339,0.5273)
+ -- (0.5267,0.5343)
+ -- (0.5182,0.5394)
+ -- (0.5087,0.5425)
+ -- (0.4987,0.5433)
+ -- (0.4889,0.5418)
+ -- (0.4796,0.5381)
+ -- (0.4714,0.5323)
+ -- (0.4648,0.5249)
+ -- (0.4601,0.5161)
+ -- (0.4575,0.5064)
+ -- (0.4573,0.4965)
+ -- (0.4593,0.4867)
+ -- (0.4635,0.4777)
+ -- (0.4697,0.4698)
+ -- (0.4776,0.4637)
+ -- (0.4867,0.4595)
+ -- (0.4964,0.4576)
+ -- (0.5064,0.4580)
+ -- (0.5160,0.4607)
+ -- (0.5247,0.4656)
+ -- (0.5320,0.4724)
+ -- (0.5376,0.4807)
+ -- (0.5410,0.4900)
+ -- (0.5422,0.4999)
+ -- (0.5409,0.5098)
+ -- (0.5374,0.5192)
+ -- (0.5318,0.5274)
+ -- (0.5244,0.5341)
+ -- (0.5156,0.5389)
+ -- (0.5060,0.5414)
+ -- (0.4960,0.5416)
+ -- (0.4863,0.5394)
+ -- (0.4773,0.5350)
+ -- (0.4697,0.5285)
+ -- (0.4638,0.5205)
+ -- (0.4601,0.5112)
+ -- (0.4586,0.5014)
+ -- (0.4595,0.4914)
+ -- (0.4628,0.4820)
+ -- (0.4682,0.4737)
+ -- (0.4755,0.4668)
+ -- (0.4842,0.4620)
+ -- (0.4938,0.4593)
+ -- (0.5038,0.4591)
+ -- (0.5135,0.4613)
+ -- (0.5225,0.4657)
+ -- (0.5300,0.4722)
+ -- (0.5358,0.4804)
+ -- (0.5395,0.4896)
+ -- (0.5408,0.4995)
+ -- (0.5396,0.5094)
+ -- (0.5361,0.5188)
+ -- (0.5304,0.5270)
+ -- (0.5228,0.5335)
+ -- (0.5139,0.5380)
+ -- (0.5042,0.5402)
+ -- (0.4942,0.5400)
+ -- (0.4846,0.5373)
+ -- (0.4760,0.5323)
+ -- (0.4688,0.5254)
+ -- (0.4636,0.5169)
+ -- (0.4606,0.5074)
+ -- (0.4600,0.4975)
+ -- (0.4619,0.4877)
+ -- (0.4662,0.4787)
+ -- (0.4726,0.4710)
+ -- (0.4806,0.4651)
+ -- (0.4899,0.4615)
+ -- (0.4998,0.4602)
+ -- (0.5097,0.4615)
+ -- (0.5190,0.4651)
+ -- (0.5270,0.4710)
+ -- (0.5334,0.4787)
+ -- (0.5376,0.4877)
+ -- (0.5394,0.4976)
+ -- (0.5387,0.5075)
+ -- (0.5356,0.5170)
+ -- (0.5301,0.5253)
+ -- (0.5227,0.5320)
+ -- (0.5139,0.5367)
+ -- (0.5042,0.5390)
+ -- (0.4942,0.5387)
+ -- (0.4847,0.5360)
+ -- (0.4761,0.5309)
+ -- (0.4691,0.5238)
+ -- (0.4641,0.5151)
+ -- (0.4615,0.5055)
+ -- (0.4614,0.4955)
+ -- (0.4638,0.4859)
+ -- (0.4687,0.4772)
+ -- (0.4756,0.4700)
+ -- (0.4841,0.4648)
+ -- (0.4936,0.4619)
+ -- (0.5036,0.4616)
+ -- (0.5133,0.4638)
+ -- (0.5221,0.4685)
+ -- (0.5294,0.4753)
+ -- (0.5348,0.4837)
+ -- (0.5377,0.4932)
+ -- (0.5382,0.5032)
+ -- (0.5360,0.5129)
+ -- (0.5314,0.5218)
+ -- (0.5247,0.5291)
+ -- (0.5163,0.5345)
+ -- (0.5067,0.5375)
+ -- (0.4968,0.5379)
+ -- (0.4870,0.5357)
+ -- (0.4782,0.5311)
+ -- (0.4709,0.5243)
+ -- (0.4656,0.5158)
+ -- (0.4627,0.5063)
+ -- (0.4624,0.4963)
+ -- (0.4647,0.4866)
+ -- (0.4695,0.4779)
+ -- (0.4764,0.4707)
+ -- (0.4850,0.4656)
+ -- (0.4946,0.4629)
+ -- (0.5045,0.4628)
+ -- (0.5142,0.4653)
+ -- (0.5228,0.4703)
+ -- (0.5298,0.4775)
+ -- (0.5347,0.4862)
+ -- (0.5370,0.4958)
+ -- (0.5368,0.5058)
+ -- (0.5339,0.5153)
+ -- (0.5285,0.5238)
+ -- (0.5212,0.5305)
+ -- (0.5123,0.5350)
+ -- (0.5025,0.5369)
+ -- (0.4925,0.5362)
+ -- (0.4831,0.5329)
+ -- (0.4750,0.5271)
+ -- (0.4687,0.5194)
+ -- (0.4647,0.5103)
+ -- (0.4632,0.5004)
+ -- (0.4645,0.4905)
+ -- (0.4684,0.4813)
+ -- (0.4747,0.4736)
+ -- (0.4827,0.4677)
+ -- (0.4921,0.4643)
+ -- (0.5020,0.4636)
+ -- (0.5118,0.4655)
+ -- (0.5207,0.4700)
+ -- (0.5280,0.4768)
+ -- (0.5332,0.4853)
+ -- (0.5359,0.4949)
+ -- (0.5359,0.5049)
+ -- (0.5332,0.5145)
+ -- (0.5280,0.5229)
+ -- (0.5206,0.5297)
+ -- (0.5117,0.5341)
+ -- (0.5019,0.5360)
+ -- (0.4920,0.5351)
+ -- (0.4827,0.5315)
+ -- (0.4747,0.5255)
+ -- (0.4687,0.5176)
+ -- (0.4651,0.5083)
+ -- (0.4642,0.4983)
+ -- (0.4661,0.4886)
+ -- (0.4706,0.4797)
+ -- (0.4774,0.4724)
+ -- (0.4860,0.4672)
+ -- (0.4956,0.4647)
+ -- (0.5056,0.4649)
+ -- (0.5151,0.4678)
+ -- (0.5234,0.4733)
+ -- (0.5299,0.4809)
+ -- (0.5340,0.4900)
+ -- (0.5354,0.4999)
+ -- (0.5340,0.5097)
+ -- (0.5299,0.5188)
+ -- (0.5234,0.5264)
+ -- (0.5150,0.5318)
+ -- (0.5055,0.5347)
+ -- (0.4955,0.5348)
+ -- (0.4859,0.5322)
+ -- (0.4775,0.5269)
+ -- (0.4709,0.5194)
+ -- (0.4666,0.5104)
+ -- (0.4651,0.5006)
+ -- (0.4664,0.4907)
+ -- (0.4704,0.4816)
+ -- (0.4769,0.4740)
+ -- (0.4852,0.4685)
+ -- (0.4947,0.4657)
+ -- (0.5047,0.4656)
+ -- (0.5143,0.4684)
+ -- (0.5226,0.4738)
+ -- (0.5291,0.4814)
+ -- (0.5332,0.4904)
+ -- (0.5345,0.5003)
+ -- (0.5330,0.5102)
+ -- (0.5286,0.5191)
+ -- (0.5219,0.5265)
+ -- (0.5134,0.5317)
+ -- (0.5037,0.5341)
+ -- (0.4938,0.5337)
+ -- (0.4844,0.5305)
+ -- (0.4763,0.5247)
+ -- (0.4702,0.5168)
+ -- (0.4667,0.5074)
+ -- (0.4660,0.4975)
+ -- (0.4682,0.4878)
+ -- (0.4731,0.4791)
+ -- (0.4803,0.4723)
+ -- (0.4892,0.4678)
+ -- (0.4990,0.4661)
+ -- (0.5089,0.4673)
+ -- (0.5180,0.4713)
+ -- (0.5256,0.4779)
+ -- (0.5309,0.4863)
+ -- (0.5335,0.4959)
+ -- (0.5332,0.5059)
+ -- (0.5300,0.5153)
+ -- (0.5242,0.5234)
+ -- (0.5163,0.5294)
+ -- (0.5069,0.5329)
+ -- (0.4970,0.5334)
+ -- (0.4873,0.5310)
+ -- (0.4788,0.5259)
+ -- (0.4721,0.5184)
+ -- (0.4679,0.5094)
+ -- (0.4666,0.4995)
+ -- (0.4683,0.4897)
+ -- (0.4728,0.4808)
+ -- (0.4797,0.4736)
+ -- (0.4885,0.4688)
+ -- (0.4982,0.4669)
+ -- (0.5081,0.4679)
+ -- (0.5173,0.4718)
+ -- (0.5249,0.4782)
+ -- (0.5302,0.4866)
+ -- (0.5328,0.4962)
+ -- (0.5324,0.5062)
+ -- (0.5290,0.5156)
+ -- (0.5230,0.5235)
+ -- (0.5149,0.5293)
+ -- (0.5054,0.5324)
+ -- (0.4955,0.5325)
+ -- (0.4860,0.5296)
+ -- (0.4777,0.5240)
+ -- (0.4716,0.5162)
+ -- (0.4680,0.5069)
+ -- (0.4675,0.4969)
+ -- (0.4700,0.4873)
+ -- (0.4753,0.4788)
+ -- (0.4828,0.4723)
+ -- (0.4920,0.4685)
+ -- (0.5019,0.4676)
+ -- (0.5117,0.4697)
+ -- (0.5203,0.4747)
+ -- (0.5270,0.4821)
+ -- (0.5311,0.4911)
+ -- (0.5323,0.5010)
+ -- (0.5304,0.5108)
+ -- (0.5256,0.5196)
+ -- (0.5184,0.5264)
+ -- (0.5095,0.5308)
+ -- (0.4996,0.5321)
+ -- (0.4898,0.5305)
+ -- (0.4810,0.5258)
+ -- (0.4740,0.5187)
+ -- (0.4695,0.5098)
+ -- (0.4680,0.5000)
+ -- (0.4696,0.4901)
+ -- (0.4741,0.4813)
+ -- (0.4812,0.4742)
+ -- (0.4901,0.4697)
+}
+
+\def\fresnelb{ (0,0)
+ -- (-0.0100,-0.0000)
+ -- (-0.0200,-0.0000)
+ -- (-0.0300,-0.0000)
+ -- (-0.0400,-0.0000)
+ -- (-0.0500,-0.0001)
+ -- (-0.0600,-0.0001)
+ -- (-0.0700,-0.0002)
+ -- (-0.0800,-0.0003)
+ -- (-0.0900,-0.0004)
+ -- (-0.1000,-0.0005)
+ -- (-0.1100,-0.0007)
+ -- (-0.1200,-0.0009)
+ -- (-0.1300,-0.0012)
+ -- (-0.1400,-0.0014)
+ -- (-0.1500,-0.0018)
+ -- (-0.1600,-0.0021)
+ -- (-0.1700,-0.0026)
+ -- (-0.1800,-0.0031)
+ -- (-0.1899,-0.0036)
+ -- (-0.1999,-0.0042)
+ -- (-0.2099,-0.0048)
+ -- (-0.2199,-0.0056)
+ -- (-0.2298,-0.0064)
+ -- (-0.2398,-0.0072)
+ -- (-0.2498,-0.0082)
+ -- (-0.2597,-0.0092)
+ -- (-0.2696,-0.0103)
+ -- (-0.2796,-0.0115)
+ -- (-0.2895,-0.0128)
+ -- (-0.2994,-0.0141)
+ -- (-0.3093,-0.0156)
+ -- (-0.3192,-0.0171)
+ -- (-0.3290,-0.0188)
+ -- (-0.3389,-0.0205)
+ -- (-0.3487,-0.0224)
+ -- (-0.3585,-0.0244)
+ -- (-0.3683,-0.0264)
+ -- (-0.3780,-0.0286)
+ -- (-0.3878,-0.0309)
+ -- (-0.3975,-0.0334)
+ -- (-0.4072,-0.0359)
+ -- (-0.4168,-0.0386)
+ -- (-0.4264,-0.0414)
+ -- (-0.4359,-0.0443)
+ -- (-0.4455,-0.0474)
+ -- (-0.4549,-0.0506)
+ -- (-0.4644,-0.0539)
+ -- (-0.4738,-0.0574)
+ -- (-0.4831,-0.0610)
+ -- (-0.4923,-0.0647)
+ -- (-0.5016,-0.0686)
+ -- (-0.5107,-0.0727)
+ -- (-0.5198,-0.0769)
+ -- (-0.5288,-0.0812)
+ -- (-0.5377,-0.0857)
+ -- (-0.5466,-0.0904)
+ -- (-0.5553,-0.0952)
+ -- (-0.5640,-0.1001)
+ -- (-0.5726,-0.1053)
+ -- (-0.5811,-0.1105)
+ -- (-0.5895,-0.1160)
+ -- (-0.5978,-0.1216)
+ -- (-0.6059,-0.1273)
+ -- (-0.6140,-0.1333)
+ -- (-0.6219,-0.1393)
+ -- (-0.6298,-0.1456)
+ -- (-0.6374,-0.1520)
+ -- (-0.6450,-0.1585)
+ -- (-0.6524,-0.1653)
+ -- (-0.6597,-0.1721)
+ -- (-0.6668,-0.1792)
+ -- (-0.6737,-0.1864)
+ -- (-0.6805,-0.1937)
+ -- (-0.6871,-0.2012)
+ -- (-0.6935,-0.2089)
+ -- (-0.6998,-0.2167)
+ -- (-0.7058,-0.2246)
+ -- (-0.7117,-0.2327)
+ -- (-0.7174,-0.2410)
+ -- (-0.7228,-0.2493)
+ -- (-0.7281,-0.2579)
+ -- (-0.7331,-0.2665)
+ -- (-0.7379,-0.2753)
+ -- (-0.7425,-0.2841)
+ -- (-0.7469,-0.2932)
+ -- (-0.7510,-0.3023)
+ -- (-0.7548,-0.3115)
+ -- (-0.7584,-0.3208)
+ -- (-0.7617,-0.3303)
+ -- (-0.7648,-0.3398)
+ -- (-0.7676,-0.3494)
+ -- (-0.7702,-0.3590)
+ -- (-0.7724,-0.3688)
+ -- (-0.7744,-0.3786)
+ -- (-0.7760,-0.3885)
+ -- (-0.7774,-0.3984)
+ -- (-0.7785,-0.4083)
+ -- (-0.7793,-0.4183)
+ -- (-0.7797,-0.4283)
+ -- (-0.7799,-0.4383)
+ -- (-0.7797,-0.4483)
+ -- (-0.7793,-0.4582)
+ -- (-0.7785,-0.4682)
+ -- (-0.7774,-0.4782)
+ -- (-0.7759,-0.4880)
+ -- (-0.7741,-0.4979)
+ -- (-0.7721,-0.5077)
+ -- (-0.7696,-0.5174)
+ -- (-0.7669,-0.5270)
+ -- (-0.7638,-0.5365)
+ -- (-0.7604,-0.5459)
+ -- (-0.7567,-0.5552)
+ -- (-0.7526,-0.5643)
+ -- (-0.7482,-0.5733)
+ -- (-0.7436,-0.5821)
+ -- (-0.7385,-0.5908)
+ -- (-0.7332,-0.5993)
+ -- (-0.7276,-0.6075)
+ -- (-0.7217,-0.6156)
+ -- (-0.7154,-0.6234)
+ -- (-0.7089,-0.6310)
+ -- (-0.7021,-0.6383)
+ -- (-0.6950,-0.6454)
+ -- (-0.6877,-0.6522)
+ -- (-0.6801,-0.6587)
+ -- (-0.6722,-0.6648)
+ -- (-0.6641,-0.6707)
+ -- (-0.6558,-0.6763)
+ -- (-0.6473,-0.6815)
+ -- (-0.6386,-0.6863)
+ -- (-0.6296,-0.6908)
+ -- (-0.6205,-0.6950)
+ -- (-0.6112,-0.6987)
+ -- (-0.6018,-0.7021)
+ -- (-0.5923,-0.7050)
+ -- (-0.5826,-0.7076)
+ -- (-0.5728,-0.7097)
+ -- (-0.5630,-0.7114)
+ -- (-0.5531,-0.7127)
+ -- (-0.5431,-0.7135)
+ -- (-0.5331,-0.7139)
+ -- (-0.5231,-0.7139)
+ -- (-0.5131,-0.7134)
+ -- (-0.5032,-0.7125)
+ -- (-0.4933,-0.7111)
+ -- (-0.4834,-0.7093)
+ -- (-0.4737,-0.7070)
+ -- (-0.4641,-0.7043)
+ -- (-0.4546,-0.7011)
+ -- (-0.4453,-0.6975)
+ -- (-0.4361,-0.6935)
+ -- (-0.4272,-0.6890)
+ -- (-0.4185,-0.6841)
+ -- (-0.4100,-0.6788)
+ -- (-0.4018,-0.6731)
+ -- (-0.3939,-0.6670)
+ -- (-0.3862,-0.6605)
+ -- (-0.3790,-0.6536)
+ -- (-0.3720,-0.6464)
+ -- (-0.3655,-0.6389)
+ -- (-0.3593,-0.6310)
+ -- (-0.3535,-0.6229)
+ -- (-0.3482,-0.6144)
+ -- (-0.3433,-0.6057)
+ -- (-0.3388,-0.5968)
+ -- (-0.3348,-0.5876)
+ -- (-0.3313,-0.5782)
+ -- (-0.3283,-0.5687)
+ -- (-0.3258,-0.5590)
+ -- (-0.3238,-0.5492)
+ -- (-0.3224,-0.5393)
+ -- (-0.3214,-0.5293)
+ -- (-0.3211,-0.5194)
+ -- (-0.3212,-0.5094)
+ -- (-0.3219,-0.4994)
+ -- (-0.3232,-0.4895)
+ -- (-0.3250,-0.4796)
+ -- (-0.3273,-0.4699)
+ -- (-0.3302,-0.4603)
+ -- (-0.3336,-0.4509)
+ -- (-0.3376,-0.4418)
+ -- (-0.3420,-0.4328)
+ -- (-0.3470,-0.4241)
+ -- (-0.3524,-0.4157)
+ -- (-0.3584,-0.4077)
+ -- (-0.3648,-0.4000)
+ -- (-0.3716,-0.3927)
+ -- (-0.3788,-0.3858)
+ -- (-0.3865,-0.3793)
+ -- (-0.3945,-0.3733)
+ -- (-0.4028,-0.3678)
+ -- (-0.4115,-0.3629)
+ -- (-0.4204,-0.3584)
+ -- (-0.4296,-0.3545)
+ -- (-0.4391,-0.3511)
+ -- (-0.4487,-0.3484)
+ -- (-0.4584,-0.3462)
+ -- (-0.4683,-0.3447)
+ -- (-0.4783,-0.3437)
+ -- (-0.4883,-0.3434)
+ -- (-0.4982,-0.3437)
+ -- (-0.5082,-0.3447)
+ -- (-0.5181,-0.3462)
+ -- (-0.5278,-0.3484)
+ -- (-0.5374,-0.3513)
+ -- (-0.5468,-0.3547)
+ -- (-0.5560,-0.3587)
+ -- (-0.5648,-0.3633)
+ -- (-0.5734,-0.3685)
+ -- (-0.5816,-0.3743)
+ -- (-0.5894,-0.3805)
+ -- (-0.5967,-0.3873)
+ -- (-0.6036,-0.3945)
+ -- (-0.6100,-0.4022)
+ -- (-0.6159,-0.4103)
+ -- (-0.6212,-0.4188)
+ -- (-0.6259,-0.4276)
+ -- (-0.6300,-0.4367)
+ -- (-0.6335,-0.4461)
+ -- (-0.6363,-0.4557)
+ -- (-0.6384,-0.4655)
+ -- (-0.6399,-0.4754)
+ -- (-0.6407,-0.4853)
+ -- (-0.6408,-0.4953)
+ -- (-0.6401,-0.5053)
+ -- (-0.6388,-0.5152)
+ -- (-0.6368,-0.5250)
+ -- (-0.6340,-0.5346)
+ -- (-0.6306,-0.5440)
+ -- (-0.6266,-0.5532)
+ -- (-0.6218,-0.5620)
+ -- (-0.6165,-0.5704)
+ -- (-0.6105,-0.5784)
+ -- (-0.6040,-0.5860)
+ -- (-0.5970,-0.5931)
+ -- (-0.5894,-0.5996)
+ -- (-0.5814,-0.6056)
+ -- (-0.5729,-0.6110)
+ -- (-0.5641,-0.6157)
+ -- (-0.5550,-0.6197)
+ -- (-0.5455,-0.6230)
+ -- (-0.5359,-0.6256)
+ -- (-0.5261,-0.6275)
+ -- (-0.5161,-0.6286)
+ -- (-0.5061,-0.6289)
+ -- (-0.4961,-0.6285)
+ -- (-0.4862,-0.6273)
+ -- (-0.4764,-0.6254)
+ -- (-0.4668,-0.6226)
+ -- (-0.4574,-0.6192)
+ -- (-0.4483,-0.6150)
+ -- (-0.4396,-0.6101)
+ -- (-0.4313,-0.6045)
+ -- (-0.4235,-0.5983)
+ -- (-0.4161,-0.5915)
+ -- (-0.4094,-0.5842)
+ -- (-0.4033,-0.5763)
+ -- (-0.3978,-0.5679)
+ -- (-0.3930,-0.5591)
+ -- (-0.3889,-0.5500)
+ -- (-0.3856,-0.5406)
+ -- (-0.3831,-0.5309)
+ -- (-0.3814,-0.5210)
+ -- (-0.3805,-0.5111)
+ -- (-0.3805,-0.5011)
+ -- (-0.3812,-0.4911)
+ -- (-0.3828,-0.4812)
+ -- (-0.3853,-0.4715)
+ -- (-0.3885,-0.4621)
+ -- (-0.3925,-0.4529)
+ -- (-0.3973,-0.4441)
+ -- (-0.4028,-0.4358)
+ -- (-0.4090,-0.4279)
+ -- (-0.4158,-0.4207)
+ -- (-0.4233,-0.4140)
+ -- (-0.4313,-0.4080)
+ -- (-0.4397,-0.4027)
+ -- (-0.4487,-0.3982)
+ -- (-0.4579,-0.3944)
+ -- (-0.4675,-0.3915)
+ -- (-0.4773,-0.3895)
+ -- (-0.4872,-0.3883)
+ -- (-0.4972,-0.3880)
+ -- (-0.5072,-0.3886)
+ -- (-0.5171,-0.3900)
+ -- (-0.5268,-0.3924)
+ -- (-0.5362,-0.3956)
+ -- (-0.5454,-0.3996)
+ -- (-0.5541,-0.4045)
+ -- (-0.5624,-0.4101)
+ -- (-0.5701,-0.4165)
+ -- (-0.5772,-0.4235)
+ -- (-0.5836,-0.4312)
+ -- (-0.5893,-0.4394)
+ -- (-0.5942,-0.4481)
+ -- (-0.5983,-0.4572)
+ -- (-0.6015,-0.4667)
+ -- (-0.6038,-0.4764)
+ -- (-0.6053,-0.4863)
+ -- (-0.6057,-0.4963)
+ -- (-0.6052,-0.5063)
+ -- (-0.6038,-0.5162)
+ -- (-0.6015,-0.5259)
+ -- (-0.5982,-0.5354)
+ -- (-0.5941,-0.5445)
+ -- (-0.5891,-0.5531)
+ -- (-0.5833,-0.5613)
+ -- (-0.5767,-0.5688)
+ -- (-0.5695,-0.5757)
+ -- (-0.5616,-0.5818)
+ -- (-0.5531,-0.5872)
+ -- (-0.5442,-0.5917)
+ -- (-0.5349,-0.5952)
+ -- (-0.5253,-0.5979)
+ -- (-0.5154,-0.5996)
+ -- (-0.5054,-0.6003)
+ -- (-0.4954,-0.6001)
+ -- (-0.4855,-0.5988)
+ -- (-0.4758,-0.5966)
+ -- (-0.4663,-0.5933)
+ -- (-0.4572,-0.5892)
+ -- (-0.4486,-0.5842)
+ -- (-0.4405,-0.5783)
+ -- (-0.4331,-0.5716)
+ -- (-0.4263,-0.5642)
+ -- (-0.4204,-0.5562)
+ -- (-0.4153,-0.5476)
+ -- (-0.4111,-0.5385)
+ -- (-0.4079,-0.5290)
+ -- (-0.4057,-0.5193)
+ -- (-0.4045,-0.5094)
+ -- (-0.4043,-0.4994)
+ -- (-0.4052,-0.4894)
+ -- (-0.4071,-0.4796)
+ -- (-0.4100,-0.4700)
+ -- (-0.4139,-0.4608)
+ -- (-0.4188,-0.4521)
+ -- (-0.4246,-0.4439)
+ -- (-0.4311,-0.4364)
+ -- (-0.4385,-0.4296)
+ -- (-0.4465,-0.4237)
+ -- (-0.4551,-0.4186)
+ -- (-0.4643,-0.4145)
+ -- (-0.4738,-0.4114)
+ -- (-0.4835,-0.4094)
+ -- (-0.4935,-0.4084)
+ -- (-0.5035,-0.4085)
+ -- (-0.5134,-0.4097)
+ -- (-0.5231,-0.4119)
+ -- (-0.5326,-0.4152)
+ -- (-0.5416,-0.4196)
+ -- (-0.5501,-0.4249)
+ -- (-0.5579,-0.4311)
+ -- (-0.5650,-0.4381)
+ -- (-0.5713,-0.4459)
+ -- (-0.5767,-0.4543)
+ -- (-0.5811,-0.4633)
+ -- (-0.5845,-0.4727)
+ -- (-0.5868,-0.4824)
+ -- (-0.5880,-0.4923)
+ -- (-0.5880,-0.5023)
+ -- (-0.5869,-0.5122)
+ -- (-0.5848,-0.5220)
+ -- (-0.5815,-0.5314)
+ -- (-0.5771,-0.5404)
+ -- (-0.5718,-0.5489)
+ -- (-0.5655,-0.5567)
+ -- (-0.5584,-0.5637)
+ -- (-0.5505,-0.5698)
+ -- (-0.5419,-0.5750)
+ -- (-0.5329,-0.5791)
+ -- (-0.5233,-0.5822)
+ -- (-0.5135,-0.5841)
+ -- (-0.5036,-0.5849)
+ -- (-0.4936,-0.5845)
+ -- (-0.4837,-0.5830)
+ -- (-0.4741,-0.5803)
+ -- (-0.4649,-0.5764)
+ -- (-0.4562,-0.5715)
+ -- (-0.4481,-0.5656)
+ -- (-0.4408,-0.5588)
+ -- (-0.4343,-0.5512)
+ -- (-0.4289,-0.5428)
+ -- (-0.4244,-0.5338)
+ -- (-0.4211,-0.5244)
+ -- (-0.4189,-0.5147)
+ -- (-0.4180,-0.5047)
+ -- (-0.4182,-0.4947)
+ -- (-0.4197,-0.4848)
+ -- (-0.4223,-0.4752)
+ -- (-0.4261,-0.4660)
+ -- (-0.4311,-0.4573)
+ -- (-0.4370,-0.4492)
+ -- (-0.4439,-0.4420)
+ -- (-0.4516,-0.4357)
+ -- (-0.4601,-0.4303)
+ -- (-0.4691,-0.4261)
+ -- (-0.4786,-0.4230)
+ -- (-0.4885,-0.4211)
+ -- (-0.4984,-0.4205)
+ -- (-0.5084,-0.4211)
+ -- (-0.5182,-0.4230)
+ -- (-0.5277,-0.4261)
+ -- (-0.5368,-0.4304)
+ -- (-0.5452,-0.4358)
+ -- (-0.5528,-0.4422)
+ -- (-0.5596,-0.4495)
+ -- (-0.5654,-0.4576)
+ -- (-0.5701,-0.4665)
+ -- (-0.5737,-0.4758)
+ -- (-0.5760,-0.4855)
+ -- (-0.5771,-0.4955)
+ -- (-0.5768,-0.5054)
+ -- (-0.5753,-0.5153)
+ -- (-0.5725,-0.5249)
+ -- (-0.5684,-0.5341)
+ -- (-0.5633,-0.5426)
+ -- (-0.5570,-0.5504)
+ -- (-0.5498,-0.5573)
+ -- (-0.5417,-0.5632)
+ -- (-0.5329,-0.5680)
+ -- (-0.5236,-0.5716)
+ -- (-0.5139,-0.5739)
+ -- (-0.5040,-0.5749)
+ -- (-0.4940,-0.5746)
+ -- (-0.4841,-0.5730)
+ -- (-0.4746,-0.5700)
+ -- (-0.4655,-0.5658)
+ -- (-0.4571,-0.5604)
+ -- (-0.4494,-0.5540)
+ -- (-0.4428,-0.5466)
+ -- (-0.4371,-0.5383)
+ -- (-0.4327,-0.5294)
+ -- (-0.4295,-0.5199)
+ -- (-0.4276,-0.5101)
+ -- (-0.4270,-0.5001)
+ -- (-0.4279,-0.4902)
+ -- (-0.4301,-0.4804)
+ -- (-0.4336,-0.4711)
+ -- (-0.4383,-0.4623)
+ -- (-0.4443,-0.4542)
+ -- (-0.4512,-0.4471)
+ -- (-0.4591,-0.4410)
+ -- (-0.4678,-0.4360)
+ -- (-0.4771,-0.4323)
+ -- (-0.4868,-0.4299)
+ -- (-0.4967,-0.4289)
+ -- (-0.5067,-0.4293)
+ -- (-0.5165,-0.4311)
+ -- (-0.5260,-0.4343)
+ -- (-0.5350,-0.4387)
+ -- (-0.5432,-0.4444)
+ -- (-0.5505,-0.4512)
+ -- (-0.5568,-0.4590)
+ -- (-0.5619,-0.4676)
+ -- (-0.5658,-0.4768)
+ -- (-0.5683,-0.4864)
+ -- (-0.5694,-0.4964)
+ -- (-0.5690,-0.5064)
+ -- (-0.5672,-0.5162)
+ -- (-0.5641,-0.5257)
+ -- (-0.5595,-0.5346)
+ -- (-0.5538,-0.5427)
+ -- (-0.5469,-0.5500)
+ -- (-0.5391,-0.5562)
+ -- (-0.5304,-0.5611)
+ -- (-0.5211,-0.5648)
+ -- (-0.5114,-0.5670)
+ -- (-0.5014,-0.5678)
+ -- (-0.4914,-0.5671)
+ -- (-0.4817,-0.5650)
+ -- (-0.4723,-0.5615)
+ -- (-0.4636,-0.5566)
+ -- (-0.4557,-0.5504)
+ -- (-0.4488,-0.5432)
+ -- (-0.4431,-0.5350)
+ -- (-0.4386,-0.5261)
+ -- (-0.4355,-0.5166)
+ -- (-0.4339,-0.5067)
+ -- (-0.4338,-0.4968)
+ -- (-0.4352,-0.4869)
+ -- (-0.4380,-0.4773)
+ -- (-0.4423,-0.4682)
+ -- (-0.4479,-0.4600)
+ -- (-0.4546,-0.4526)
+ -- (-0.4624,-0.4464)
+ -- (-0.4711,-0.4414)
+ -- (-0.4804,-0.4378)
+ -- (-0.4902,-0.4357)
+ -- (-0.5002,-0.4351)
+ -- (-0.5101,-0.4360)
+ -- (-0.5198,-0.4384)
+ -- (-0.5290,-0.4423)
+ -- (-0.5375,-0.4476)
+ -- (-0.5450,-0.4541)
+ -- (-0.5515,-0.4618)
+ -- (-0.5567,-0.4703)
+ -- (-0.5605,-0.4795)
+ -- (-0.5628,-0.4892)
+ -- (-0.5636,-0.4992)
+ -- (-0.5628,-0.5092)
+ -- (-0.5605,-0.5189)
+ -- (-0.5567,-0.5281)
+ -- (-0.5514,-0.5366)
+ -- (-0.5449,-0.5442)
+ -- (-0.5373,-0.5506)
+ -- (-0.5288,-0.5558)
+ -- (-0.5195,-0.5595)
+ -- (-0.5098,-0.5617)
+ -- (-0.4998,-0.5624)
+ -- (-0.4898,-0.5614)
+ -- (-0.4802,-0.5589)
+ -- (-0.4710,-0.5549)
+ -- (-0.4627,-0.5494)
+ -- (-0.4553,-0.5427)
+ -- (-0.4491,-0.5348)
+ -- (-0.4443,-0.5261)
+ -- (-0.4409,-0.5167)
+ -- (-0.4391,-0.5069)
+ -- (-0.4389,-0.4969)
+ -- (-0.4403,-0.4870)
+ -- (-0.4434,-0.4775)
+ -- (-0.4479,-0.4686)
+ -- (-0.4538,-0.4605)
+ -- (-0.4610,-0.4536)
+ -- (-0.4692,-0.4479)
+ -- (-0.4783,-0.4437)
+ -- (-0.4879,-0.4410)
+ -- (-0.4978,-0.4399)
+ -- (-0.5078,-0.4405)
+ -- (-0.5175,-0.4427)
+ -- (-0.5268,-0.4465)
+ -- (-0.5352,-0.4518)
+ -- (-0.5427,-0.4584)
+ -- (-0.5490,-0.4662)
+ -- (-0.5538,-0.4749)
+ -- (-0.5572,-0.4844)
+ -- (-0.5589,-0.4942)
+ -- (-0.5589,-0.5042)
+ -- (-0.5572,-0.5140)
+ -- (-0.5539,-0.5235)
+ -- (-0.5491,-0.5322)
+ -- (-0.5428,-0.5400)
+ -- (-0.5354,-0.5466)
+ -- (-0.5269,-0.5518)
+ -- (-0.5176,-0.5556)
+ -- (-0.5078,-0.5576)
+ -- (-0.4978,-0.5580)
+ -- (-0.4879,-0.5567)
+ -- (-0.4784,-0.5537)
+ -- (-0.4696,-0.5491)
+ -- (-0.4616,-0.5430)
+ -- (-0.4548,-0.5357)
+ -- (-0.4494,-0.5273)
+ -- (-0.4456,-0.5181)
+ -- (-0.4434,-0.5083)
+ -- (-0.4429,-0.4984)
+ -- (-0.4442,-0.4884)
+ -- (-0.4471,-0.4789)
+ -- (-0.4517,-0.4700)
+ -- (-0.4578,-0.4621)
+ -- (-0.4652,-0.4554)
+ -- (-0.4736,-0.4500)
+ -- (-0.4828,-0.4462)
+ -- (-0.4926,-0.4442)
+ -- (-0.5026,-0.4438)
+ -- (-0.5125,-0.4453)
+ -- (-0.5219,-0.4484)
+ -- (-0.5307,-0.4532)
+ -- (-0.5385,-0.4595)
+ -- (-0.5450,-0.4671)
+ -- (-0.5500,-0.4757)
+ -- (-0.5535,-0.4851)
+ -- (-0.5552,-0.4949)
+ -- (-0.5551,-0.5049)
+ -- (-0.5533,-0.5147)
+ -- (-0.5496,-0.5240)
+ -- (-0.5444,-0.5325)
+ -- (-0.5377,-0.5400)
+ -- (-0.5298,-0.5460)
+ -- (-0.5210,-0.5506)
+ -- (-0.5114,-0.5535)
+ -- (-0.5015,-0.5546)
+ -- (-0.4915,-0.5538)
+ -- (-0.4818,-0.5513)
+ -- (-0.4728,-0.5470)
+ -- (-0.4647,-0.5412)
+ -- (-0.4578,-0.5339)
+ -- (-0.4524,-0.5256)
+ -- (-0.4486,-0.5163)
+ -- (-0.4466,-0.5066)
+ -- (-0.4464,-0.4966)
+ -- (-0.4480,-0.4867)
+ -- (-0.4514,-0.4774)
+ -- (-0.4566,-0.4688)
+ -- (-0.4632,-0.4613)
+ -- (-0.4711,-0.4552)
+ -- (-0.4800,-0.4507)
+ -- (-0.4896,-0.4479)
+ -- (-0.4995,-0.4470)
+ -- (-0.5095,-0.4479)
+ -- (-0.5191,-0.4507)
+ -- (-0.5280,-0.4552)
+ -- (-0.5358,-0.4614)
+ -- (-0.5424,-0.4689)
+ -- (-0.5475,-0.4775)
+ -- (-0.5508,-0.4869)
+ -- (-0.5522,-0.4968)
+ -- (-0.5518,-0.5068)
+ -- (-0.5495,-0.5165)
+ -- (-0.5454,-0.5256)
+ -- (-0.5396,-0.5337)
+ -- (-0.5324,-0.5406)
+ -- (-0.5239,-0.5460)
+ -- (-0.5147,-0.5496)
+ -- (-0.5048,-0.5514)
+ -- (-0.4949,-0.5513)
+ -- (-0.4851,-0.5493)
+ -- (-0.4759,-0.5454)
+ -- (-0.4676,-0.5398)
+ -- (-0.4606,-0.5327)
+ -- (-0.4550,-0.5244)
+ -- (-0.4512,-0.5152)
+ -- (-0.4493,-0.5054)
+ -- (-0.4493,-0.4954)
+ -- (-0.4512,-0.4856)
+ -- (-0.4551,-0.4764)
+ -- (-0.4606,-0.4681)
+ -- (-0.4677,-0.4611)
+ -- (-0.4760,-0.4555)
+ -- (-0.4852,-0.4518)
+ -- (-0.4951,-0.4499)
+ -- (-0.5050,-0.4500)
+ -- (-0.5148,-0.4520)
+ -- (-0.5240,-0.4560)
+ -- (-0.5322,-0.4617)
+ -- (-0.5391,-0.4689)
+ -- (-0.5444,-0.4773)
+ -- (-0.5480,-0.4866)
+ -- (-0.5496,-0.4965)
+ -- (-0.5492,-0.5065)
+ -- (-0.5469,-0.5162)
+ -- (-0.5426,-0.5252)
+ -- (-0.5366,-0.5332)
+ -- (-0.5292,-0.5398)
+ -- (-0.5205,-0.5448)
+ -- (-0.5110,-0.5479)
+ -- (-0.5011,-0.5491)
+ -- (-0.4912,-0.5482)
+ -- (-0.4816,-0.5454)
+ -- (-0.4728,-0.5406)
+ -- (-0.4652,-0.5342)
+ -- (-0.4590,-0.5264)
+ -- (-0.4546,-0.5174)
+ -- (-0.4520,-0.5078)
+ -- (-0.4515,-0.4978)
+ -- (-0.4531,-0.4879)
+ -- (-0.4566,-0.4786)
+ -- (-0.4620,-0.4702)
+ -- (-0.4690,-0.4631)
+ -- (-0.4773,-0.4575)
+ -- (-0.4866,-0.4538)
+ -- (-0.4964,-0.4521)
+ -- (-0.5064,-0.4525)
+ -- (-0.5161,-0.4549)
+ -- (-0.5250,-0.4593)
+ -- (-0.5329,-0.4654)
+ -- (-0.5393,-0.4731)
+ -- (-0.5440,-0.4819)
+ -- (-0.5467,-0.4915)
+ -- (-0.5474,-0.5015)
+ -- (-0.5460,-0.5113)
+ -- (-0.5425,-0.5207)
+ -- (-0.5372,-0.5291)
+ -- (-0.5302,-0.5362)
+ -- (-0.5218,-0.5417)
+ -- (-0.5125,-0.5453)
+ -- (-0.5027,-0.5469)
+ -- (-0.4927,-0.5463)
+ -- (-0.4831,-0.5436)
+ -- (-0.4742,-0.5390)
+ -- (-0.4666,-0.5326)
+ -- (-0.4605,-0.5247)
+ -- (-0.4562,-0.5157)
+ -- (-0.4539,-0.5060)
+ -- (-0.4538,-0.4960)
+ -- (-0.4558,-0.4862)
+ -- (-0.4598,-0.4771)
+ -- (-0.4657,-0.4690)
+ -- (-0.4732,-0.4624)
+ -- (-0.4820,-0.4576)
+ -- (-0.4915,-0.4548)
+ -- (-0.5015,-0.4541)
+ -- (-0.5114,-0.4556)
+ -- (-0.5207,-0.4591)
+ -- (-0.5290,-0.4646)
+ -- (-0.5359,-0.4718)
+ -- (-0.5411,-0.4803)
+ -- (-0.5444,-0.4898)
+ -- (-0.5455,-0.4997)
+ -- (-0.5444,-0.5096)
+ -- (-0.5411,-0.5191)
+ -- (-0.5359,-0.5276)
+ -- (-0.5290,-0.5347)
+ -- (-0.5206,-0.5402)
+ -- (-0.5112,-0.5437)
+ -- (-0.5014,-0.5450)
+ -- (-0.4914,-0.5441)
+ -- (-0.4819,-0.5411)
+ -- (-0.4733,-0.5360)
+ -- (-0.4660,-0.5292)
+ -- (-0.4605,-0.5209)
+ -- (-0.4569,-0.5116)
+ -- (-0.4555,-0.5017)
+ -- (-0.4563,-0.4918)
+ -- (-0.4592,-0.4822)
+ -- (-0.4643,-0.4736)
+ -- (-0.4711,-0.4664)
+ -- (-0.4794,-0.4608)
+ -- (-0.4887,-0.4573)
+ -- (-0.4986,-0.4559)
+ -- (-0.5086,-0.4568)
+ -- (-0.5181,-0.4599)
+ -- (-0.5266,-0.4650)
+ -- (-0.5338,-0.4719)
+ -- (-0.5392,-0.4803)
+ -- (-0.5426,-0.4897)
+ -- (-0.5437,-0.4996)
+ -- (-0.5426,-0.5095)
+ -- (-0.5393,-0.5189)
+ -- (-0.5339,-0.5273)
+ -- (-0.5267,-0.5343)
+ -- (-0.5182,-0.5394)
+ -- (-0.5087,-0.5425)
+ -- (-0.4987,-0.5433)
+ -- (-0.4889,-0.5418)
+ -- (-0.4796,-0.5381)
+ -- (-0.4714,-0.5323)
+ -- (-0.4648,-0.5249)
+ -- (-0.4601,-0.5161)
+ -- (-0.4575,-0.5064)
+ -- (-0.4573,-0.4965)
+ -- (-0.4593,-0.4867)
+ -- (-0.4635,-0.4777)
+ -- (-0.4697,-0.4698)
+ -- (-0.4776,-0.4637)
+ -- (-0.4867,-0.4595)
+ -- (-0.4964,-0.4576)
+ -- (-0.5064,-0.4580)
+ -- (-0.5160,-0.4607)
+ -- (-0.5247,-0.4656)
+ -- (-0.5320,-0.4724)
+ -- (-0.5376,-0.4807)
+ -- (-0.5410,-0.4900)
+ -- (-0.5422,-0.4999)
+ -- (-0.5409,-0.5098)
+ -- (-0.5374,-0.5192)
+ -- (-0.5318,-0.5274)
+ -- (-0.5244,-0.5341)
+ -- (-0.5156,-0.5389)
+ -- (-0.5060,-0.5414)
+ -- (-0.4960,-0.5416)
+ -- (-0.4863,-0.5394)
+ -- (-0.4773,-0.5350)
+ -- (-0.4697,-0.5285)
+ -- (-0.4638,-0.5205)
+ -- (-0.4601,-0.5112)
+ -- (-0.4586,-0.5014)
+ -- (-0.4595,-0.4914)
+ -- (-0.4628,-0.4820)
+ -- (-0.4682,-0.4737)
+ -- (-0.4755,-0.4668)
+ -- (-0.4842,-0.4620)
+ -- (-0.4938,-0.4593)
+ -- (-0.5038,-0.4591)
+ -- (-0.5135,-0.4613)
+ -- (-0.5225,-0.4657)
+ -- (-0.5300,-0.4722)
+ -- (-0.5358,-0.4804)
+ -- (-0.5395,-0.4896)
+ -- (-0.5408,-0.4995)
+ -- (-0.5396,-0.5094)
+ -- (-0.5361,-0.5188)
+ -- (-0.5304,-0.5270)
+ -- (-0.5228,-0.5335)
+ -- (-0.5139,-0.5380)
+ -- (-0.5042,-0.5402)
+ -- (-0.4942,-0.5400)
+ -- (-0.4846,-0.5373)
+ -- (-0.4760,-0.5323)
+ -- (-0.4688,-0.5254)
+ -- (-0.4636,-0.5169)
+ -- (-0.4606,-0.5074)
+ -- (-0.4600,-0.4975)
+ -- (-0.4619,-0.4877)
+ -- (-0.4662,-0.4787)
+ -- (-0.4726,-0.4710)
+ -- (-0.4806,-0.4651)
+ -- (-0.4899,-0.4615)
+ -- (-0.4998,-0.4602)
+ -- (-0.5097,-0.4615)
+ -- (-0.5190,-0.4651)
+ -- (-0.5270,-0.4710)
+ -- (-0.5334,-0.4787)
+ -- (-0.5376,-0.4877)
+ -- (-0.5394,-0.4976)
+ -- (-0.5387,-0.5075)
+ -- (-0.5356,-0.5170)
+ -- (-0.5301,-0.5253)
+ -- (-0.5227,-0.5320)
+ -- (-0.5139,-0.5367)
+ -- (-0.5042,-0.5390)
+ -- (-0.4942,-0.5387)
+ -- (-0.4847,-0.5360)
+ -- (-0.4761,-0.5309)
+ -- (-0.4691,-0.5238)
+ -- (-0.4641,-0.5151)
+ -- (-0.4615,-0.5055)
+ -- (-0.4614,-0.4955)
+ -- (-0.4638,-0.4859)
+ -- (-0.4687,-0.4772)
+ -- (-0.4756,-0.4700)
+ -- (-0.4841,-0.4648)
+ -- (-0.4936,-0.4619)
+ -- (-0.5036,-0.4616)
+ -- (-0.5133,-0.4638)
+ -- (-0.5221,-0.4685)
+ -- (-0.5294,-0.4753)
+ -- (-0.5348,-0.4837)
+ -- (-0.5377,-0.4932)
+ -- (-0.5382,-0.5032)
+ -- (-0.5360,-0.5129)
+ -- (-0.5314,-0.5218)
+ -- (-0.5247,-0.5291)
+ -- (-0.5163,-0.5345)
+ -- (-0.5067,-0.5375)
+ -- (-0.4968,-0.5379)
+ -- (-0.4870,-0.5357)
+ -- (-0.4782,-0.5311)
+ -- (-0.4709,-0.5243)
+ -- (-0.4656,-0.5158)
+ -- (-0.4627,-0.5063)
+ -- (-0.4624,-0.4963)
+ -- (-0.4647,-0.4866)
+ -- (-0.4695,-0.4779)
+ -- (-0.4764,-0.4707)
+ -- (-0.4850,-0.4656)
+ -- (-0.4946,-0.4629)
+ -- (-0.5045,-0.4628)
+ -- (-0.5142,-0.4653)
+ -- (-0.5228,-0.4703)
+ -- (-0.5298,-0.4775)
+ -- (-0.5347,-0.4862)
+ -- (-0.5370,-0.4958)
+ -- (-0.5368,-0.5058)
+ -- (-0.5339,-0.5153)
+ -- (-0.5285,-0.5238)
+ -- (-0.5212,-0.5305)
+ -- (-0.5123,-0.5350)
+ -- (-0.5025,-0.5369)
+ -- (-0.4925,-0.5362)
+ -- (-0.4831,-0.5329)
+ -- (-0.4750,-0.5271)
+ -- (-0.4687,-0.5194)
+ -- (-0.4647,-0.5103)
+ -- (-0.4632,-0.5004)
+ -- (-0.4645,-0.4905)
+ -- (-0.4684,-0.4813)
+ -- (-0.4747,-0.4736)
+ -- (-0.4827,-0.4677)
+ -- (-0.4921,-0.4643)
+ -- (-0.5020,-0.4636)
+ -- (-0.5118,-0.4655)
+ -- (-0.5207,-0.4700)
+ -- (-0.5280,-0.4768)
+ -- (-0.5332,-0.4853)
+ -- (-0.5359,-0.4949)
+ -- (-0.5359,-0.5049)
+ -- (-0.5332,-0.5145)
+ -- (-0.5280,-0.5229)
+ -- (-0.5206,-0.5297)
+ -- (-0.5117,-0.5341)
+ -- (-0.5019,-0.5360)
+ -- (-0.4920,-0.5351)
+ -- (-0.4827,-0.5315)
+ -- (-0.4747,-0.5255)
+ -- (-0.4687,-0.5176)
+ -- (-0.4651,-0.5083)
+ -- (-0.4642,-0.4983)
+ -- (-0.4661,-0.4886)
+ -- (-0.4706,-0.4797)
+ -- (-0.4774,-0.4724)
+ -- (-0.4860,-0.4672)
+ -- (-0.4956,-0.4647)
+ -- (-0.5056,-0.4649)
+ -- (-0.5151,-0.4678)
+ -- (-0.5234,-0.4733)
+ -- (-0.5299,-0.4809)
+ -- (-0.5340,-0.4900)
+ -- (-0.5354,-0.4999)
+ -- (-0.5340,-0.5097)
+ -- (-0.5299,-0.5188)
+ -- (-0.5234,-0.5264)
+ -- (-0.5150,-0.5318)
+ -- (-0.5055,-0.5347)
+ -- (-0.4955,-0.5348)
+ -- (-0.4859,-0.5322)
+ -- (-0.4775,-0.5269)
+ -- (-0.4709,-0.5194)
+ -- (-0.4666,-0.5104)
+ -- (-0.4651,-0.5006)
+ -- (-0.4664,-0.4907)
+ -- (-0.4704,-0.4816)
+ -- (-0.4769,-0.4740)
+ -- (-0.4852,-0.4685)
+ -- (-0.4947,-0.4657)
+ -- (-0.5047,-0.4656)
+ -- (-0.5143,-0.4684)
+ -- (-0.5226,-0.4738)
+ -- (-0.5291,-0.4814)
+ -- (-0.5332,-0.4904)
+ -- (-0.5345,-0.5003)
+ -- (-0.5330,-0.5102)
+ -- (-0.5286,-0.5191)
+ -- (-0.5219,-0.5265)
+ -- (-0.5134,-0.5317)
+ -- (-0.5037,-0.5341)
+ -- (-0.4938,-0.5337)
+ -- (-0.4844,-0.5305)
+ -- (-0.4763,-0.5247)
+ -- (-0.4702,-0.5168)
+ -- (-0.4667,-0.5074)
+ -- (-0.4660,-0.4975)
+ -- (-0.4682,-0.4878)
+ -- (-0.4731,-0.4791)
+ -- (-0.4803,-0.4723)
+ -- (-0.4892,-0.4678)
+ -- (-0.4990,-0.4661)
+ -- (-0.5089,-0.4673)
+ -- (-0.5180,-0.4713)
+ -- (-0.5256,-0.4779)
+ -- (-0.5309,-0.4863)
+ -- (-0.5335,-0.4959)
+ -- (-0.5332,-0.5059)
+ -- (-0.5300,-0.5153)
+ -- (-0.5242,-0.5234)
+ -- (-0.5163,-0.5294)
+ -- (-0.5069,-0.5329)
+ -- (-0.4970,-0.5334)
+ -- (-0.4873,-0.5310)
+ -- (-0.4788,-0.5259)
+ -- (-0.4721,-0.5184)
+ -- (-0.4679,-0.5094)
+ -- (-0.4666,-0.4995)
+ -- (-0.4683,-0.4897)
+ -- (-0.4728,-0.4808)
+ -- (-0.4797,-0.4736)
+ -- (-0.4885,-0.4688)
+ -- (-0.4982,-0.4669)
+ -- (-0.5081,-0.4679)
+ -- (-0.5173,-0.4718)
+ -- (-0.5249,-0.4782)
+ -- (-0.5302,-0.4866)
+ -- (-0.5328,-0.4962)
+ -- (-0.5324,-0.5062)
+ -- (-0.5290,-0.5156)
+ -- (-0.5230,-0.5235)
+ -- (-0.5149,-0.5293)
+ -- (-0.5054,-0.5324)
+ -- (-0.4955,-0.5325)
+ -- (-0.4860,-0.5296)
+ -- (-0.4777,-0.5240)
+ -- (-0.4716,-0.5162)
+ -- (-0.4680,-0.5069)
+ -- (-0.4675,-0.4969)
+ -- (-0.4700,-0.4873)
+ -- (-0.4753,-0.4788)
+ -- (-0.4828,-0.4723)
+ -- (-0.4920,-0.4685)
+ -- (-0.5019,-0.4676)
+ -- (-0.5117,-0.4697)
+ -- (-0.5203,-0.4747)
+ -- (-0.5270,-0.4821)
+ -- (-0.5311,-0.4911)
+ -- (-0.5323,-0.5010)
+ -- (-0.5304,-0.5108)
+ -- (-0.5256,-0.5196)
+ -- (-0.5184,-0.5264)
+ -- (-0.5095,-0.5308)
+ -- (-0.4996,-0.5321)
+ -- (-0.4898,-0.5305)
+ -- (-0.4810,-0.5258)
+ -- (-0.4740,-0.5187)
+ -- (-0.4695,-0.5098)
+ -- (-0.4680,-0.5000)
+ -- (-0.4696,-0.4901)
+ -- (-0.4741,-0.4813)
+ -- (-0.4812,-0.4742)
+ -- (-0.4901,-0.4697)
+}
+
+\def\Cplotright{ (0,0)
+ -- ({0.0100*\dx},{0.0100*\dy})
+ -- ({0.0200*\dx},{0.0200*\dy})
+ -- ({0.0300*\dx},{0.0300*\dy})
+ -- ({0.0400*\dx},{0.0400*\dy})
+ -- ({0.0500*\dx},{0.0500*\dy})
+ -- ({0.0600*\dx},{0.0600*\dy})
+ -- ({0.0700*\dx},{0.0700*\dy})
+ -- ({0.0800*\dx},{0.0800*\dy})
+ -- ({0.0900*\dx},{0.0900*\dy})
+ -- ({0.1000*\dx},{0.1000*\dy})
+ -- ({0.1100*\dx},{0.1100*\dy})
+ -- ({0.1200*\dx},{0.1200*\dy})
+ -- ({0.1300*\dx},{0.1300*\dy})
+ -- ({0.1400*\dx},{0.1400*\dy})
+ -- ({0.1500*\dx},{0.1500*\dy})
+ -- ({0.1600*\dx},{0.1600*\dy})
+ -- ({0.1700*\dx},{0.1700*\dy})
+ -- ({0.1800*\dx},{0.1800*\dy})
+ -- ({0.1900*\dx},{0.1899*\dy})
+ -- ({0.2000*\dx},{0.1999*\dy})
+ -- ({0.2100*\dx},{0.2099*\dy})
+ -- ({0.2200*\dx},{0.2199*\dy})
+ -- ({0.2300*\dx},{0.2298*\dy})
+ -- ({0.2400*\dx},{0.2398*\dy})
+ -- ({0.2500*\dx},{0.2498*\dy})
+ -- ({0.2600*\dx},{0.2597*\dy})
+ -- ({0.2700*\dx},{0.2696*\dy})
+ -- ({0.2800*\dx},{0.2796*\dy})
+ -- ({0.2900*\dx},{0.2895*\dy})
+ -- ({0.3000*\dx},{0.2994*\dy})
+ -- ({0.3100*\dx},{0.3093*\dy})
+ -- ({0.3200*\dx},{0.3192*\dy})
+ -- ({0.3300*\dx},{0.3290*\dy})
+ -- ({0.3400*\dx},{0.3389*\dy})
+ -- ({0.3500*\dx},{0.3487*\dy})
+ -- ({0.3600*\dx},{0.3585*\dy})
+ -- ({0.3700*\dx},{0.3683*\dy})
+ -- ({0.3800*\dx},{0.3780*\dy})
+ -- ({0.3900*\dx},{0.3878*\dy})
+ -- ({0.4000*\dx},{0.3975*\dy})
+ -- ({0.4100*\dx},{0.4072*\dy})
+ -- ({0.4200*\dx},{0.4168*\dy})
+ -- ({0.4300*\dx},{0.4264*\dy})
+ -- ({0.4400*\dx},{0.4359*\dy})
+ -- ({0.4500*\dx},{0.4455*\dy})
+ -- ({0.4600*\dx},{0.4549*\dy})
+ -- ({0.4700*\dx},{0.4644*\dy})
+ -- ({0.4800*\dx},{0.4738*\dy})
+ -- ({0.4900*\dx},{0.4831*\dy})
+ -- ({0.5000*\dx},{0.4923*\dy})
+ -- ({0.5100*\dx},{0.5016*\dy})
+ -- ({0.5200*\dx},{0.5107*\dy})
+ -- ({0.5300*\dx},{0.5198*\dy})
+ -- ({0.5400*\dx},{0.5288*\dy})
+ -- ({0.5500*\dx},{0.5377*\dy})
+ -- ({0.5600*\dx},{0.5466*\dy})
+ -- ({0.5700*\dx},{0.5553*\dy})
+ -- ({0.5800*\dx},{0.5640*\dy})
+ -- ({0.5900*\dx},{0.5726*\dy})
+ -- ({0.6000*\dx},{0.5811*\dy})
+ -- ({0.6100*\dx},{0.5895*\dy})
+ -- ({0.6200*\dx},{0.5978*\dy})
+ -- ({0.6300*\dx},{0.6059*\dy})
+ -- ({0.6400*\dx},{0.6140*\dy})
+ -- ({0.6500*\dx},{0.6219*\dy})
+ -- ({0.6600*\dx},{0.6298*\dy})
+ -- ({0.6700*\dx},{0.6374*\dy})
+ -- ({0.6800*\dx},{0.6450*\dy})
+ -- ({0.6900*\dx},{0.6524*\dy})
+ -- ({0.7000*\dx},{0.6597*\dy})
+ -- ({0.7100*\dx},{0.6668*\dy})
+ -- ({0.7200*\dx},{0.6737*\dy})
+ -- ({0.7300*\dx},{0.6805*\dy})
+ -- ({0.7400*\dx},{0.6871*\dy})
+ -- ({0.7500*\dx},{0.6935*\dy})
+ -- ({0.7600*\dx},{0.6998*\dy})
+ -- ({0.7700*\dx},{0.7058*\dy})
+ -- ({0.7800*\dx},{0.7117*\dy})
+ -- ({0.7900*\dx},{0.7174*\dy})
+ -- ({0.8000*\dx},{0.7228*\dy})
+ -- ({0.8100*\dx},{0.7281*\dy})
+ -- ({0.8200*\dx},{0.7331*\dy})
+ -- ({0.8300*\dx},{0.7379*\dy})
+ -- ({0.8400*\dx},{0.7425*\dy})
+ -- ({0.8500*\dx},{0.7469*\dy})
+ -- ({0.8600*\dx},{0.7510*\dy})
+ -- ({0.8700*\dx},{0.7548*\dy})
+ -- ({0.8800*\dx},{0.7584*\dy})
+ -- ({0.8900*\dx},{0.7617*\dy})
+ -- ({0.9000*\dx},{0.7648*\dy})
+ -- ({0.9100*\dx},{0.7676*\dy})
+ -- ({0.9200*\dx},{0.7702*\dy})
+ -- ({0.9300*\dx},{0.7724*\dy})
+ -- ({0.9400*\dx},{0.7744*\dy})
+ -- ({0.9500*\dx},{0.7760*\dy})
+ -- ({0.9600*\dx},{0.7774*\dy})
+ -- ({0.9700*\dx},{0.7785*\dy})
+ -- ({0.9800*\dx},{0.7793*\dy})
+ -- ({0.9900*\dx},{0.7797*\dy})
+ -- ({1.0000*\dx},{0.7799*\dy})
+ -- ({1.0100*\dx},{0.7797*\dy})
+ -- ({1.0200*\dx},{0.7793*\dy})
+ -- ({1.0300*\dx},{0.7785*\dy})
+ -- ({1.0400*\dx},{0.7774*\dy})
+ -- ({1.0500*\dx},{0.7759*\dy})
+ -- ({1.0600*\dx},{0.7741*\dy})
+ -- ({1.0700*\dx},{0.7721*\dy})
+ -- ({1.0800*\dx},{0.7696*\dy})
+ -- ({1.0900*\dx},{0.7669*\dy})
+ -- ({1.1000*\dx},{0.7638*\dy})
+ -- ({1.1100*\dx},{0.7604*\dy})
+ -- ({1.1200*\dx},{0.7567*\dy})
+ -- ({1.1300*\dx},{0.7526*\dy})
+ -- ({1.1400*\dx},{0.7482*\dy})
+ -- ({1.1500*\dx},{0.7436*\dy})
+ -- ({1.1600*\dx},{0.7385*\dy})
+ -- ({1.1700*\dx},{0.7332*\dy})
+ -- ({1.1800*\dx},{0.7276*\dy})
+ -- ({1.1900*\dx},{0.7217*\dy})
+ -- ({1.2000*\dx},{0.7154*\dy})
+ -- ({1.2100*\dx},{0.7089*\dy})
+ -- ({1.2200*\dx},{0.7021*\dy})
+ -- ({1.2300*\dx},{0.6950*\dy})
+ -- ({1.2400*\dx},{0.6877*\dy})
+ -- ({1.2500*\dx},{0.6801*\dy})
+ -- ({1.2600*\dx},{0.6722*\dy})
+ -- ({1.2700*\dx},{0.6641*\dy})
+ -- ({1.2800*\dx},{0.6558*\dy})
+ -- ({1.2900*\dx},{0.6473*\dy})
+ -- ({1.3000*\dx},{0.6386*\dy})
+ -- ({1.3100*\dx},{0.6296*\dy})
+ -- ({1.3200*\dx},{0.6205*\dy})
+ -- ({1.3300*\dx},{0.6112*\dy})
+ -- ({1.3400*\dx},{0.6018*\dy})
+ -- ({1.3500*\dx},{0.5923*\dy})
+ -- ({1.3600*\dx},{0.5826*\dy})
+ -- ({1.3700*\dx},{0.5728*\dy})
+ -- ({1.3800*\dx},{0.5630*\dy})
+ -- ({1.3900*\dx},{0.5531*\dy})
+ -- ({1.4000*\dx},{0.5431*\dy})
+ -- ({1.4100*\dx},{0.5331*\dy})
+ -- ({1.4200*\dx},{0.5231*\dy})
+ -- ({1.4300*\dx},{0.5131*\dy})
+ -- ({1.4400*\dx},{0.5032*\dy})
+ -- ({1.4500*\dx},{0.4933*\dy})
+ -- ({1.4600*\dx},{0.4834*\dy})
+ -- ({1.4700*\dx},{0.4737*\dy})
+ -- ({1.4800*\dx},{0.4641*\dy})
+ -- ({1.4900*\dx},{0.4546*\dy})
+ -- ({1.5000*\dx},{0.4453*\dy})
+ -- ({1.5100*\dx},{0.4361*\dy})
+ -- ({1.5200*\dx},{0.4272*\dy})
+ -- ({1.5300*\dx},{0.4185*\dy})
+ -- ({1.5400*\dx},{0.4100*\dy})
+ -- ({1.5500*\dx},{0.4018*\dy})
+ -- ({1.5600*\dx},{0.3939*\dy})
+ -- ({1.5700*\dx},{0.3862*\dy})
+ -- ({1.5800*\dx},{0.3790*\dy})
+ -- ({1.5900*\dx},{0.3720*\dy})
+ -- ({1.6000*\dx},{0.3655*\dy})
+ -- ({1.6100*\dx},{0.3593*\dy})
+ -- ({1.6200*\dx},{0.3535*\dy})
+ -- ({1.6300*\dx},{0.3482*\dy})
+ -- ({1.6400*\dx},{0.3433*\dy})
+ -- ({1.6500*\dx},{0.3388*\dy})
+ -- ({1.6600*\dx},{0.3348*\dy})
+ -- ({1.6700*\dx},{0.3313*\dy})
+ -- ({1.6800*\dx},{0.3283*\dy})
+ -- ({1.6900*\dx},{0.3258*\dy})
+ -- ({1.7000*\dx},{0.3238*\dy})
+ -- ({1.7100*\dx},{0.3224*\dy})
+ -- ({1.7200*\dx},{0.3214*\dy})
+ -- ({1.7300*\dx},{0.3211*\dy})
+ -- ({1.7400*\dx},{0.3212*\dy})
+ -- ({1.7500*\dx},{0.3219*\dy})
+ -- ({1.7600*\dx},{0.3232*\dy})
+ -- ({1.7700*\dx},{0.3250*\dy})
+ -- ({1.7800*\dx},{0.3273*\dy})
+ -- ({1.7900*\dx},{0.3302*\dy})
+ -- ({1.8000*\dx},{0.3336*\dy})
+ -- ({1.8100*\dx},{0.3376*\dy})
+ -- ({1.8200*\dx},{0.3420*\dy})
+ -- ({1.8300*\dx},{0.3470*\dy})
+ -- ({1.8400*\dx},{0.3524*\dy})
+ -- ({1.8500*\dx},{0.3584*\dy})
+ -- ({1.8600*\dx},{0.3648*\dy})
+ -- ({1.8700*\dx},{0.3716*\dy})
+ -- ({1.8800*\dx},{0.3788*\dy})
+ -- ({1.8900*\dx},{0.3865*\dy})
+ -- ({1.9000*\dx},{0.3945*\dy})
+ -- ({1.9100*\dx},{0.4028*\dy})
+ -- ({1.9200*\dx},{0.4115*\dy})
+ -- ({1.9300*\dx},{0.4204*\dy})
+ -- ({1.9400*\dx},{0.4296*\dy})
+ -- ({1.9500*\dx},{0.4391*\dy})
+ -- ({1.9600*\dx},{0.4487*\dy})
+ -- ({1.9700*\dx},{0.4584*\dy})
+ -- ({1.9800*\dx},{0.4683*\dy})
+ -- ({1.9900*\dx},{0.4783*\dy})
+ -- ({2.0000*\dx},{0.4883*\dy})
+ -- ({2.0100*\dx},{0.4982*\dy})
+ -- ({2.0200*\dx},{0.5082*\dy})
+ -- ({2.0300*\dx},{0.5181*\dy})
+ -- ({2.0400*\dx},{0.5278*\dy})
+ -- ({2.0500*\dx},{0.5374*\dy})
+ -- ({2.0600*\dx},{0.5468*\dy})
+ -- ({2.0700*\dx},{0.5560*\dy})
+ -- ({2.0800*\dx},{0.5648*\dy})
+ -- ({2.0900*\dx},{0.5734*\dy})
+ -- ({2.1000*\dx},{0.5816*\dy})
+ -- ({2.1100*\dx},{0.5894*\dy})
+ -- ({2.1200*\dx},{0.5967*\dy})
+ -- ({2.1300*\dx},{0.6036*\dy})
+ -- ({2.1400*\dx},{0.6100*\dy})
+ -- ({2.1500*\dx},{0.6159*\dy})
+ -- ({2.1600*\dx},{0.6212*\dy})
+ -- ({2.1700*\dx},{0.6259*\dy})
+ -- ({2.1800*\dx},{0.6300*\dy})
+ -- ({2.1900*\dx},{0.6335*\dy})
+ -- ({2.2000*\dx},{0.6363*\dy})
+ -- ({2.2100*\dx},{0.6384*\dy})
+ -- ({2.2200*\dx},{0.6399*\dy})
+ -- ({2.2300*\dx},{0.6407*\dy})
+ -- ({2.2400*\dx},{0.6408*\dy})
+ -- ({2.2500*\dx},{0.6401*\dy})
+ -- ({2.2600*\dx},{0.6388*\dy})
+ -- ({2.2700*\dx},{0.6368*\dy})
+ -- ({2.2800*\dx},{0.6340*\dy})
+ -- ({2.2900*\dx},{0.6306*\dy})
+ -- ({2.3000*\dx},{0.6266*\dy})
+ -- ({2.3100*\dx},{0.6218*\dy})
+ -- ({2.3200*\dx},{0.6165*\dy})
+ -- ({2.3300*\dx},{0.6105*\dy})
+ -- ({2.3400*\dx},{0.6040*\dy})
+ -- ({2.3500*\dx},{0.5970*\dy})
+ -- ({2.3600*\dx},{0.5894*\dy})
+ -- ({2.3700*\dx},{0.5814*\dy})
+ -- ({2.3800*\dx},{0.5729*\dy})
+ -- ({2.3900*\dx},{0.5641*\dy})
+ -- ({2.4000*\dx},{0.5550*\dy})
+ -- ({2.4100*\dx},{0.5455*\dy})
+ -- ({2.4200*\dx},{0.5359*\dy})
+ -- ({2.4300*\dx},{0.5261*\dy})
+ -- ({2.4400*\dx},{0.5161*\dy})
+ -- ({2.4500*\dx},{0.5061*\dy})
+ -- ({2.4600*\dx},{0.4961*\dy})
+ -- ({2.4700*\dx},{0.4862*\dy})
+ -- ({2.4800*\dx},{0.4764*\dy})
+ -- ({2.4900*\dx},{0.4668*\dy})
+ -- ({2.5000*\dx},{0.4574*\dy})
+ -- ({2.5100*\dx},{0.4483*\dy})
+ -- ({2.5200*\dx},{0.4396*\dy})
+ -- ({2.5300*\dx},{0.4313*\dy})
+ -- ({2.5400*\dx},{0.4235*\dy})
+ -- ({2.5500*\dx},{0.4161*\dy})
+ -- ({2.5600*\dx},{0.4094*\dy})
+ -- ({2.5700*\dx},{0.4033*\dy})
+ -- ({2.5800*\dx},{0.3978*\dy})
+ -- ({2.5900*\dx},{0.3930*\dy})
+ -- ({2.6000*\dx},{0.3889*\dy})
+ -- ({2.6100*\dx},{0.3856*\dy})
+ -- ({2.6200*\dx},{0.3831*\dy})
+ -- ({2.6300*\dx},{0.3814*\dy})
+ -- ({2.6400*\dx},{0.3805*\dy})
+ -- ({2.6500*\dx},{0.3805*\dy})
+ -- ({2.6600*\dx},{0.3812*\dy})
+ -- ({2.6700*\dx},{0.3828*\dy})
+ -- ({2.6800*\dx},{0.3853*\dy})
+ -- ({2.6900*\dx},{0.3885*\dy})
+ -- ({2.7000*\dx},{0.3925*\dy})
+ -- ({2.7100*\dx},{0.3973*\dy})
+ -- ({2.7200*\dx},{0.4028*\dy})
+ -- ({2.7300*\dx},{0.4090*\dy})
+ -- ({2.7400*\dx},{0.4158*\dy})
+ -- ({2.7500*\dx},{0.4233*\dy})
+ -- ({2.7600*\dx},{0.4313*\dy})
+ -- ({2.7700*\dx},{0.4397*\dy})
+ -- ({2.7800*\dx},{0.4487*\dy})
+ -- ({2.7900*\dx},{0.4579*\dy})
+ -- ({2.8000*\dx},{0.4675*\dy})
+ -- ({2.8100*\dx},{0.4773*\dy})
+ -- ({2.8200*\dx},{0.4872*\dy})
+ -- ({2.8300*\dx},{0.4972*\dy})
+ -- ({2.8400*\dx},{0.5072*\dy})
+ -- ({2.8500*\dx},{0.5171*\dy})
+ -- ({2.8600*\dx},{0.5268*\dy})
+ -- ({2.8700*\dx},{0.5362*\dy})
+ -- ({2.8800*\dx},{0.5454*\dy})
+ -- ({2.8900*\dx},{0.5541*\dy})
+ -- ({2.9000*\dx},{0.5624*\dy})
+ -- ({2.9100*\dx},{0.5701*\dy})
+ -- ({2.9200*\dx},{0.5772*\dy})
+ -- ({2.9300*\dx},{0.5836*\dy})
+ -- ({2.9400*\dx},{0.5893*\dy})
+ -- ({2.9500*\dx},{0.5942*\dy})
+ -- ({2.9600*\dx},{0.5983*\dy})
+ -- ({2.9700*\dx},{0.6015*\dy})
+ -- ({2.9800*\dx},{0.6038*\dy})
+ -- ({2.9900*\dx},{0.6053*\dy})
+ -- ({3.0000*\dx},{0.6057*\dy})
+ -- ({3.0100*\dx},{0.6052*\dy})
+ -- ({3.0200*\dx},{0.6038*\dy})
+ -- ({3.0300*\dx},{0.6015*\dy})
+ -- ({3.0400*\dx},{0.5982*\dy})
+ -- ({3.0500*\dx},{0.5941*\dy})
+ -- ({3.0600*\dx},{0.5891*\dy})
+ -- ({3.0700*\dx},{0.5833*\dy})
+ -- ({3.0800*\dx},{0.5767*\dy})
+ -- ({3.0900*\dx},{0.5695*\dy})
+ -- ({3.1000*\dx},{0.5616*\dy})
+ -- ({3.1100*\dx},{0.5531*\dy})
+ -- ({3.1200*\dx},{0.5442*\dy})
+ -- ({3.1300*\dx},{0.5349*\dy})
+ -- ({3.1400*\dx},{0.5253*\dy})
+ -- ({3.1500*\dx},{0.5154*\dy})
+ -- ({3.1600*\dx},{0.5054*\dy})
+ -- ({3.1700*\dx},{0.4954*\dy})
+ -- ({3.1800*\dx},{0.4855*\dy})
+ -- ({3.1900*\dx},{0.4758*\dy})
+ -- ({3.2000*\dx},{0.4663*\dy})
+ -- ({3.2100*\dx},{0.4572*\dy})
+ -- ({3.2200*\dx},{0.4486*\dy})
+ -- ({3.2300*\dx},{0.4405*\dy})
+ -- ({3.2400*\dx},{0.4331*\dy})
+ -- ({3.2500*\dx},{0.4263*\dy})
+ -- ({3.2600*\dx},{0.4204*\dy})
+ -- ({3.2700*\dx},{0.4153*\dy})
+ -- ({3.2800*\dx},{0.4111*\dy})
+ -- ({3.2900*\dx},{0.4079*\dy})
+ -- ({3.3000*\dx},{0.4057*\dy})
+ -- ({3.3100*\dx},{0.4045*\dy})
+ -- ({3.3200*\dx},{0.4043*\dy})
+ -- ({3.3300*\dx},{0.4052*\dy})
+ -- ({3.3400*\dx},{0.4071*\dy})
+ -- ({3.3500*\dx},{0.4100*\dy})
+ -- ({3.3600*\dx},{0.4139*\dy})
+ -- ({3.3700*\dx},{0.4188*\dy})
+ -- ({3.3800*\dx},{0.4246*\dy})
+ -- ({3.3900*\dx},{0.4311*\dy})
+ -- ({3.4000*\dx},{0.4385*\dy})
+ -- ({3.4100*\dx},{0.4465*\dy})
+ -- ({3.4200*\dx},{0.4551*\dy})
+ -- ({3.4300*\dx},{0.4643*\dy})
+ -- ({3.4400*\dx},{0.4738*\dy})
+ -- ({3.4500*\dx},{0.4835*\dy})
+ -- ({3.4600*\dx},{0.4935*\dy})
+ -- ({3.4700*\dx},{0.5035*\dy})
+ -- ({3.4800*\dx},{0.5134*\dy})
+ -- ({3.4900*\dx},{0.5231*\dy})
+ -- ({3.5000*\dx},{0.5326*\dy})
+ -- ({3.5100*\dx},{0.5416*\dy})
+ -- ({3.5200*\dx},{0.5501*\dy})
+ -- ({3.5300*\dx},{0.5579*\dy})
+ -- ({3.5400*\dx},{0.5650*\dy})
+ -- ({3.5500*\dx},{0.5713*\dy})
+ -- ({3.5600*\dx},{0.5767*\dy})
+ -- ({3.5700*\dx},{0.5811*\dy})
+ -- ({3.5800*\dx},{0.5845*\dy})
+ -- ({3.5900*\dx},{0.5868*\dy})
+ -- ({3.6000*\dx},{0.5880*\dy})
+ -- ({3.6100*\dx},{0.5880*\dy})
+ -- ({3.6200*\dx},{0.5869*\dy})
+ -- ({3.6300*\dx},{0.5848*\dy})
+ -- ({3.6400*\dx},{0.5815*\dy})
+ -- ({3.6500*\dx},{0.5771*\dy})
+ -- ({3.6600*\dx},{0.5718*\dy})
+ -- ({3.6700*\dx},{0.5655*\dy})
+ -- ({3.6800*\dx},{0.5584*\dy})
+ -- ({3.6900*\dx},{0.5505*\dy})
+ -- ({3.7000*\dx},{0.5419*\dy})
+ -- ({3.7100*\dx},{0.5329*\dy})
+ -- ({3.7200*\dx},{0.5233*\dy})
+ -- ({3.7300*\dx},{0.5135*\dy})
+ -- ({3.7400*\dx},{0.5036*\dy})
+ -- ({3.7500*\dx},{0.4936*\dy})
+ -- ({3.7600*\dx},{0.4837*\dy})
+ -- ({3.7700*\dx},{0.4741*\dy})
+ -- ({3.7800*\dx},{0.4649*\dy})
+ -- ({3.7900*\dx},{0.4562*\dy})
+ -- ({3.8000*\dx},{0.4481*\dy})
+ -- ({3.8100*\dx},{0.4408*\dy})
+ -- ({3.8200*\dx},{0.4343*\dy})
+ -- ({3.8300*\dx},{0.4289*\dy})
+ -- ({3.8400*\dx},{0.4244*\dy})
+ -- ({3.8500*\dx},{0.4211*\dy})
+ -- ({3.8600*\dx},{0.4189*\dy})
+ -- ({3.8700*\dx},{0.4180*\dy})
+ -- ({3.8800*\dx},{0.4182*\dy})
+ -- ({3.8900*\dx},{0.4197*\dy})
+ -- ({3.9000*\dx},{0.4223*\dy})
+ -- ({3.9100*\dx},{0.4261*\dy})
+ -- ({3.9200*\dx},{0.4311*\dy})
+ -- ({3.9300*\dx},{0.4370*\dy})
+ -- ({3.9400*\dx},{0.4439*\dy})
+ -- ({3.9500*\dx},{0.4516*\dy})
+ -- ({3.9600*\dx},{0.4601*\dy})
+ -- ({3.9700*\dx},{0.4691*\dy})
+ -- ({3.9800*\dx},{0.4786*\dy})
+ -- ({3.9900*\dx},{0.4885*\dy})
+ -- ({4.0000*\dx},{0.4984*\dy})
+ -- ({4.0100*\dx},{0.5084*\dy})
+ -- ({4.0200*\dx},{0.5182*\dy})
+ -- ({4.0300*\dx},{0.5277*\dy})
+ -- ({4.0400*\dx},{0.5368*\dy})
+ -- ({4.0500*\dx},{0.5452*\dy})
+ -- ({4.0600*\dx},{0.5528*\dy})
+ -- ({4.0700*\dx},{0.5596*\dy})
+ -- ({4.0800*\dx},{0.5654*\dy})
+ -- ({4.0900*\dx},{0.5701*\dy})
+ -- ({4.1000*\dx},{0.5737*\dy})
+ -- ({4.1100*\dx},{0.5760*\dy})
+ -- ({4.1200*\dx},{0.5771*\dy})
+ -- ({4.1300*\dx},{0.5768*\dy})
+ -- ({4.1400*\dx},{0.5753*\dy})
+ -- ({4.1500*\dx},{0.5725*\dy})
+ -- ({4.1600*\dx},{0.5684*\dy})
+ -- ({4.1700*\dx},{0.5633*\dy})
+ -- ({4.1800*\dx},{0.5570*\dy})
+ -- ({4.1900*\dx},{0.5498*\dy})
+ -- ({4.2000*\dx},{0.5417*\dy})
+ -- ({4.2100*\dx},{0.5329*\dy})
+ -- ({4.2200*\dx},{0.5236*\dy})
+ -- ({4.2300*\dx},{0.5139*\dy})
+ -- ({4.2400*\dx},{0.5040*\dy})
+ -- ({4.2500*\dx},{0.4940*\dy})
+ -- ({4.2600*\dx},{0.4841*\dy})
+ -- ({4.2700*\dx},{0.4746*\dy})
+ -- ({4.2800*\dx},{0.4655*\dy})
+ -- ({4.2900*\dx},{0.4571*\dy})
+ -- ({4.3000*\dx},{0.4494*\dy})
+ -- ({4.3100*\dx},{0.4428*\dy})
+ -- ({4.3200*\dx},{0.4371*\dy})
+ -- ({4.3300*\dx},{0.4327*\dy})
+ -- ({4.3400*\dx},{0.4295*\dy})
+ -- ({4.3500*\dx},{0.4276*\dy})
+ -- ({4.3600*\dx},{0.4270*\dy})
+ -- ({4.3700*\dx},{0.4279*\dy})
+ -- ({4.3800*\dx},{0.4301*\dy})
+ -- ({4.3900*\dx},{0.4336*\dy})
+ -- ({4.4000*\dx},{0.4383*\dy})
+ -- ({4.4100*\dx},{0.4443*\dy})
+ -- ({4.4200*\dx},{0.4512*\dy})
+ -- ({4.4300*\dx},{0.4591*\dy})
+ -- ({4.4400*\dx},{0.4678*\dy})
+ -- ({4.4500*\dx},{0.4771*\dy})
+ -- ({4.4600*\dx},{0.4868*\dy})
+ -- ({4.4700*\dx},{0.4967*\dy})
+ -- ({4.4800*\dx},{0.5067*\dy})
+ -- ({4.4900*\dx},{0.5165*\dy})
+ -- ({4.5000*\dx},{0.5260*\dy})
+ -- ({4.5100*\dx},{0.5350*\dy})
+ -- ({4.5200*\dx},{0.5432*\dy})
+ -- ({4.5300*\dx},{0.5505*\dy})
+ -- ({4.5400*\dx},{0.5568*\dy})
+ -- ({4.5500*\dx},{0.5619*\dy})
+ -- ({4.5600*\dx},{0.5658*\dy})
+ -- ({4.5700*\dx},{0.5683*\dy})
+ -- ({4.5800*\dx},{0.5694*\dy})
+ -- ({4.5900*\dx},{0.5690*\dy})
+ -- ({4.6000*\dx},{0.5672*\dy})
+ -- ({4.6100*\dx},{0.5641*\dy})
+ -- ({4.6200*\dx},{0.5595*\dy})
+ -- ({4.6300*\dx},{0.5538*\dy})
+ -- ({4.6400*\dx},{0.5469*\dy})
+ -- ({4.6500*\dx},{0.5391*\dy})
+ -- ({4.6600*\dx},{0.5304*\dy})
+ -- ({4.6700*\dx},{0.5211*\dy})
+ -- ({4.6800*\dx},{0.5114*\dy})
+ -- ({4.6900*\dx},{0.5014*\dy})
+ -- ({4.7000*\dx},{0.4914*\dy})
+ -- ({4.7100*\dx},{0.4817*\dy})
+ -- ({4.7200*\dx},{0.4723*\dy})
+ -- ({4.7300*\dx},{0.4636*\dy})
+ -- ({4.7400*\dx},{0.4557*\dy})
+ -- ({4.7500*\dx},{0.4488*\dy})
+ -- ({4.7600*\dx},{0.4431*\dy})
+ -- ({4.7700*\dx},{0.4386*\dy})
+ -- ({4.7800*\dx},{0.4355*\dy})
+ -- ({4.7900*\dx},{0.4339*\dy})
+ -- ({4.8000*\dx},{0.4338*\dy})
+ -- ({4.8100*\dx},{0.4352*\dy})
+ -- ({4.8200*\dx},{0.4380*\dy})
+ -- ({4.8300*\dx},{0.4423*\dy})
+ -- ({4.8400*\dx},{0.4479*\dy})
+ -- ({4.8500*\dx},{0.4546*\dy})
+ -- ({4.8600*\dx},{0.4624*\dy})
+ -- ({4.8700*\dx},{0.4711*\dy})
+ -- ({4.8800*\dx},{0.4804*\dy})
+ -- ({4.8900*\dx},{0.4902*\dy})
+ -- ({4.9000*\dx},{0.5002*\dy})
+ -- ({4.9100*\dx},{0.5101*\dy})
+ -- ({4.9200*\dx},{0.5198*\dy})
+ -- ({4.9300*\dx},{0.5290*\dy})
+ -- ({4.9400*\dx},{0.5375*\dy})
+ -- ({4.9500*\dx},{0.5450*\dy})
+ -- ({4.9600*\dx},{0.5515*\dy})
+ -- ({4.9700*\dx},{0.5567*\dy})
+ -- ({4.9800*\dx},{0.5605*\dy})
+ -- ({4.9900*\dx},{0.5628*\dy})
+}
+
+\def\Cplotleft{ (0,0)
+ -- ({-0.0100*\dx},{-0.0100*\dy})
+ -- ({-0.0200*\dx},{-0.0200*\dy})
+ -- ({-0.0300*\dx},{-0.0300*\dy})
+ -- ({-0.0400*\dx},{-0.0400*\dy})
+ -- ({-0.0500*\dx},{-0.0500*\dy})
+ -- ({-0.0600*\dx},{-0.0600*\dy})
+ -- ({-0.0700*\dx},{-0.0700*\dy})
+ -- ({-0.0800*\dx},{-0.0800*\dy})
+ -- ({-0.0900*\dx},{-0.0900*\dy})
+ -- ({-0.1000*\dx},{-0.1000*\dy})
+ -- ({-0.1100*\dx},{-0.1100*\dy})
+ -- ({-0.1200*\dx},{-0.1200*\dy})
+ -- ({-0.1300*\dx},{-0.1300*\dy})
+ -- ({-0.1400*\dx},{-0.1400*\dy})
+ -- ({-0.1500*\dx},{-0.1500*\dy})
+ -- ({-0.1600*\dx},{-0.1600*\dy})
+ -- ({-0.1700*\dx},{-0.1700*\dy})
+ -- ({-0.1800*\dx},{-0.1800*\dy})
+ -- ({-0.1900*\dx},{-0.1899*\dy})
+ -- ({-0.2000*\dx},{-0.1999*\dy})
+ -- ({-0.2100*\dx},{-0.2099*\dy})
+ -- ({-0.2200*\dx},{-0.2199*\dy})
+ -- ({-0.2300*\dx},{-0.2298*\dy})
+ -- ({-0.2400*\dx},{-0.2398*\dy})
+ -- ({-0.2500*\dx},{-0.2498*\dy})
+ -- ({-0.2600*\dx},{-0.2597*\dy})
+ -- ({-0.2700*\dx},{-0.2696*\dy})
+ -- ({-0.2800*\dx},{-0.2796*\dy})
+ -- ({-0.2900*\dx},{-0.2895*\dy})
+ -- ({-0.3000*\dx},{-0.2994*\dy})
+ -- ({-0.3100*\dx},{-0.3093*\dy})
+ -- ({-0.3200*\dx},{-0.3192*\dy})
+ -- ({-0.3300*\dx},{-0.3290*\dy})
+ -- ({-0.3400*\dx},{-0.3389*\dy})
+ -- ({-0.3500*\dx},{-0.3487*\dy})
+ -- ({-0.3600*\dx},{-0.3585*\dy})
+ -- ({-0.3700*\dx},{-0.3683*\dy})
+ -- ({-0.3800*\dx},{-0.3780*\dy})
+ -- ({-0.3900*\dx},{-0.3878*\dy})
+ -- ({-0.4000*\dx},{-0.3975*\dy})
+ -- ({-0.4100*\dx},{-0.4072*\dy})
+ -- ({-0.4200*\dx},{-0.4168*\dy})
+ -- ({-0.4300*\dx},{-0.4264*\dy})
+ -- ({-0.4400*\dx},{-0.4359*\dy})
+ -- ({-0.4500*\dx},{-0.4455*\dy})
+ -- ({-0.4600*\dx},{-0.4549*\dy})
+ -- ({-0.4700*\dx},{-0.4644*\dy})
+ -- ({-0.4800*\dx},{-0.4738*\dy})
+ -- ({-0.4900*\dx},{-0.4831*\dy})
+ -- ({-0.5000*\dx},{-0.4923*\dy})
+ -- ({-0.5100*\dx},{-0.5016*\dy})
+ -- ({-0.5200*\dx},{-0.5107*\dy})
+ -- ({-0.5300*\dx},{-0.5198*\dy})
+ -- ({-0.5400*\dx},{-0.5288*\dy})
+ -- ({-0.5500*\dx},{-0.5377*\dy})
+ -- ({-0.5600*\dx},{-0.5466*\dy})
+ -- ({-0.5700*\dx},{-0.5553*\dy})
+ -- ({-0.5800*\dx},{-0.5640*\dy})
+ -- ({-0.5900*\dx},{-0.5726*\dy})
+ -- ({-0.6000*\dx},{-0.5811*\dy})
+ -- ({-0.6100*\dx},{-0.5895*\dy})
+ -- ({-0.6200*\dx},{-0.5978*\dy})
+ -- ({-0.6300*\dx},{-0.6059*\dy})
+ -- ({-0.6400*\dx},{-0.6140*\dy})
+ -- ({-0.6500*\dx},{-0.6219*\dy})
+ -- ({-0.6600*\dx},{-0.6298*\dy})
+ -- ({-0.6700*\dx},{-0.6374*\dy})
+ -- ({-0.6800*\dx},{-0.6450*\dy})
+ -- ({-0.6900*\dx},{-0.6524*\dy})
+ -- ({-0.7000*\dx},{-0.6597*\dy})
+ -- ({-0.7100*\dx},{-0.6668*\dy})
+ -- ({-0.7200*\dx},{-0.6737*\dy})
+ -- ({-0.7300*\dx},{-0.6805*\dy})
+ -- ({-0.7400*\dx},{-0.6871*\dy})
+ -- ({-0.7500*\dx},{-0.6935*\dy})
+ -- ({-0.7600*\dx},{-0.6998*\dy})
+ -- ({-0.7700*\dx},{-0.7058*\dy})
+ -- ({-0.7800*\dx},{-0.7117*\dy})
+ -- ({-0.7900*\dx},{-0.7174*\dy})
+ -- ({-0.8000*\dx},{-0.7228*\dy})
+ -- ({-0.8100*\dx},{-0.7281*\dy})
+ -- ({-0.8200*\dx},{-0.7331*\dy})
+ -- ({-0.8300*\dx},{-0.7379*\dy})
+ -- ({-0.8400*\dx},{-0.7425*\dy})
+ -- ({-0.8500*\dx},{-0.7469*\dy})
+ -- ({-0.8600*\dx},{-0.7510*\dy})
+ -- ({-0.8700*\dx},{-0.7548*\dy})
+ -- ({-0.8800*\dx},{-0.7584*\dy})
+ -- ({-0.8900*\dx},{-0.7617*\dy})
+ -- ({-0.9000*\dx},{-0.7648*\dy})
+ -- ({-0.9100*\dx},{-0.7676*\dy})
+ -- ({-0.9200*\dx},{-0.7702*\dy})
+ -- ({-0.9300*\dx},{-0.7724*\dy})
+ -- ({-0.9400*\dx},{-0.7744*\dy})
+ -- ({-0.9500*\dx},{-0.7760*\dy})
+ -- ({-0.9600*\dx},{-0.7774*\dy})
+ -- ({-0.9700*\dx},{-0.7785*\dy})
+ -- ({-0.9800*\dx},{-0.7793*\dy})
+ -- ({-0.9900*\dx},{-0.7797*\dy})
+ -- ({-1.0000*\dx},{-0.7799*\dy})
+ -- ({-1.0100*\dx},{-0.7797*\dy})
+ -- ({-1.0200*\dx},{-0.7793*\dy})
+ -- ({-1.0300*\dx},{-0.7785*\dy})
+ -- ({-1.0400*\dx},{-0.7774*\dy})
+ -- ({-1.0500*\dx},{-0.7759*\dy})
+ -- ({-1.0600*\dx},{-0.7741*\dy})
+ -- ({-1.0700*\dx},{-0.7721*\dy})
+ -- ({-1.0800*\dx},{-0.7696*\dy})
+ -- ({-1.0900*\dx},{-0.7669*\dy})
+ -- ({-1.1000*\dx},{-0.7638*\dy})
+ -- ({-1.1100*\dx},{-0.7604*\dy})
+ -- ({-1.1200*\dx},{-0.7567*\dy})
+ -- ({-1.1300*\dx},{-0.7526*\dy})
+ -- ({-1.1400*\dx},{-0.7482*\dy})
+ -- ({-1.1500*\dx},{-0.7436*\dy})
+ -- ({-1.1600*\dx},{-0.7385*\dy})
+ -- ({-1.1700*\dx},{-0.7332*\dy})
+ -- ({-1.1800*\dx},{-0.7276*\dy})
+ -- ({-1.1900*\dx},{-0.7217*\dy})
+ -- ({-1.2000*\dx},{-0.7154*\dy})
+ -- ({-1.2100*\dx},{-0.7089*\dy})
+ -- ({-1.2200*\dx},{-0.7021*\dy})
+ -- ({-1.2300*\dx},{-0.6950*\dy})
+ -- ({-1.2400*\dx},{-0.6877*\dy})
+ -- ({-1.2500*\dx},{-0.6801*\dy})
+ -- ({-1.2600*\dx},{-0.6722*\dy})
+ -- ({-1.2700*\dx},{-0.6641*\dy})
+ -- ({-1.2800*\dx},{-0.6558*\dy})
+ -- ({-1.2900*\dx},{-0.6473*\dy})
+ -- ({-1.3000*\dx},{-0.6386*\dy})
+ -- ({-1.3100*\dx},{-0.6296*\dy})
+ -- ({-1.3200*\dx},{-0.6205*\dy})
+ -- ({-1.3300*\dx},{-0.6112*\dy})
+ -- ({-1.3400*\dx},{-0.6018*\dy})
+ -- ({-1.3500*\dx},{-0.5923*\dy})
+ -- ({-1.3600*\dx},{-0.5826*\dy})
+ -- ({-1.3700*\dx},{-0.5728*\dy})
+ -- ({-1.3800*\dx},{-0.5630*\dy})
+ -- ({-1.3900*\dx},{-0.5531*\dy})
+ -- ({-1.4000*\dx},{-0.5431*\dy})
+ -- ({-1.4100*\dx},{-0.5331*\dy})
+ -- ({-1.4200*\dx},{-0.5231*\dy})
+ -- ({-1.4300*\dx},{-0.5131*\dy})
+ -- ({-1.4400*\dx},{-0.5032*\dy})
+ -- ({-1.4500*\dx},{-0.4933*\dy})
+ -- ({-1.4600*\dx},{-0.4834*\dy})
+ -- ({-1.4700*\dx},{-0.4737*\dy})
+ -- ({-1.4800*\dx},{-0.4641*\dy})
+ -- ({-1.4900*\dx},{-0.4546*\dy})
+ -- ({-1.5000*\dx},{-0.4453*\dy})
+ -- ({-1.5100*\dx},{-0.4361*\dy})
+ -- ({-1.5200*\dx},{-0.4272*\dy})
+ -- ({-1.5300*\dx},{-0.4185*\dy})
+ -- ({-1.5400*\dx},{-0.4100*\dy})
+ -- ({-1.5500*\dx},{-0.4018*\dy})
+ -- ({-1.5600*\dx},{-0.3939*\dy})
+ -- ({-1.5700*\dx},{-0.3862*\dy})
+ -- ({-1.5800*\dx},{-0.3790*\dy})
+ -- ({-1.5900*\dx},{-0.3720*\dy})
+ -- ({-1.6000*\dx},{-0.3655*\dy})
+ -- ({-1.6100*\dx},{-0.3593*\dy})
+ -- ({-1.6200*\dx},{-0.3535*\dy})
+ -- ({-1.6300*\dx},{-0.3482*\dy})
+ -- ({-1.6400*\dx},{-0.3433*\dy})
+ -- ({-1.6500*\dx},{-0.3388*\dy})
+ -- ({-1.6600*\dx},{-0.3348*\dy})
+ -- ({-1.6700*\dx},{-0.3313*\dy})
+ -- ({-1.6800*\dx},{-0.3283*\dy})
+ -- ({-1.6900*\dx},{-0.3258*\dy})
+ -- ({-1.7000*\dx},{-0.3238*\dy})
+ -- ({-1.7100*\dx},{-0.3224*\dy})
+ -- ({-1.7200*\dx},{-0.3214*\dy})
+ -- ({-1.7300*\dx},{-0.3211*\dy})
+ -- ({-1.7400*\dx},{-0.3212*\dy})
+ -- ({-1.7500*\dx},{-0.3219*\dy})
+ -- ({-1.7600*\dx},{-0.3232*\dy})
+ -- ({-1.7700*\dx},{-0.3250*\dy})
+ -- ({-1.7800*\dx},{-0.3273*\dy})
+ -- ({-1.7900*\dx},{-0.3302*\dy})
+ -- ({-1.8000*\dx},{-0.3336*\dy})
+ -- ({-1.8100*\dx},{-0.3376*\dy})
+ -- ({-1.8200*\dx},{-0.3420*\dy})
+ -- ({-1.8300*\dx},{-0.3470*\dy})
+ -- ({-1.8400*\dx},{-0.3524*\dy})
+ -- ({-1.8500*\dx},{-0.3584*\dy})
+ -- ({-1.8600*\dx},{-0.3648*\dy})
+ -- ({-1.8700*\dx},{-0.3716*\dy})
+ -- ({-1.8800*\dx},{-0.3788*\dy})
+ -- ({-1.8900*\dx},{-0.3865*\dy})
+ -- ({-1.9000*\dx},{-0.3945*\dy})
+ -- ({-1.9100*\dx},{-0.4028*\dy})
+ -- ({-1.9200*\dx},{-0.4115*\dy})
+ -- ({-1.9300*\dx},{-0.4204*\dy})
+ -- ({-1.9400*\dx},{-0.4296*\dy})
+ -- ({-1.9500*\dx},{-0.4391*\dy})
+ -- ({-1.9600*\dx},{-0.4487*\dy})
+ -- ({-1.9700*\dx},{-0.4584*\dy})
+ -- ({-1.9800*\dx},{-0.4683*\dy})
+ -- ({-1.9900*\dx},{-0.4783*\dy})
+ -- ({-2.0000*\dx},{-0.4883*\dy})
+ -- ({-2.0100*\dx},{-0.4982*\dy})
+ -- ({-2.0200*\dx},{-0.5082*\dy})
+ -- ({-2.0300*\dx},{-0.5181*\dy})
+ -- ({-2.0400*\dx},{-0.5278*\dy})
+ -- ({-2.0500*\dx},{-0.5374*\dy})
+ -- ({-2.0600*\dx},{-0.5468*\dy})
+ -- ({-2.0700*\dx},{-0.5560*\dy})
+ -- ({-2.0800*\dx},{-0.5648*\dy})
+ -- ({-2.0900*\dx},{-0.5734*\dy})
+ -- ({-2.1000*\dx},{-0.5816*\dy})
+ -- ({-2.1100*\dx},{-0.5894*\dy})
+ -- ({-2.1200*\dx},{-0.5967*\dy})
+ -- ({-2.1300*\dx},{-0.6036*\dy})
+ -- ({-2.1400*\dx},{-0.6100*\dy})
+ -- ({-2.1500*\dx},{-0.6159*\dy})
+ -- ({-2.1600*\dx},{-0.6212*\dy})
+ -- ({-2.1700*\dx},{-0.6259*\dy})
+ -- ({-2.1800*\dx},{-0.6300*\dy})
+ -- ({-2.1900*\dx},{-0.6335*\dy})
+ -- ({-2.2000*\dx},{-0.6363*\dy})
+ -- ({-2.2100*\dx},{-0.6384*\dy})
+ -- ({-2.2200*\dx},{-0.6399*\dy})
+ -- ({-2.2300*\dx},{-0.6407*\dy})
+ -- ({-2.2400*\dx},{-0.6408*\dy})
+ -- ({-2.2500*\dx},{-0.6401*\dy})
+ -- ({-2.2600*\dx},{-0.6388*\dy})
+ -- ({-2.2700*\dx},{-0.6368*\dy})
+ -- ({-2.2800*\dx},{-0.6340*\dy})
+ -- ({-2.2900*\dx},{-0.6306*\dy})
+ -- ({-2.3000*\dx},{-0.6266*\dy})
+ -- ({-2.3100*\dx},{-0.6218*\dy})
+ -- ({-2.3200*\dx},{-0.6165*\dy})
+ -- ({-2.3300*\dx},{-0.6105*\dy})
+ -- ({-2.3400*\dx},{-0.6040*\dy})
+ -- ({-2.3500*\dx},{-0.5970*\dy})
+ -- ({-2.3600*\dx},{-0.5894*\dy})
+ -- ({-2.3700*\dx},{-0.5814*\dy})
+ -- ({-2.3800*\dx},{-0.5729*\dy})
+ -- ({-2.3900*\dx},{-0.5641*\dy})
+ -- ({-2.4000*\dx},{-0.5550*\dy})
+ -- ({-2.4100*\dx},{-0.5455*\dy})
+ -- ({-2.4200*\dx},{-0.5359*\dy})
+ -- ({-2.4300*\dx},{-0.5261*\dy})
+ -- ({-2.4400*\dx},{-0.5161*\dy})
+ -- ({-2.4500*\dx},{-0.5061*\dy})
+ -- ({-2.4600*\dx},{-0.4961*\dy})
+ -- ({-2.4700*\dx},{-0.4862*\dy})
+ -- ({-2.4800*\dx},{-0.4764*\dy})
+ -- ({-2.4900*\dx},{-0.4668*\dy})
+ -- ({-2.5000*\dx},{-0.4574*\dy})
+ -- ({-2.5100*\dx},{-0.4483*\dy})
+ -- ({-2.5200*\dx},{-0.4396*\dy})
+ -- ({-2.5300*\dx},{-0.4313*\dy})
+ -- ({-2.5400*\dx},{-0.4235*\dy})
+ -- ({-2.5500*\dx},{-0.4161*\dy})
+ -- ({-2.5600*\dx},{-0.4094*\dy})
+ -- ({-2.5700*\dx},{-0.4033*\dy})
+ -- ({-2.5800*\dx},{-0.3978*\dy})
+ -- ({-2.5900*\dx},{-0.3930*\dy})
+ -- ({-2.6000*\dx},{-0.3889*\dy})
+ -- ({-2.6100*\dx},{-0.3856*\dy})
+ -- ({-2.6200*\dx},{-0.3831*\dy})
+ -- ({-2.6300*\dx},{-0.3814*\dy})
+ -- ({-2.6400*\dx},{-0.3805*\dy})
+ -- ({-2.6500*\dx},{-0.3805*\dy})
+ -- ({-2.6600*\dx},{-0.3812*\dy})
+ -- ({-2.6700*\dx},{-0.3828*\dy})
+ -- ({-2.6800*\dx},{-0.3853*\dy})
+ -- ({-2.6900*\dx},{-0.3885*\dy})
+ -- ({-2.7000*\dx},{-0.3925*\dy})
+ -- ({-2.7100*\dx},{-0.3973*\dy})
+ -- ({-2.7200*\dx},{-0.4028*\dy})
+ -- ({-2.7300*\dx},{-0.4090*\dy})
+ -- ({-2.7400*\dx},{-0.4158*\dy})
+ -- ({-2.7500*\dx},{-0.4233*\dy})
+ -- ({-2.7600*\dx},{-0.4313*\dy})
+ -- ({-2.7700*\dx},{-0.4397*\dy})
+ -- ({-2.7800*\dx},{-0.4487*\dy})
+ -- ({-2.7900*\dx},{-0.4579*\dy})
+ -- ({-2.8000*\dx},{-0.4675*\dy})
+ -- ({-2.8100*\dx},{-0.4773*\dy})
+ -- ({-2.8200*\dx},{-0.4872*\dy})
+ -- ({-2.8300*\dx},{-0.4972*\dy})
+ -- ({-2.8400*\dx},{-0.5072*\dy})
+ -- ({-2.8500*\dx},{-0.5171*\dy})
+ -- ({-2.8600*\dx},{-0.5268*\dy})
+ -- ({-2.8700*\dx},{-0.5362*\dy})
+ -- ({-2.8800*\dx},{-0.5454*\dy})
+ -- ({-2.8900*\dx},{-0.5541*\dy})
+ -- ({-2.9000*\dx},{-0.5624*\dy})
+ -- ({-2.9100*\dx},{-0.5701*\dy})
+ -- ({-2.9200*\dx},{-0.5772*\dy})
+ -- ({-2.9300*\dx},{-0.5836*\dy})
+ -- ({-2.9400*\dx},{-0.5893*\dy})
+ -- ({-2.9500*\dx},{-0.5942*\dy})
+ -- ({-2.9600*\dx},{-0.5983*\dy})
+ -- ({-2.9700*\dx},{-0.6015*\dy})
+ -- ({-2.9800*\dx},{-0.6038*\dy})
+ -- ({-2.9900*\dx},{-0.6053*\dy})
+ -- ({-3.0000*\dx},{-0.6057*\dy})
+ -- ({-3.0100*\dx},{-0.6052*\dy})
+ -- ({-3.0200*\dx},{-0.6038*\dy})
+ -- ({-3.0300*\dx},{-0.6015*\dy})
+ -- ({-3.0400*\dx},{-0.5982*\dy})
+ -- ({-3.0500*\dx},{-0.5941*\dy})
+ -- ({-3.0600*\dx},{-0.5891*\dy})
+ -- ({-3.0700*\dx},{-0.5833*\dy})
+ -- ({-3.0800*\dx},{-0.5767*\dy})
+ -- ({-3.0900*\dx},{-0.5695*\dy})
+ -- ({-3.1000*\dx},{-0.5616*\dy})
+ -- ({-3.1100*\dx},{-0.5531*\dy})
+ -- ({-3.1200*\dx},{-0.5442*\dy})
+ -- ({-3.1300*\dx},{-0.5349*\dy})
+ -- ({-3.1400*\dx},{-0.5253*\dy})
+ -- ({-3.1500*\dx},{-0.5154*\dy})
+ -- ({-3.1600*\dx},{-0.5054*\dy})
+ -- ({-3.1700*\dx},{-0.4954*\dy})
+ -- ({-3.1800*\dx},{-0.4855*\dy})
+ -- ({-3.1900*\dx},{-0.4758*\dy})
+ -- ({-3.2000*\dx},{-0.4663*\dy})
+ -- ({-3.2100*\dx},{-0.4572*\dy})
+ -- ({-3.2200*\dx},{-0.4486*\dy})
+ -- ({-3.2300*\dx},{-0.4405*\dy})
+ -- ({-3.2400*\dx},{-0.4331*\dy})
+ -- ({-3.2500*\dx},{-0.4263*\dy})
+ -- ({-3.2600*\dx},{-0.4204*\dy})
+ -- ({-3.2700*\dx},{-0.4153*\dy})
+ -- ({-3.2800*\dx},{-0.4111*\dy})
+ -- ({-3.2900*\dx},{-0.4079*\dy})
+ -- ({-3.3000*\dx},{-0.4057*\dy})
+ -- ({-3.3100*\dx},{-0.4045*\dy})
+ -- ({-3.3200*\dx},{-0.4043*\dy})
+ -- ({-3.3300*\dx},{-0.4052*\dy})
+ -- ({-3.3400*\dx},{-0.4071*\dy})
+ -- ({-3.3500*\dx},{-0.4100*\dy})
+ -- ({-3.3600*\dx},{-0.4139*\dy})
+ -- ({-3.3700*\dx},{-0.4188*\dy})
+ -- ({-3.3800*\dx},{-0.4246*\dy})
+ -- ({-3.3900*\dx},{-0.4311*\dy})
+ -- ({-3.4000*\dx},{-0.4385*\dy})
+ -- ({-3.4100*\dx},{-0.4465*\dy})
+ -- ({-3.4200*\dx},{-0.4551*\dy})
+ -- ({-3.4300*\dx},{-0.4643*\dy})
+ -- ({-3.4400*\dx},{-0.4738*\dy})
+ -- ({-3.4500*\dx},{-0.4835*\dy})
+ -- ({-3.4600*\dx},{-0.4935*\dy})
+ -- ({-3.4700*\dx},{-0.5035*\dy})
+ -- ({-3.4800*\dx},{-0.5134*\dy})
+ -- ({-3.4900*\dx},{-0.5231*\dy})
+ -- ({-3.5000*\dx},{-0.5326*\dy})
+ -- ({-3.5100*\dx},{-0.5416*\dy})
+ -- ({-3.5200*\dx},{-0.5501*\dy})
+ -- ({-3.5300*\dx},{-0.5579*\dy})
+ -- ({-3.5400*\dx},{-0.5650*\dy})
+ -- ({-3.5500*\dx},{-0.5713*\dy})
+ -- ({-3.5600*\dx},{-0.5767*\dy})
+ -- ({-3.5700*\dx},{-0.5811*\dy})
+ -- ({-3.5800*\dx},{-0.5845*\dy})
+ -- ({-3.5900*\dx},{-0.5868*\dy})
+ -- ({-3.6000*\dx},{-0.5880*\dy})
+ -- ({-3.6100*\dx},{-0.5880*\dy})
+ -- ({-3.6200*\dx},{-0.5869*\dy})
+ -- ({-3.6300*\dx},{-0.5848*\dy})
+ -- ({-3.6400*\dx},{-0.5815*\dy})
+ -- ({-3.6500*\dx},{-0.5771*\dy})
+ -- ({-3.6600*\dx},{-0.5718*\dy})
+ -- ({-3.6700*\dx},{-0.5655*\dy})
+ -- ({-3.6800*\dx},{-0.5584*\dy})
+ -- ({-3.6900*\dx},{-0.5505*\dy})
+ -- ({-3.7000*\dx},{-0.5419*\dy})
+ -- ({-3.7100*\dx},{-0.5329*\dy})
+ -- ({-3.7200*\dx},{-0.5233*\dy})
+ -- ({-3.7300*\dx},{-0.5135*\dy})
+ -- ({-3.7400*\dx},{-0.5036*\dy})
+ -- ({-3.7500*\dx},{-0.4936*\dy})
+ -- ({-3.7600*\dx},{-0.4837*\dy})
+ -- ({-3.7700*\dx},{-0.4741*\dy})
+ -- ({-3.7800*\dx},{-0.4649*\dy})
+ -- ({-3.7900*\dx},{-0.4562*\dy})
+ -- ({-3.8000*\dx},{-0.4481*\dy})
+ -- ({-3.8100*\dx},{-0.4408*\dy})
+ -- ({-3.8200*\dx},{-0.4343*\dy})
+ -- ({-3.8300*\dx},{-0.4289*\dy})
+ -- ({-3.8400*\dx},{-0.4244*\dy})
+ -- ({-3.8500*\dx},{-0.4211*\dy})
+ -- ({-3.8600*\dx},{-0.4189*\dy})
+ -- ({-3.8700*\dx},{-0.4180*\dy})
+ -- ({-3.8800*\dx},{-0.4182*\dy})
+ -- ({-3.8900*\dx},{-0.4197*\dy})
+ -- ({-3.9000*\dx},{-0.4223*\dy})
+ -- ({-3.9100*\dx},{-0.4261*\dy})
+ -- ({-3.9200*\dx},{-0.4311*\dy})
+ -- ({-3.9300*\dx},{-0.4370*\dy})
+ -- ({-3.9400*\dx},{-0.4439*\dy})
+ -- ({-3.9500*\dx},{-0.4516*\dy})
+ -- ({-3.9600*\dx},{-0.4601*\dy})
+ -- ({-3.9700*\dx},{-0.4691*\dy})
+ -- ({-3.9800*\dx},{-0.4786*\dy})
+ -- ({-3.9900*\dx},{-0.4885*\dy})
+ -- ({-4.0000*\dx},{-0.4984*\dy})
+ -- ({-4.0100*\dx},{-0.5084*\dy})
+ -- ({-4.0200*\dx},{-0.5182*\dy})
+ -- ({-4.0300*\dx},{-0.5277*\dy})
+ -- ({-4.0400*\dx},{-0.5368*\dy})
+ -- ({-4.0500*\dx},{-0.5452*\dy})
+ -- ({-4.0600*\dx},{-0.5528*\dy})
+ -- ({-4.0700*\dx},{-0.5596*\dy})
+ -- ({-4.0800*\dx},{-0.5654*\dy})
+ -- ({-4.0900*\dx},{-0.5701*\dy})
+ -- ({-4.1000*\dx},{-0.5737*\dy})
+ -- ({-4.1100*\dx},{-0.5760*\dy})
+ -- ({-4.1200*\dx},{-0.5771*\dy})
+ -- ({-4.1300*\dx},{-0.5768*\dy})
+ -- ({-4.1400*\dx},{-0.5753*\dy})
+ -- ({-4.1500*\dx},{-0.5725*\dy})
+ -- ({-4.1600*\dx},{-0.5684*\dy})
+ -- ({-4.1700*\dx},{-0.5633*\dy})
+ -- ({-4.1800*\dx},{-0.5570*\dy})
+ -- ({-4.1900*\dx},{-0.5498*\dy})
+ -- ({-4.2000*\dx},{-0.5417*\dy})
+ -- ({-4.2100*\dx},{-0.5329*\dy})
+ -- ({-4.2200*\dx},{-0.5236*\dy})
+ -- ({-4.2300*\dx},{-0.5139*\dy})
+ -- ({-4.2400*\dx},{-0.5040*\dy})
+ -- ({-4.2500*\dx},{-0.4940*\dy})
+ -- ({-4.2600*\dx},{-0.4841*\dy})
+ -- ({-4.2700*\dx},{-0.4746*\dy})
+ -- ({-4.2800*\dx},{-0.4655*\dy})
+ -- ({-4.2900*\dx},{-0.4571*\dy})
+ -- ({-4.3000*\dx},{-0.4494*\dy})
+ -- ({-4.3100*\dx},{-0.4428*\dy})
+ -- ({-4.3200*\dx},{-0.4371*\dy})
+ -- ({-4.3300*\dx},{-0.4327*\dy})
+ -- ({-4.3400*\dx},{-0.4295*\dy})
+ -- ({-4.3500*\dx},{-0.4276*\dy})
+ -- ({-4.3600*\dx},{-0.4270*\dy})
+ -- ({-4.3700*\dx},{-0.4279*\dy})
+ -- ({-4.3800*\dx},{-0.4301*\dy})
+ -- ({-4.3900*\dx},{-0.4336*\dy})
+ -- ({-4.4000*\dx},{-0.4383*\dy})
+ -- ({-4.4100*\dx},{-0.4443*\dy})
+ -- ({-4.4200*\dx},{-0.4512*\dy})
+ -- ({-4.4300*\dx},{-0.4591*\dy})
+ -- ({-4.4400*\dx},{-0.4678*\dy})
+ -- ({-4.4500*\dx},{-0.4771*\dy})
+ -- ({-4.4600*\dx},{-0.4868*\dy})
+ -- ({-4.4700*\dx},{-0.4967*\dy})
+ -- ({-4.4800*\dx},{-0.5067*\dy})
+ -- ({-4.4900*\dx},{-0.5165*\dy})
+ -- ({-4.5000*\dx},{-0.5260*\dy})
+ -- ({-4.5100*\dx},{-0.5350*\dy})
+ -- ({-4.5200*\dx},{-0.5432*\dy})
+ -- ({-4.5300*\dx},{-0.5505*\dy})
+ -- ({-4.5400*\dx},{-0.5568*\dy})
+ -- ({-4.5500*\dx},{-0.5619*\dy})
+ -- ({-4.5600*\dx},{-0.5658*\dy})
+ -- ({-4.5700*\dx},{-0.5683*\dy})
+ -- ({-4.5800*\dx},{-0.5694*\dy})
+ -- ({-4.5900*\dx},{-0.5690*\dy})
+ -- ({-4.6000*\dx},{-0.5672*\dy})
+ -- ({-4.6100*\dx},{-0.5641*\dy})
+ -- ({-4.6200*\dx},{-0.5595*\dy})
+ -- ({-4.6300*\dx},{-0.5538*\dy})
+ -- ({-4.6400*\dx},{-0.5469*\dy})
+ -- ({-4.6500*\dx},{-0.5391*\dy})
+ -- ({-4.6600*\dx},{-0.5304*\dy})
+ -- ({-4.6700*\dx},{-0.5211*\dy})
+ -- ({-4.6800*\dx},{-0.5114*\dy})
+ -- ({-4.6900*\dx},{-0.5014*\dy})
+ -- ({-4.7000*\dx},{-0.4914*\dy})
+ -- ({-4.7100*\dx},{-0.4817*\dy})
+ -- ({-4.7200*\dx},{-0.4723*\dy})
+ -- ({-4.7300*\dx},{-0.4636*\dy})
+ -- ({-4.7400*\dx},{-0.4557*\dy})
+ -- ({-4.7500*\dx},{-0.4488*\dy})
+ -- ({-4.7600*\dx},{-0.4431*\dy})
+ -- ({-4.7700*\dx},{-0.4386*\dy})
+ -- ({-4.7800*\dx},{-0.4355*\dy})
+ -- ({-4.7900*\dx},{-0.4339*\dy})
+ -- ({-4.8000*\dx},{-0.4338*\dy})
+ -- ({-4.8100*\dx},{-0.4352*\dy})
+ -- ({-4.8200*\dx},{-0.4380*\dy})
+ -- ({-4.8300*\dx},{-0.4423*\dy})
+ -- ({-4.8400*\dx},{-0.4479*\dy})
+ -- ({-4.8500*\dx},{-0.4546*\dy})
+ -- ({-4.8600*\dx},{-0.4624*\dy})
+ -- ({-4.8700*\dx},{-0.4711*\dy})
+ -- ({-4.8800*\dx},{-0.4804*\dy})
+ -- ({-4.8900*\dx},{-0.4902*\dy})
+ -- ({-4.9000*\dx},{-0.5002*\dy})
+ -- ({-4.9100*\dx},{-0.5101*\dy})
+ -- ({-4.9200*\dx},{-0.5198*\dy})
+ -- ({-4.9300*\dx},{-0.5290*\dy})
+ -- ({-4.9400*\dx},{-0.5375*\dy})
+ -- ({-4.9500*\dx},{-0.5450*\dy})
+ -- ({-4.9600*\dx},{-0.5515*\dy})
+ -- ({-4.9700*\dx},{-0.5567*\dy})
+ -- ({-4.9800*\dx},{-0.5605*\dy})
+ -- ({-4.9900*\dx},{-0.5628*\dy})
+}
+
+\def\Splotright{ (0,0)
+ -- ({0.0100*\dx},{0.0000*\dy})
+ -- ({0.0200*\dx},{0.0000*\dy})
+ -- ({0.0300*\dx},{0.0000*\dy})
+ -- ({0.0400*\dx},{0.0000*\dy})
+ -- ({0.0500*\dx},{0.0001*\dy})
+ -- ({0.0600*\dx},{0.0001*\dy})
+ -- ({0.0700*\dx},{0.0002*\dy})
+ -- ({0.0800*\dx},{0.0003*\dy})
+ -- ({0.0900*\dx},{0.0004*\dy})
+ -- ({0.1000*\dx},{0.0005*\dy})
+ -- ({0.1100*\dx},{0.0007*\dy})
+ -- ({0.1200*\dx},{0.0009*\dy})
+ -- ({0.1300*\dx},{0.0012*\dy})
+ -- ({0.1400*\dx},{0.0014*\dy})
+ -- ({0.1500*\dx},{0.0018*\dy})
+ -- ({0.1600*\dx},{0.0021*\dy})
+ -- ({0.1700*\dx},{0.0026*\dy})
+ -- ({0.1800*\dx},{0.0031*\dy})
+ -- ({0.1900*\dx},{0.0036*\dy})
+ -- ({0.2000*\dx},{0.0042*\dy})
+ -- ({0.2100*\dx},{0.0048*\dy})
+ -- ({0.2200*\dx},{0.0056*\dy})
+ -- ({0.2300*\dx},{0.0064*\dy})
+ -- ({0.2400*\dx},{0.0072*\dy})
+ -- ({0.2500*\dx},{0.0082*\dy})
+ -- ({0.2600*\dx},{0.0092*\dy})
+ -- ({0.2700*\dx},{0.0103*\dy})
+ -- ({0.2800*\dx},{0.0115*\dy})
+ -- ({0.2900*\dx},{0.0128*\dy})
+ -- ({0.3000*\dx},{0.0141*\dy})
+ -- ({0.3100*\dx},{0.0156*\dy})
+ -- ({0.3200*\dx},{0.0171*\dy})
+ -- ({0.3300*\dx},{0.0188*\dy})
+ -- ({0.3400*\dx},{0.0205*\dy})
+ -- ({0.3500*\dx},{0.0224*\dy})
+ -- ({0.3600*\dx},{0.0244*\dy})
+ -- ({0.3700*\dx},{0.0264*\dy})
+ -- ({0.3800*\dx},{0.0286*\dy})
+ -- ({0.3900*\dx},{0.0309*\dy})
+ -- ({0.4000*\dx},{0.0334*\dy})
+ -- ({0.4100*\dx},{0.0359*\dy})
+ -- ({0.4200*\dx},{0.0386*\dy})
+ -- ({0.4300*\dx},{0.0414*\dy})
+ -- ({0.4400*\dx},{0.0443*\dy})
+ -- ({0.4500*\dx},{0.0474*\dy})
+ -- ({0.4600*\dx},{0.0506*\dy})
+ -- ({0.4700*\dx},{0.0539*\dy})
+ -- ({0.4800*\dx},{0.0574*\dy})
+ -- ({0.4900*\dx},{0.0610*\dy})
+ -- ({0.5000*\dx},{0.0647*\dy})
+ -- ({0.5100*\dx},{0.0686*\dy})
+ -- ({0.5200*\dx},{0.0727*\dy})
+ -- ({0.5300*\dx},{0.0769*\dy})
+ -- ({0.5400*\dx},{0.0812*\dy})
+ -- ({0.5500*\dx},{0.0857*\dy})
+ -- ({0.5600*\dx},{0.0904*\dy})
+ -- ({0.5700*\dx},{0.0952*\dy})
+ -- ({0.5800*\dx},{0.1001*\dy})
+ -- ({0.5900*\dx},{0.1053*\dy})
+ -- ({0.6000*\dx},{0.1105*\dy})
+ -- ({0.6100*\dx},{0.1160*\dy})
+ -- ({0.6200*\dx},{0.1216*\dy})
+ -- ({0.6300*\dx},{0.1273*\dy})
+ -- ({0.6400*\dx},{0.1333*\dy})
+ -- ({0.6500*\dx},{0.1393*\dy})
+ -- ({0.6600*\dx},{0.1456*\dy})
+ -- ({0.6700*\dx},{0.1520*\dy})
+ -- ({0.6800*\dx},{0.1585*\dy})
+ -- ({0.6900*\dx},{0.1653*\dy})
+ -- ({0.7000*\dx},{0.1721*\dy})
+ -- ({0.7100*\dx},{0.1792*\dy})
+ -- ({0.7200*\dx},{0.1864*\dy})
+ -- ({0.7300*\dx},{0.1937*\dy})
+ -- ({0.7400*\dx},{0.2012*\dy})
+ -- ({0.7500*\dx},{0.2089*\dy})
+ -- ({0.7600*\dx},{0.2167*\dy})
+ -- ({0.7700*\dx},{0.2246*\dy})
+ -- ({0.7800*\dx},{0.2327*\dy})
+ -- ({0.7900*\dx},{0.2410*\dy})
+ -- ({0.8000*\dx},{0.2493*\dy})
+ -- ({0.8100*\dx},{0.2579*\dy})
+ -- ({0.8200*\dx},{0.2665*\dy})
+ -- ({0.8300*\dx},{0.2753*\dy})
+ -- ({0.8400*\dx},{0.2841*\dy})
+ -- ({0.8500*\dx},{0.2932*\dy})
+ -- ({0.8600*\dx},{0.3023*\dy})
+ -- ({0.8700*\dx},{0.3115*\dy})
+ -- ({0.8800*\dx},{0.3208*\dy})
+ -- ({0.8900*\dx},{0.3303*\dy})
+ -- ({0.9000*\dx},{0.3398*\dy})
+ -- ({0.9100*\dx},{0.3494*\dy})
+ -- ({0.9200*\dx},{0.3590*\dy})
+ -- ({0.9300*\dx},{0.3688*\dy})
+ -- ({0.9400*\dx},{0.3786*\dy})
+ -- ({0.9500*\dx},{0.3885*\dy})
+ -- ({0.9600*\dx},{0.3984*\dy})
+ -- ({0.9700*\dx},{0.4083*\dy})
+ -- ({0.9800*\dx},{0.4183*\dy})
+ -- ({0.9900*\dx},{0.4283*\dy})
+ -- ({1.0000*\dx},{0.4383*\dy})
+ -- ({1.0100*\dx},{0.4483*\dy})
+ -- ({1.0200*\dx},{0.4582*\dy})
+ -- ({1.0300*\dx},{0.4682*\dy})
+ -- ({1.0400*\dx},{0.4782*\dy})
+ -- ({1.0500*\dx},{0.4880*\dy})
+ -- ({1.0600*\dx},{0.4979*\dy})
+ -- ({1.0700*\dx},{0.5077*\dy})
+ -- ({1.0800*\dx},{0.5174*\dy})
+ -- ({1.0900*\dx},{0.5270*\dy})
+ -- ({1.1000*\dx},{0.5365*\dy})
+ -- ({1.1100*\dx},{0.5459*\dy})
+ -- ({1.1200*\dx},{0.5552*\dy})
+ -- ({1.1300*\dx},{0.5643*\dy})
+ -- ({1.1400*\dx},{0.5733*\dy})
+ -- ({1.1500*\dx},{0.5821*\dy})
+ -- ({1.1600*\dx},{0.5908*\dy})
+ -- ({1.1700*\dx},{0.5993*\dy})
+ -- ({1.1800*\dx},{0.6075*\dy})
+ -- ({1.1900*\dx},{0.6156*\dy})
+ -- ({1.2000*\dx},{0.6234*\dy})
+ -- ({1.2100*\dx},{0.6310*\dy})
+ -- ({1.2200*\dx},{0.6383*\dy})
+ -- ({1.2300*\dx},{0.6454*\dy})
+ -- ({1.2400*\dx},{0.6522*\dy})
+ -- ({1.2500*\dx},{0.6587*\dy})
+ -- ({1.2600*\dx},{0.6648*\dy})
+ -- ({1.2700*\dx},{0.6707*\dy})
+ -- ({1.2800*\dx},{0.6763*\dy})
+ -- ({1.2900*\dx},{0.6815*\dy})
+ -- ({1.3000*\dx},{0.6863*\dy})
+ -- ({1.3100*\dx},{0.6908*\dy})
+ -- ({1.3200*\dx},{0.6950*\dy})
+ -- ({1.3300*\dx},{0.6987*\dy})
+ -- ({1.3400*\dx},{0.7021*\dy})
+ -- ({1.3500*\dx},{0.7050*\dy})
+ -- ({1.3600*\dx},{0.7076*\dy})
+ -- ({1.3700*\dx},{0.7097*\dy})
+ -- ({1.3800*\dx},{0.7114*\dy})
+ -- ({1.3900*\dx},{0.7127*\dy})
+ -- ({1.4000*\dx},{0.7135*\dy})
+ -- ({1.4100*\dx},{0.7139*\dy})
+ -- ({1.4200*\dx},{0.7139*\dy})
+ -- ({1.4300*\dx},{0.7134*\dy})
+ -- ({1.4400*\dx},{0.7125*\dy})
+ -- ({1.4500*\dx},{0.7111*\dy})
+ -- ({1.4600*\dx},{0.7093*\dy})
+ -- ({1.4700*\dx},{0.7070*\dy})
+ -- ({1.4800*\dx},{0.7043*\dy})
+ -- ({1.4900*\dx},{0.7011*\dy})
+ -- ({1.5000*\dx},{0.6975*\dy})
+ -- ({1.5100*\dx},{0.6935*\dy})
+ -- ({1.5200*\dx},{0.6890*\dy})
+ -- ({1.5300*\dx},{0.6841*\dy})
+ -- ({1.5400*\dx},{0.6788*\dy})
+ -- ({1.5500*\dx},{0.6731*\dy})
+ -- ({1.5600*\dx},{0.6670*\dy})
+ -- ({1.5700*\dx},{0.6605*\dy})
+ -- ({1.5800*\dx},{0.6536*\dy})
+ -- ({1.5900*\dx},{0.6464*\dy})
+ -- ({1.6000*\dx},{0.6389*\dy})
+ -- ({1.6100*\dx},{0.6310*\dy})
+ -- ({1.6200*\dx},{0.6229*\dy})
+ -- ({1.6300*\dx},{0.6144*\dy})
+ -- ({1.6400*\dx},{0.6057*\dy})
+ -- ({1.6500*\dx},{0.5968*\dy})
+ -- ({1.6600*\dx},{0.5876*\dy})
+ -- ({1.6700*\dx},{0.5782*\dy})
+ -- ({1.6800*\dx},{0.5687*\dy})
+ -- ({1.6900*\dx},{0.5590*\dy})
+ -- ({1.7000*\dx},{0.5492*\dy})
+ -- ({1.7100*\dx},{0.5393*\dy})
+ -- ({1.7200*\dx},{0.5293*\dy})
+ -- ({1.7300*\dx},{0.5194*\dy})
+ -- ({1.7400*\dx},{0.5094*\dy})
+ -- ({1.7500*\dx},{0.4994*\dy})
+ -- ({1.7600*\dx},{0.4895*\dy})
+ -- ({1.7700*\dx},{0.4796*\dy})
+ -- ({1.7800*\dx},{0.4699*\dy})
+ -- ({1.7900*\dx},{0.4603*\dy})
+ -- ({1.8000*\dx},{0.4509*\dy})
+ -- ({1.8100*\dx},{0.4418*\dy})
+ -- ({1.8200*\dx},{0.4328*\dy})
+ -- ({1.8300*\dx},{0.4241*\dy})
+ -- ({1.8400*\dx},{0.4157*\dy})
+ -- ({1.8500*\dx},{0.4077*\dy})
+ -- ({1.8600*\dx},{0.4000*\dy})
+ -- ({1.8700*\dx},{0.3927*\dy})
+ -- ({1.8800*\dx},{0.3858*\dy})
+ -- ({1.8900*\dx},{0.3793*\dy})
+ -- ({1.9000*\dx},{0.3733*\dy})
+ -- ({1.9100*\dx},{0.3678*\dy})
+ -- ({1.9200*\dx},{0.3629*\dy})
+ -- ({1.9300*\dx},{0.3584*\dy})
+ -- ({1.9400*\dx},{0.3545*\dy})
+ -- ({1.9500*\dx},{0.3511*\dy})
+ -- ({1.9600*\dx},{0.3484*\dy})
+ -- ({1.9700*\dx},{0.3462*\dy})
+ -- ({1.9800*\dx},{0.3447*\dy})
+ -- ({1.9900*\dx},{0.3437*\dy})
+ -- ({2.0000*\dx},{0.3434*\dy})
+ -- ({2.0100*\dx},{0.3437*\dy})
+ -- ({2.0200*\dx},{0.3447*\dy})
+ -- ({2.0300*\dx},{0.3462*\dy})
+ -- ({2.0400*\dx},{0.3484*\dy})
+ -- ({2.0500*\dx},{0.3513*\dy})
+ -- ({2.0600*\dx},{0.3547*\dy})
+ -- ({2.0700*\dx},{0.3587*\dy})
+ -- ({2.0800*\dx},{0.3633*\dy})
+ -- ({2.0900*\dx},{0.3685*\dy})
+ -- ({2.1000*\dx},{0.3743*\dy})
+ -- ({2.1100*\dx},{0.3805*\dy})
+ -- ({2.1200*\dx},{0.3873*\dy})
+ -- ({2.1300*\dx},{0.3945*\dy})
+ -- ({2.1400*\dx},{0.4022*\dy})
+ -- ({2.1500*\dx},{0.4103*\dy})
+ -- ({2.1600*\dx},{0.4188*\dy})
+ -- ({2.1700*\dx},{0.4276*\dy})
+ -- ({2.1800*\dx},{0.4367*\dy})
+ -- ({2.1900*\dx},{0.4461*\dy})
+ -- ({2.2000*\dx},{0.4557*\dy})
+ -- ({2.2100*\dx},{0.4655*\dy})
+ -- ({2.2200*\dx},{0.4754*\dy})
+ -- ({2.2300*\dx},{0.4853*\dy})
+ -- ({2.2400*\dx},{0.4953*\dy})
+ -- ({2.2500*\dx},{0.5053*\dy})
+ -- ({2.2600*\dx},{0.5152*\dy})
+ -- ({2.2700*\dx},{0.5250*\dy})
+ -- ({2.2800*\dx},{0.5346*\dy})
+ -- ({2.2900*\dx},{0.5440*\dy})
+ -- ({2.3000*\dx},{0.5532*\dy})
+ -- ({2.3100*\dx},{0.5620*\dy})
+ -- ({2.3200*\dx},{0.5704*\dy})
+ -- ({2.3300*\dx},{0.5784*\dy})
+ -- ({2.3400*\dx},{0.5860*\dy})
+ -- ({2.3500*\dx},{0.5931*\dy})
+ -- ({2.3600*\dx},{0.5996*\dy})
+ -- ({2.3700*\dx},{0.6056*\dy})
+ -- ({2.3800*\dx},{0.6110*\dy})
+ -- ({2.3900*\dx},{0.6157*\dy})
+ -- ({2.4000*\dx},{0.6197*\dy})
+ -- ({2.4100*\dx},{0.6230*\dy})
+ -- ({2.4200*\dx},{0.6256*\dy})
+ -- ({2.4300*\dx},{0.6275*\dy})
+ -- ({2.4400*\dx},{0.6286*\dy})
+ -- ({2.4500*\dx},{0.6289*\dy})
+ -- ({2.4600*\dx},{0.6285*\dy})
+ -- ({2.4700*\dx},{0.6273*\dy})
+ -- ({2.4800*\dx},{0.6254*\dy})
+ -- ({2.4900*\dx},{0.6226*\dy})
+ -- ({2.5000*\dx},{0.6192*\dy})
+ -- ({2.5100*\dx},{0.6150*\dy})
+ -- ({2.5200*\dx},{0.6101*\dy})
+ -- ({2.5300*\dx},{0.6045*\dy})
+ -- ({2.5400*\dx},{0.5983*\dy})
+ -- ({2.5500*\dx},{0.5915*\dy})
+ -- ({2.5600*\dx},{0.5842*\dy})
+ -- ({2.5700*\dx},{0.5763*\dy})
+ -- ({2.5800*\dx},{0.5679*\dy})
+ -- ({2.5900*\dx},{0.5591*\dy})
+ -- ({2.6000*\dx},{0.5500*\dy})
+ -- ({2.6100*\dx},{0.5406*\dy})
+ -- ({2.6200*\dx},{0.5309*\dy})
+ -- ({2.6300*\dx},{0.5210*\dy})
+ -- ({2.6400*\dx},{0.5111*\dy})
+ -- ({2.6500*\dx},{0.5011*\dy})
+ -- ({2.6600*\dx},{0.4911*\dy})
+ -- ({2.6700*\dx},{0.4812*\dy})
+ -- ({2.6800*\dx},{0.4715*\dy})
+ -- ({2.6900*\dx},{0.4621*\dy})
+ -- ({2.7000*\dx},{0.4529*\dy})
+ -- ({2.7100*\dx},{0.4441*\dy})
+ -- ({2.7200*\dx},{0.4358*\dy})
+ -- ({2.7300*\dx},{0.4279*\dy})
+ -- ({2.7400*\dx},{0.4207*\dy})
+ -- ({2.7500*\dx},{0.4140*\dy})
+ -- ({2.7600*\dx},{0.4080*\dy})
+ -- ({2.7700*\dx},{0.4027*\dy})
+ -- ({2.7800*\dx},{0.3982*\dy})
+ -- ({2.7900*\dx},{0.3944*\dy})
+ -- ({2.8000*\dx},{0.3915*\dy})
+ -- ({2.8100*\dx},{0.3895*\dy})
+ -- ({2.8200*\dx},{0.3883*\dy})
+ -- ({2.8300*\dx},{0.3880*\dy})
+ -- ({2.8400*\dx},{0.3886*\dy})
+ -- ({2.8500*\dx},{0.3900*\dy})
+ -- ({2.8600*\dx},{0.3924*\dy})
+ -- ({2.8700*\dx},{0.3956*\dy})
+ -- ({2.8800*\dx},{0.3996*\dy})
+ -- ({2.8900*\dx},{0.4045*\dy})
+ -- ({2.9000*\dx},{0.4101*\dy})
+ -- ({2.9100*\dx},{0.4165*\dy})
+ -- ({2.9200*\dx},{0.4235*\dy})
+ -- ({2.9300*\dx},{0.4312*\dy})
+ -- ({2.9400*\dx},{0.4394*\dy})
+ -- ({2.9500*\dx},{0.4481*\dy})
+ -- ({2.9600*\dx},{0.4572*\dy})
+ -- ({2.9700*\dx},{0.4667*\dy})
+ -- ({2.9800*\dx},{0.4764*\dy})
+ -- ({2.9900*\dx},{0.4863*\dy})
+ -- ({3.0000*\dx},{0.4963*\dy})
+ -- ({3.0100*\dx},{0.5063*\dy})
+ -- ({3.0200*\dx},{0.5162*\dy})
+ -- ({3.0300*\dx},{0.5259*\dy})
+ -- ({3.0400*\dx},{0.5354*\dy})
+ -- ({3.0500*\dx},{0.5445*\dy})
+ -- ({3.0600*\dx},{0.5531*\dy})
+ -- ({3.0700*\dx},{0.5613*\dy})
+ -- ({3.0800*\dx},{0.5688*\dy})
+ -- ({3.0900*\dx},{0.5757*\dy})
+ -- ({3.1000*\dx},{0.5818*\dy})
+ -- ({3.1100*\dx},{0.5872*\dy})
+ -- ({3.1200*\dx},{0.5917*\dy})
+ -- ({3.1300*\dx},{0.5952*\dy})
+ -- ({3.1400*\dx},{0.5979*\dy})
+ -- ({3.1500*\dx},{0.5996*\dy})
+ -- ({3.1600*\dx},{0.6003*\dy})
+ -- ({3.1700*\dx},{0.6001*\dy})
+ -- ({3.1800*\dx},{0.5988*\dy})
+ -- ({3.1900*\dx},{0.5966*\dy})
+ -- ({3.2000*\dx},{0.5933*\dy})
+ -- ({3.2100*\dx},{0.5892*\dy})
+ -- ({3.2200*\dx},{0.5842*\dy})
+ -- ({3.2300*\dx},{0.5783*\dy})
+ -- ({3.2400*\dx},{0.5716*\dy})
+ -- ({3.2500*\dx},{0.5642*\dy})
+ -- ({3.2600*\dx},{0.5562*\dy})
+ -- ({3.2700*\dx},{0.5476*\dy})
+ -- ({3.2800*\dx},{0.5385*\dy})
+ -- ({3.2900*\dx},{0.5290*\dy})
+ -- ({3.3000*\dx},{0.5193*\dy})
+ -- ({3.3100*\dx},{0.5094*\dy})
+ -- ({3.3200*\dx},{0.4994*\dy})
+ -- ({3.3300*\dx},{0.4894*\dy})
+ -- ({3.3400*\dx},{0.4796*\dy})
+ -- ({3.3500*\dx},{0.4700*\dy})
+ -- ({3.3600*\dx},{0.4608*\dy})
+ -- ({3.3700*\dx},{0.4521*\dy})
+ -- ({3.3800*\dx},{0.4439*\dy})
+ -- ({3.3900*\dx},{0.4364*\dy})
+ -- ({3.4000*\dx},{0.4296*\dy})
+ -- ({3.4100*\dx},{0.4237*\dy})
+ -- ({3.4200*\dx},{0.4186*\dy})
+ -- ({3.4300*\dx},{0.4145*\dy})
+ -- ({3.4400*\dx},{0.4114*\dy})
+ -- ({3.4500*\dx},{0.4094*\dy})
+ -- ({3.4600*\dx},{0.4084*\dy})
+ -- ({3.4700*\dx},{0.4085*\dy})
+ -- ({3.4800*\dx},{0.4097*\dy})
+ -- ({3.4900*\dx},{0.4119*\dy})
+ -- ({3.5000*\dx},{0.4152*\dy})
+ -- ({3.5100*\dx},{0.4196*\dy})
+ -- ({3.5200*\dx},{0.4249*\dy})
+ -- ({3.5300*\dx},{0.4311*\dy})
+ -- ({3.5400*\dx},{0.4381*\dy})
+ -- ({3.5500*\dx},{0.4459*\dy})
+ -- ({3.5600*\dx},{0.4543*\dy})
+ -- ({3.5700*\dx},{0.4633*\dy})
+ -- ({3.5800*\dx},{0.4727*\dy})
+ -- ({3.5900*\dx},{0.4824*\dy})
+ -- ({3.6000*\dx},{0.4923*\dy})
+ -- ({3.6100*\dx},{0.5023*\dy})
+ -- ({3.6200*\dx},{0.5122*\dy})
+ -- ({3.6300*\dx},{0.5220*\dy})
+ -- ({3.6400*\dx},{0.5314*\dy})
+ -- ({3.6500*\dx},{0.5404*\dy})
+ -- ({3.6600*\dx},{0.5489*\dy})
+ -- ({3.6700*\dx},{0.5567*\dy})
+ -- ({3.6800*\dx},{0.5637*\dy})
+ -- ({3.6900*\dx},{0.5698*\dy})
+ -- ({3.7000*\dx},{0.5750*\dy})
+ -- ({3.7100*\dx},{0.5791*\dy})
+ -- ({3.7200*\dx},{0.5822*\dy})
+ -- ({3.7300*\dx},{0.5841*\dy})
+ -- ({3.7400*\dx},{0.5849*\dy})
+ -- ({3.7500*\dx},{0.5845*\dy})
+ -- ({3.7600*\dx},{0.5830*\dy})
+ -- ({3.7700*\dx},{0.5803*\dy})
+ -- ({3.7800*\dx},{0.5764*\dy})
+ -- ({3.7900*\dx},{0.5715*\dy})
+ -- ({3.8000*\dx},{0.5656*\dy})
+ -- ({3.8100*\dx},{0.5588*\dy})
+ -- ({3.8200*\dx},{0.5512*\dy})
+ -- ({3.8300*\dx},{0.5428*\dy})
+ -- ({3.8400*\dx},{0.5338*\dy})
+ -- ({3.8500*\dx},{0.5244*\dy})
+ -- ({3.8600*\dx},{0.5147*\dy})
+ -- ({3.8700*\dx},{0.5047*\dy})
+ -- ({3.8800*\dx},{0.4947*\dy})
+ -- ({3.8900*\dx},{0.4848*\dy})
+ -- ({3.9000*\dx},{0.4752*\dy})
+ -- ({3.9100*\dx},{0.4660*\dy})
+ -- ({3.9200*\dx},{0.4573*\dy})
+ -- ({3.9300*\dx},{0.4492*\dy})
+ -- ({3.9400*\dx},{0.4420*\dy})
+ -- ({3.9500*\dx},{0.4357*\dy})
+ -- ({3.9600*\dx},{0.4303*\dy})
+ -- ({3.9700*\dx},{0.4261*\dy})
+ -- ({3.9800*\dx},{0.4230*\dy})
+ -- ({3.9900*\dx},{0.4211*\dy})
+ -- ({4.0000*\dx},{0.4205*\dy})
+ -- ({4.0100*\dx},{0.4211*\dy})
+ -- ({4.0200*\dx},{0.4230*\dy})
+ -- ({4.0300*\dx},{0.4261*\dy})
+ -- ({4.0400*\dx},{0.4304*\dy})
+ -- ({4.0500*\dx},{0.4358*\dy})
+ -- ({4.0600*\dx},{0.4422*\dy})
+ -- ({4.0700*\dx},{0.4495*\dy})
+ -- ({4.0800*\dx},{0.4576*\dy})
+ -- ({4.0900*\dx},{0.4665*\dy})
+ -- ({4.1000*\dx},{0.4758*\dy})
+ -- ({4.1100*\dx},{0.4855*\dy})
+ -- ({4.1200*\dx},{0.4955*\dy})
+ -- ({4.1300*\dx},{0.5054*\dy})
+ -- ({4.1400*\dx},{0.5153*\dy})
+ -- ({4.1500*\dx},{0.5249*\dy})
+ -- ({4.1600*\dx},{0.5341*\dy})
+ -- ({4.1700*\dx},{0.5426*\dy})
+ -- ({4.1800*\dx},{0.5504*\dy})
+ -- ({4.1900*\dx},{0.5573*\dy})
+ -- ({4.2000*\dx},{0.5632*\dy})
+ -- ({4.2100*\dx},{0.5680*\dy})
+ -- ({4.2200*\dx},{0.5716*\dy})
+ -- ({4.2300*\dx},{0.5739*\dy})
+ -- ({4.2400*\dx},{0.5749*\dy})
+ -- ({4.2500*\dx},{0.5746*\dy})
+ -- ({4.2600*\dx},{0.5730*\dy})
+ -- ({4.2700*\dx},{0.5700*\dy})
+ -- ({4.2800*\dx},{0.5658*\dy})
+ -- ({4.2900*\dx},{0.5604*\dy})
+ -- ({4.3000*\dx},{0.5540*\dy})
+ -- ({4.3100*\dx},{0.5466*\dy})
+ -- ({4.3200*\dx},{0.5383*\dy})
+ -- ({4.3300*\dx},{0.5294*\dy})
+ -- ({4.3400*\dx},{0.5199*\dy})
+ -- ({4.3500*\dx},{0.5101*\dy})
+ -- ({4.3600*\dx},{0.5001*\dy})
+ -- ({4.3700*\dx},{0.4902*\dy})
+ -- ({4.3800*\dx},{0.4804*\dy})
+ -- ({4.3900*\dx},{0.4711*\dy})
+ -- ({4.4000*\dx},{0.4623*\dy})
+ -- ({4.4100*\dx},{0.4542*\dy})
+ -- ({4.4200*\dx},{0.4471*\dy})
+ -- ({4.4300*\dx},{0.4410*\dy})
+ -- ({4.4400*\dx},{0.4360*\dy})
+ -- ({4.4500*\dx},{0.4323*\dy})
+ -- ({4.4600*\dx},{0.4299*\dy})
+ -- ({4.4700*\dx},{0.4289*\dy})
+ -- ({4.4800*\dx},{0.4293*\dy})
+ -- ({4.4900*\dx},{0.4311*\dy})
+ -- ({4.5000*\dx},{0.4343*\dy})
+ -- ({4.5100*\dx},{0.4387*\dy})
+ -- ({4.5200*\dx},{0.4444*\dy})
+ -- ({4.5300*\dx},{0.4512*\dy})
+ -- ({4.5400*\dx},{0.4590*\dy})
+ -- ({4.5500*\dx},{0.4676*\dy})
+ -- ({4.5600*\dx},{0.4768*\dy})
+ -- ({4.5700*\dx},{0.4864*\dy})
+ -- ({4.5800*\dx},{0.4964*\dy})
+ -- ({4.5900*\dx},{0.5064*\dy})
+ -- ({4.6000*\dx},{0.5162*\dy})
+ -- ({4.6100*\dx},{0.5257*\dy})
+ -- ({4.6200*\dx},{0.5346*\dy})
+ -- ({4.6300*\dx},{0.5427*\dy})
+ -- ({4.6400*\dx},{0.5500*\dy})
+ -- ({4.6500*\dx},{0.5562*\dy})
+ -- ({4.6600*\dx},{0.5611*\dy})
+ -- ({4.6700*\dx},{0.5648*\dy})
+ -- ({4.6800*\dx},{0.5670*\dy})
+ -- ({4.6900*\dx},{0.5678*\dy})
+ -- ({4.7000*\dx},{0.5671*\dy})
+ -- ({4.7100*\dx},{0.5650*\dy})
+ -- ({4.7200*\dx},{0.5615*\dy})
+ -- ({4.7300*\dx},{0.5566*\dy})
+ -- ({4.7400*\dx},{0.5504*\dy})
+ -- ({4.7500*\dx},{0.5432*\dy})
+ -- ({4.7600*\dx},{0.5350*\dy})
+ -- ({4.7700*\dx},{0.5261*\dy})
+ -- ({4.7800*\dx},{0.5166*\dy})
+ -- ({4.7900*\dx},{0.5067*\dy})
+ -- ({4.8000*\dx},{0.4968*\dy})
+ -- ({4.8100*\dx},{0.4869*\dy})
+ -- ({4.8200*\dx},{0.4773*\dy})
+ -- ({4.8300*\dx},{0.4682*\dy})
+ -- ({4.8400*\dx},{0.4600*\dy})
+ -- ({4.8500*\dx},{0.4526*\dy})
+ -- ({4.8600*\dx},{0.4464*\dy})
+ -- ({4.8700*\dx},{0.4414*\dy})
+ -- ({4.8800*\dx},{0.4378*\dy})
+ -- ({4.8900*\dx},{0.4357*\dy})
+ -- ({4.9000*\dx},{0.4351*\dy})
+ -- ({4.9100*\dx},{0.4360*\dy})
+ -- ({4.9200*\dx},{0.4384*\dy})
+ -- ({4.9300*\dx},{0.4423*\dy})
+ -- ({4.9400*\dx},{0.4476*\dy})
+ -- ({4.9500*\dx},{0.4541*\dy})
+ -- ({4.9600*\dx},{0.4618*\dy})
+ -- ({4.9700*\dx},{0.4703*\dy})
+ -- ({4.9800*\dx},{0.4795*\dy})
+ -- ({4.9900*\dx},{0.4892*\dy})
+}
+
+\def\Splotleft{ (0,0)
+ -- ({-0.0100*\dx},{-0.0000*\dy})
+ -- ({-0.0200*\dx},{-0.0000*\dy})
+ -- ({-0.0300*\dx},{-0.0000*\dy})
+ -- ({-0.0400*\dx},{-0.0000*\dy})
+ -- ({-0.0500*\dx},{-0.0001*\dy})
+ -- ({-0.0600*\dx},{-0.0001*\dy})
+ -- ({-0.0700*\dx},{-0.0002*\dy})
+ -- ({-0.0800*\dx},{-0.0003*\dy})
+ -- ({-0.0900*\dx},{-0.0004*\dy})
+ -- ({-0.1000*\dx},{-0.0005*\dy})
+ -- ({-0.1100*\dx},{-0.0007*\dy})
+ -- ({-0.1200*\dx},{-0.0009*\dy})
+ -- ({-0.1300*\dx},{-0.0012*\dy})
+ -- ({-0.1400*\dx},{-0.0014*\dy})
+ -- ({-0.1500*\dx},{-0.0018*\dy})
+ -- ({-0.1600*\dx},{-0.0021*\dy})
+ -- ({-0.1700*\dx},{-0.0026*\dy})
+ -- ({-0.1800*\dx},{-0.0031*\dy})
+ -- ({-0.1900*\dx},{-0.0036*\dy})
+ -- ({-0.2000*\dx},{-0.0042*\dy})
+ -- ({-0.2100*\dx},{-0.0048*\dy})
+ -- ({-0.2200*\dx},{-0.0056*\dy})
+ -- ({-0.2300*\dx},{-0.0064*\dy})
+ -- ({-0.2400*\dx},{-0.0072*\dy})
+ -- ({-0.2500*\dx},{-0.0082*\dy})
+ -- ({-0.2600*\dx},{-0.0092*\dy})
+ -- ({-0.2700*\dx},{-0.0103*\dy})
+ -- ({-0.2800*\dx},{-0.0115*\dy})
+ -- ({-0.2900*\dx},{-0.0128*\dy})
+ -- ({-0.3000*\dx},{-0.0141*\dy})
+ -- ({-0.3100*\dx},{-0.0156*\dy})
+ -- ({-0.3200*\dx},{-0.0171*\dy})
+ -- ({-0.3300*\dx},{-0.0188*\dy})
+ -- ({-0.3400*\dx},{-0.0205*\dy})
+ -- ({-0.3500*\dx},{-0.0224*\dy})
+ -- ({-0.3600*\dx},{-0.0244*\dy})
+ -- ({-0.3700*\dx},{-0.0264*\dy})
+ -- ({-0.3800*\dx},{-0.0286*\dy})
+ -- ({-0.3900*\dx},{-0.0309*\dy})
+ -- ({-0.4000*\dx},{-0.0334*\dy})
+ -- ({-0.4100*\dx},{-0.0359*\dy})
+ -- ({-0.4200*\dx},{-0.0386*\dy})
+ -- ({-0.4300*\dx},{-0.0414*\dy})
+ -- ({-0.4400*\dx},{-0.0443*\dy})
+ -- ({-0.4500*\dx},{-0.0474*\dy})
+ -- ({-0.4600*\dx},{-0.0506*\dy})
+ -- ({-0.4700*\dx},{-0.0539*\dy})
+ -- ({-0.4800*\dx},{-0.0574*\dy})
+ -- ({-0.4900*\dx},{-0.0610*\dy})
+ -- ({-0.5000*\dx},{-0.0647*\dy})
+ -- ({-0.5100*\dx},{-0.0686*\dy})
+ -- ({-0.5200*\dx},{-0.0727*\dy})
+ -- ({-0.5300*\dx},{-0.0769*\dy})
+ -- ({-0.5400*\dx},{-0.0812*\dy})
+ -- ({-0.5500*\dx},{-0.0857*\dy})
+ -- ({-0.5600*\dx},{-0.0904*\dy})
+ -- ({-0.5700*\dx},{-0.0952*\dy})
+ -- ({-0.5800*\dx},{-0.1001*\dy})
+ -- ({-0.5900*\dx},{-0.1053*\dy})
+ -- ({-0.6000*\dx},{-0.1105*\dy})
+ -- ({-0.6100*\dx},{-0.1160*\dy})
+ -- ({-0.6200*\dx},{-0.1216*\dy})
+ -- ({-0.6300*\dx},{-0.1273*\dy})
+ -- ({-0.6400*\dx},{-0.1333*\dy})
+ -- ({-0.6500*\dx},{-0.1393*\dy})
+ -- ({-0.6600*\dx},{-0.1456*\dy})
+ -- ({-0.6700*\dx},{-0.1520*\dy})
+ -- ({-0.6800*\dx},{-0.1585*\dy})
+ -- ({-0.6900*\dx},{-0.1653*\dy})
+ -- ({-0.7000*\dx},{-0.1721*\dy})
+ -- ({-0.7100*\dx},{-0.1792*\dy})
+ -- ({-0.7200*\dx},{-0.1864*\dy})
+ -- ({-0.7300*\dx},{-0.1937*\dy})
+ -- ({-0.7400*\dx},{-0.2012*\dy})
+ -- ({-0.7500*\dx},{-0.2089*\dy})
+ -- ({-0.7600*\dx},{-0.2167*\dy})
+ -- ({-0.7700*\dx},{-0.2246*\dy})
+ -- ({-0.7800*\dx},{-0.2327*\dy})
+ -- ({-0.7900*\dx},{-0.2410*\dy})
+ -- ({-0.8000*\dx},{-0.2493*\dy})
+ -- ({-0.8100*\dx},{-0.2579*\dy})
+ -- ({-0.8200*\dx},{-0.2665*\dy})
+ -- ({-0.8300*\dx},{-0.2753*\dy})
+ -- ({-0.8400*\dx},{-0.2841*\dy})
+ -- ({-0.8500*\dx},{-0.2932*\dy})
+ -- ({-0.8600*\dx},{-0.3023*\dy})
+ -- ({-0.8700*\dx},{-0.3115*\dy})
+ -- ({-0.8800*\dx},{-0.3208*\dy})
+ -- ({-0.8900*\dx},{-0.3303*\dy})
+ -- ({-0.9000*\dx},{-0.3398*\dy})
+ -- ({-0.9100*\dx},{-0.3494*\dy})
+ -- ({-0.9200*\dx},{-0.3590*\dy})
+ -- ({-0.9300*\dx},{-0.3688*\dy})
+ -- ({-0.9400*\dx},{-0.3786*\dy})
+ -- ({-0.9500*\dx},{-0.3885*\dy})
+ -- ({-0.9600*\dx},{-0.3984*\dy})
+ -- ({-0.9700*\dx},{-0.4083*\dy})
+ -- ({-0.9800*\dx},{-0.4183*\dy})
+ -- ({-0.9900*\dx},{-0.4283*\dy})
+ -- ({-1.0000*\dx},{-0.4383*\dy})
+ -- ({-1.0100*\dx},{-0.4483*\dy})
+ -- ({-1.0200*\dx},{-0.4582*\dy})
+ -- ({-1.0300*\dx},{-0.4682*\dy})
+ -- ({-1.0400*\dx},{-0.4782*\dy})
+ -- ({-1.0500*\dx},{-0.4880*\dy})
+ -- ({-1.0600*\dx},{-0.4979*\dy})
+ -- ({-1.0700*\dx},{-0.5077*\dy})
+ -- ({-1.0800*\dx},{-0.5174*\dy})
+ -- ({-1.0900*\dx},{-0.5270*\dy})
+ -- ({-1.1000*\dx},{-0.5365*\dy})
+ -- ({-1.1100*\dx},{-0.5459*\dy})
+ -- ({-1.1200*\dx},{-0.5552*\dy})
+ -- ({-1.1300*\dx},{-0.5643*\dy})
+ -- ({-1.1400*\dx},{-0.5733*\dy})
+ -- ({-1.1500*\dx},{-0.5821*\dy})
+ -- ({-1.1600*\dx},{-0.5908*\dy})
+ -- ({-1.1700*\dx},{-0.5993*\dy})
+ -- ({-1.1800*\dx},{-0.6075*\dy})
+ -- ({-1.1900*\dx},{-0.6156*\dy})
+ -- ({-1.2000*\dx},{-0.6234*\dy})
+ -- ({-1.2100*\dx},{-0.6310*\dy})
+ -- ({-1.2200*\dx},{-0.6383*\dy})
+ -- ({-1.2300*\dx},{-0.6454*\dy})
+ -- ({-1.2400*\dx},{-0.6522*\dy})
+ -- ({-1.2500*\dx},{-0.6587*\dy})
+ -- ({-1.2600*\dx},{-0.6648*\dy})
+ -- ({-1.2700*\dx},{-0.6707*\dy})
+ -- ({-1.2800*\dx},{-0.6763*\dy})
+ -- ({-1.2900*\dx},{-0.6815*\dy})
+ -- ({-1.3000*\dx},{-0.6863*\dy})
+ -- ({-1.3100*\dx},{-0.6908*\dy})
+ -- ({-1.3200*\dx},{-0.6950*\dy})
+ -- ({-1.3300*\dx},{-0.6987*\dy})
+ -- ({-1.3400*\dx},{-0.7021*\dy})
+ -- ({-1.3500*\dx},{-0.7050*\dy})
+ -- ({-1.3600*\dx},{-0.7076*\dy})
+ -- ({-1.3700*\dx},{-0.7097*\dy})
+ -- ({-1.3800*\dx},{-0.7114*\dy})
+ -- ({-1.3900*\dx},{-0.7127*\dy})
+ -- ({-1.4000*\dx},{-0.7135*\dy})
+ -- ({-1.4100*\dx},{-0.7139*\dy})
+ -- ({-1.4200*\dx},{-0.7139*\dy})
+ -- ({-1.4300*\dx},{-0.7134*\dy})
+ -- ({-1.4400*\dx},{-0.7125*\dy})
+ -- ({-1.4500*\dx},{-0.7111*\dy})
+ -- ({-1.4600*\dx},{-0.7093*\dy})
+ -- ({-1.4700*\dx},{-0.7070*\dy})
+ -- ({-1.4800*\dx},{-0.7043*\dy})
+ -- ({-1.4900*\dx},{-0.7011*\dy})
+ -- ({-1.5000*\dx},{-0.6975*\dy})
+ -- ({-1.5100*\dx},{-0.6935*\dy})
+ -- ({-1.5200*\dx},{-0.6890*\dy})
+ -- ({-1.5300*\dx},{-0.6841*\dy})
+ -- ({-1.5400*\dx},{-0.6788*\dy})
+ -- ({-1.5500*\dx},{-0.6731*\dy})
+ -- ({-1.5600*\dx},{-0.6670*\dy})
+ -- ({-1.5700*\dx},{-0.6605*\dy})
+ -- ({-1.5800*\dx},{-0.6536*\dy})
+ -- ({-1.5900*\dx},{-0.6464*\dy})
+ -- ({-1.6000*\dx},{-0.6389*\dy})
+ -- ({-1.6100*\dx},{-0.6310*\dy})
+ -- ({-1.6200*\dx},{-0.6229*\dy})
+ -- ({-1.6300*\dx},{-0.6144*\dy})
+ -- ({-1.6400*\dx},{-0.6057*\dy})
+ -- ({-1.6500*\dx},{-0.5968*\dy})
+ -- ({-1.6600*\dx},{-0.5876*\dy})
+ -- ({-1.6700*\dx},{-0.5782*\dy})
+ -- ({-1.6800*\dx},{-0.5687*\dy})
+ -- ({-1.6900*\dx},{-0.5590*\dy})
+ -- ({-1.7000*\dx},{-0.5492*\dy})
+ -- ({-1.7100*\dx},{-0.5393*\dy})
+ -- ({-1.7200*\dx},{-0.5293*\dy})
+ -- ({-1.7300*\dx},{-0.5194*\dy})
+ -- ({-1.7400*\dx},{-0.5094*\dy})
+ -- ({-1.7500*\dx},{-0.4994*\dy})
+ -- ({-1.7600*\dx},{-0.4895*\dy})
+ -- ({-1.7700*\dx},{-0.4796*\dy})
+ -- ({-1.7800*\dx},{-0.4699*\dy})
+ -- ({-1.7900*\dx},{-0.4603*\dy})
+ -- ({-1.8000*\dx},{-0.4509*\dy})
+ -- ({-1.8100*\dx},{-0.4418*\dy})
+ -- ({-1.8200*\dx},{-0.4328*\dy})
+ -- ({-1.8300*\dx},{-0.4241*\dy})
+ -- ({-1.8400*\dx},{-0.4157*\dy})
+ -- ({-1.8500*\dx},{-0.4077*\dy})
+ -- ({-1.8600*\dx},{-0.4000*\dy})
+ -- ({-1.8700*\dx},{-0.3927*\dy})
+ -- ({-1.8800*\dx},{-0.3858*\dy})
+ -- ({-1.8900*\dx},{-0.3793*\dy})
+ -- ({-1.9000*\dx},{-0.3733*\dy})
+ -- ({-1.9100*\dx},{-0.3678*\dy})
+ -- ({-1.9200*\dx},{-0.3629*\dy})
+ -- ({-1.9300*\dx},{-0.3584*\dy})
+ -- ({-1.9400*\dx},{-0.3545*\dy})
+ -- ({-1.9500*\dx},{-0.3511*\dy})
+ -- ({-1.9600*\dx},{-0.3484*\dy})
+ -- ({-1.9700*\dx},{-0.3462*\dy})
+ -- ({-1.9800*\dx},{-0.3447*\dy})
+ -- ({-1.9900*\dx},{-0.3437*\dy})
+ -- ({-2.0000*\dx},{-0.3434*\dy})
+ -- ({-2.0100*\dx},{-0.3437*\dy})
+ -- ({-2.0200*\dx},{-0.3447*\dy})
+ -- ({-2.0300*\dx},{-0.3462*\dy})
+ -- ({-2.0400*\dx},{-0.3484*\dy})
+ -- ({-2.0500*\dx},{-0.3513*\dy})
+ -- ({-2.0600*\dx},{-0.3547*\dy})
+ -- ({-2.0700*\dx},{-0.3587*\dy})
+ -- ({-2.0800*\dx},{-0.3633*\dy})
+ -- ({-2.0900*\dx},{-0.3685*\dy})
+ -- ({-2.1000*\dx},{-0.3743*\dy})
+ -- ({-2.1100*\dx},{-0.3805*\dy})
+ -- ({-2.1200*\dx},{-0.3873*\dy})
+ -- ({-2.1300*\dx},{-0.3945*\dy})
+ -- ({-2.1400*\dx},{-0.4022*\dy})
+ -- ({-2.1500*\dx},{-0.4103*\dy})
+ -- ({-2.1600*\dx},{-0.4188*\dy})
+ -- ({-2.1700*\dx},{-0.4276*\dy})
+ -- ({-2.1800*\dx},{-0.4367*\dy})
+ -- ({-2.1900*\dx},{-0.4461*\dy})
+ -- ({-2.2000*\dx},{-0.4557*\dy})
+ -- ({-2.2100*\dx},{-0.4655*\dy})
+ -- ({-2.2200*\dx},{-0.4754*\dy})
+ -- ({-2.2300*\dx},{-0.4853*\dy})
+ -- ({-2.2400*\dx},{-0.4953*\dy})
+ -- ({-2.2500*\dx},{-0.5053*\dy})
+ -- ({-2.2600*\dx},{-0.5152*\dy})
+ -- ({-2.2700*\dx},{-0.5250*\dy})
+ -- ({-2.2800*\dx},{-0.5346*\dy})
+ -- ({-2.2900*\dx},{-0.5440*\dy})
+ -- ({-2.3000*\dx},{-0.5532*\dy})
+ -- ({-2.3100*\dx},{-0.5620*\dy})
+ -- ({-2.3200*\dx},{-0.5704*\dy})
+ -- ({-2.3300*\dx},{-0.5784*\dy})
+ -- ({-2.3400*\dx},{-0.5860*\dy})
+ -- ({-2.3500*\dx},{-0.5931*\dy})
+ -- ({-2.3600*\dx},{-0.5996*\dy})
+ -- ({-2.3700*\dx},{-0.6056*\dy})
+ -- ({-2.3800*\dx},{-0.6110*\dy})
+ -- ({-2.3900*\dx},{-0.6157*\dy})
+ -- ({-2.4000*\dx},{-0.6197*\dy})
+ -- ({-2.4100*\dx},{-0.6230*\dy})
+ -- ({-2.4200*\dx},{-0.6256*\dy})
+ -- ({-2.4300*\dx},{-0.6275*\dy})
+ -- ({-2.4400*\dx},{-0.6286*\dy})
+ -- ({-2.4500*\dx},{-0.6289*\dy})
+ -- ({-2.4600*\dx},{-0.6285*\dy})
+ -- ({-2.4700*\dx},{-0.6273*\dy})
+ -- ({-2.4800*\dx},{-0.6254*\dy})
+ -- ({-2.4900*\dx},{-0.6226*\dy})
+ -- ({-2.5000*\dx},{-0.6192*\dy})
+ -- ({-2.5100*\dx},{-0.6150*\dy})
+ -- ({-2.5200*\dx},{-0.6101*\dy})
+ -- ({-2.5300*\dx},{-0.6045*\dy})
+ -- ({-2.5400*\dx},{-0.5983*\dy})
+ -- ({-2.5500*\dx},{-0.5915*\dy})
+ -- ({-2.5600*\dx},{-0.5842*\dy})
+ -- ({-2.5700*\dx},{-0.5763*\dy})
+ -- ({-2.5800*\dx},{-0.5679*\dy})
+ -- ({-2.5900*\dx},{-0.5591*\dy})
+ -- ({-2.6000*\dx},{-0.5500*\dy})
+ -- ({-2.6100*\dx},{-0.5406*\dy})
+ -- ({-2.6200*\dx},{-0.5309*\dy})
+ -- ({-2.6300*\dx},{-0.5210*\dy})
+ -- ({-2.6400*\dx},{-0.5111*\dy})
+ -- ({-2.6500*\dx},{-0.5011*\dy})
+ -- ({-2.6600*\dx},{-0.4911*\dy})
+ -- ({-2.6700*\dx},{-0.4812*\dy})
+ -- ({-2.6800*\dx},{-0.4715*\dy})
+ -- ({-2.6900*\dx},{-0.4621*\dy})
+ -- ({-2.7000*\dx},{-0.4529*\dy})
+ -- ({-2.7100*\dx},{-0.4441*\dy})
+ -- ({-2.7200*\dx},{-0.4358*\dy})
+ -- ({-2.7300*\dx},{-0.4279*\dy})
+ -- ({-2.7400*\dx},{-0.4207*\dy})
+ -- ({-2.7500*\dx},{-0.4140*\dy})
+ -- ({-2.7600*\dx},{-0.4080*\dy})
+ -- ({-2.7700*\dx},{-0.4027*\dy})
+ -- ({-2.7800*\dx},{-0.3982*\dy})
+ -- ({-2.7900*\dx},{-0.3944*\dy})
+ -- ({-2.8000*\dx},{-0.3915*\dy})
+ -- ({-2.8100*\dx},{-0.3895*\dy})
+ -- ({-2.8200*\dx},{-0.3883*\dy})
+ -- ({-2.8300*\dx},{-0.3880*\dy})
+ -- ({-2.8400*\dx},{-0.3886*\dy})
+ -- ({-2.8500*\dx},{-0.3900*\dy})
+ -- ({-2.8600*\dx},{-0.3924*\dy})
+ -- ({-2.8700*\dx},{-0.3956*\dy})
+ -- ({-2.8800*\dx},{-0.3996*\dy})
+ -- ({-2.8900*\dx},{-0.4045*\dy})
+ -- ({-2.9000*\dx},{-0.4101*\dy})
+ -- ({-2.9100*\dx},{-0.4165*\dy})
+ -- ({-2.9200*\dx},{-0.4235*\dy})
+ -- ({-2.9300*\dx},{-0.4312*\dy})
+ -- ({-2.9400*\dx},{-0.4394*\dy})
+ -- ({-2.9500*\dx},{-0.4481*\dy})
+ -- ({-2.9600*\dx},{-0.4572*\dy})
+ -- ({-2.9700*\dx},{-0.4667*\dy})
+ -- ({-2.9800*\dx},{-0.4764*\dy})
+ -- ({-2.9900*\dx},{-0.4863*\dy})
+ -- ({-3.0000*\dx},{-0.4963*\dy})
+ -- ({-3.0100*\dx},{-0.5063*\dy})
+ -- ({-3.0200*\dx},{-0.5162*\dy})
+ -- ({-3.0300*\dx},{-0.5259*\dy})
+ -- ({-3.0400*\dx},{-0.5354*\dy})
+ -- ({-3.0500*\dx},{-0.5445*\dy})
+ -- ({-3.0600*\dx},{-0.5531*\dy})
+ -- ({-3.0700*\dx},{-0.5613*\dy})
+ -- ({-3.0800*\dx},{-0.5688*\dy})
+ -- ({-3.0900*\dx},{-0.5757*\dy})
+ -- ({-3.1000*\dx},{-0.5818*\dy})
+ -- ({-3.1100*\dx},{-0.5872*\dy})
+ -- ({-3.1200*\dx},{-0.5917*\dy})
+ -- ({-3.1300*\dx},{-0.5952*\dy})
+ -- ({-3.1400*\dx},{-0.5979*\dy})
+ -- ({-3.1500*\dx},{-0.5996*\dy})
+ -- ({-3.1600*\dx},{-0.6003*\dy})
+ -- ({-3.1700*\dx},{-0.6001*\dy})
+ -- ({-3.1800*\dx},{-0.5988*\dy})
+ -- ({-3.1900*\dx},{-0.5966*\dy})
+ -- ({-3.2000*\dx},{-0.5933*\dy})
+ -- ({-3.2100*\dx},{-0.5892*\dy})
+ -- ({-3.2200*\dx},{-0.5842*\dy})
+ -- ({-3.2300*\dx},{-0.5783*\dy})
+ -- ({-3.2400*\dx},{-0.5716*\dy})
+ -- ({-3.2500*\dx},{-0.5642*\dy})
+ -- ({-3.2600*\dx},{-0.5562*\dy})
+ -- ({-3.2700*\dx},{-0.5476*\dy})
+ -- ({-3.2800*\dx},{-0.5385*\dy})
+ -- ({-3.2900*\dx},{-0.5290*\dy})
+ -- ({-3.3000*\dx},{-0.5193*\dy})
+ -- ({-3.3100*\dx},{-0.5094*\dy})
+ -- ({-3.3200*\dx},{-0.4994*\dy})
+ -- ({-3.3300*\dx},{-0.4894*\dy})
+ -- ({-3.3400*\dx},{-0.4796*\dy})
+ -- ({-3.3500*\dx},{-0.4700*\dy})
+ -- ({-3.3600*\dx},{-0.4608*\dy})
+ -- ({-3.3700*\dx},{-0.4521*\dy})
+ -- ({-3.3800*\dx},{-0.4439*\dy})
+ -- ({-3.3900*\dx},{-0.4364*\dy})
+ -- ({-3.4000*\dx},{-0.4296*\dy})
+ -- ({-3.4100*\dx},{-0.4237*\dy})
+ -- ({-3.4200*\dx},{-0.4186*\dy})
+ -- ({-3.4300*\dx},{-0.4145*\dy})
+ -- ({-3.4400*\dx},{-0.4114*\dy})
+ -- ({-3.4500*\dx},{-0.4094*\dy})
+ -- ({-3.4600*\dx},{-0.4084*\dy})
+ -- ({-3.4700*\dx},{-0.4085*\dy})
+ -- ({-3.4800*\dx},{-0.4097*\dy})
+ -- ({-3.4900*\dx},{-0.4119*\dy})
+ -- ({-3.5000*\dx},{-0.4152*\dy})
+ -- ({-3.5100*\dx},{-0.4196*\dy})
+ -- ({-3.5200*\dx},{-0.4249*\dy})
+ -- ({-3.5300*\dx},{-0.4311*\dy})
+ -- ({-3.5400*\dx},{-0.4381*\dy})
+ -- ({-3.5500*\dx},{-0.4459*\dy})
+ -- ({-3.5600*\dx},{-0.4543*\dy})
+ -- ({-3.5700*\dx},{-0.4633*\dy})
+ -- ({-3.5800*\dx},{-0.4727*\dy})
+ -- ({-3.5900*\dx},{-0.4824*\dy})
+ -- ({-3.6000*\dx},{-0.4923*\dy})
+ -- ({-3.6100*\dx},{-0.5023*\dy})
+ -- ({-3.6200*\dx},{-0.5122*\dy})
+ -- ({-3.6300*\dx},{-0.5220*\dy})
+ -- ({-3.6400*\dx},{-0.5314*\dy})
+ -- ({-3.6500*\dx},{-0.5404*\dy})
+ -- ({-3.6600*\dx},{-0.5489*\dy})
+ -- ({-3.6700*\dx},{-0.5567*\dy})
+ -- ({-3.6800*\dx},{-0.5637*\dy})
+ -- ({-3.6900*\dx},{-0.5698*\dy})
+ -- ({-3.7000*\dx},{-0.5750*\dy})
+ -- ({-3.7100*\dx},{-0.5791*\dy})
+ -- ({-3.7200*\dx},{-0.5822*\dy})
+ -- ({-3.7300*\dx},{-0.5841*\dy})
+ -- ({-3.7400*\dx},{-0.5849*\dy})
+ -- ({-3.7500*\dx},{-0.5845*\dy})
+ -- ({-3.7600*\dx},{-0.5830*\dy})
+ -- ({-3.7700*\dx},{-0.5803*\dy})
+ -- ({-3.7800*\dx},{-0.5764*\dy})
+ -- ({-3.7900*\dx},{-0.5715*\dy})
+ -- ({-3.8000*\dx},{-0.5656*\dy})
+ -- ({-3.8100*\dx},{-0.5588*\dy})
+ -- ({-3.8200*\dx},{-0.5512*\dy})
+ -- ({-3.8300*\dx},{-0.5428*\dy})
+ -- ({-3.8400*\dx},{-0.5338*\dy})
+ -- ({-3.8500*\dx},{-0.5244*\dy})
+ -- ({-3.8600*\dx},{-0.5147*\dy})
+ -- ({-3.8700*\dx},{-0.5047*\dy})
+ -- ({-3.8800*\dx},{-0.4947*\dy})
+ -- ({-3.8900*\dx},{-0.4848*\dy})
+ -- ({-3.9000*\dx},{-0.4752*\dy})
+ -- ({-3.9100*\dx},{-0.4660*\dy})
+ -- ({-3.9200*\dx},{-0.4573*\dy})
+ -- ({-3.9300*\dx},{-0.4492*\dy})
+ -- ({-3.9400*\dx},{-0.4420*\dy})
+ -- ({-3.9500*\dx},{-0.4357*\dy})
+ -- ({-3.9600*\dx},{-0.4303*\dy})
+ -- ({-3.9700*\dx},{-0.4261*\dy})
+ -- ({-3.9800*\dx},{-0.4230*\dy})
+ -- ({-3.9900*\dx},{-0.4211*\dy})
+ -- ({-4.0000*\dx},{-0.4205*\dy})
+ -- ({-4.0100*\dx},{-0.4211*\dy})
+ -- ({-4.0200*\dx},{-0.4230*\dy})
+ -- ({-4.0300*\dx},{-0.4261*\dy})
+ -- ({-4.0400*\dx},{-0.4304*\dy})
+ -- ({-4.0500*\dx},{-0.4358*\dy})
+ -- ({-4.0600*\dx},{-0.4422*\dy})
+ -- ({-4.0700*\dx},{-0.4495*\dy})
+ -- ({-4.0800*\dx},{-0.4576*\dy})
+ -- ({-4.0900*\dx},{-0.4665*\dy})
+ -- ({-4.1000*\dx},{-0.4758*\dy})
+ -- ({-4.1100*\dx},{-0.4855*\dy})
+ -- ({-4.1200*\dx},{-0.4955*\dy})
+ -- ({-4.1300*\dx},{-0.5054*\dy})
+ -- ({-4.1400*\dx},{-0.5153*\dy})
+ -- ({-4.1500*\dx},{-0.5249*\dy})
+ -- ({-4.1600*\dx},{-0.5341*\dy})
+ -- ({-4.1700*\dx},{-0.5426*\dy})
+ -- ({-4.1800*\dx},{-0.5504*\dy})
+ -- ({-4.1900*\dx},{-0.5573*\dy})
+ -- ({-4.2000*\dx},{-0.5632*\dy})
+ -- ({-4.2100*\dx},{-0.5680*\dy})
+ -- ({-4.2200*\dx},{-0.5716*\dy})
+ -- ({-4.2300*\dx},{-0.5739*\dy})
+ -- ({-4.2400*\dx},{-0.5749*\dy})
+ -- ({-4.2500*\dx},{-0.5746*\dy})
+ -- ({-4.2600*\dx},{-0.5730*\dy})
+ -- ({-4.2700*\dx},{-0.5700*\dy})
+ -- ({-4.2800*\dx},{-0.5658*\dy})
+ -- ({-4.2900*\dx},{-0.5604*\dy})
+ -- ({-4.3000*\dx},{-0.5540*\dy})
+ -- ({-4.3100*\dx},{-0.5466*\dy})
+ -- ({-4.3200*\dx},{-0.5383*\dy})
+ -- ({-4.3300*\dx},{-0.5294*\dy})
+ -- ({-4.3400*\dx},{-0.5199*\dy})
+ -- ({-4.3500*\dx},{-0.5101*\dy})
+ -- ({-4.3600*\dx},{-0.5001*\dy})
+ -- ({-4.3700*\dx},{-0.4902*\dy})
+ -- ({-4.3800*\dx},{-0.4804*\dy})
+ -- ({-4.3900*\dx},{-0.4711*\dy})
+ -- ({-4.4000*\dx},{-0.4623*\dy})
+ -- ({-4.4100*\dx},{-0.4542*\dy})
+ -- ({-4.4200*\dx},{-0.4471*\dy})
+ -- ({-4.4300*\dx},{-0.4410*\dy})
+ -- ({-4.4400*\dx},{-0.4360*\dy})
+ -- ({-4.4500*\dx},{-0.4323*\dy})
+ -- ({-4.4600*\dx},{-0.4299*\dy})
+ -- ({-4.4700*\dx},{-0.4289*\dy})
+ -- ({-4.4800*\dx},{-0.4293*\dy})
+ -- ({-4.4900*\dx},{-0.4311*\dy})
+ -- ({-4.5000*\dx},{-0.4343*\dy})
+ -- ({-4.5100*\dx},{-0.4387*\dy})
+ -- ({-4.5200*\dx},{-0.4444*\dy})
+ -- ({-4.5300*\dx},{-0.4512*\dy})
+ -- ({-4.5400*\dx},{-0.4590*\dy})
+ -- ({-4.5500*\dx},{-0.4676*\dy})
+ -- ({-4.5600*\dx},{-0.4768*\dy})
+ -- ({-4.5700*\dx},{-0.4864*\dy})
+ -- ({-4.5800*\dx},{-0.4964*\dy})
+ -- ({-4.5900*\dx},{-0.5064*\dy})
+ -- ({-4.6000*\dx},{-0.5162*\dy})
+ -- ({-4.6100*\dx},{-0.5257*\dy})
+ -- ({-4.6200*\dx},{-0.5346*\dy})
+ -- ({-4.6300*\dx},{-0.5427*\dy})
+ -- ({-4.6400*\dx},{-0.5500*\dy})
+ -- ({-4.6500*\dx},{-0.5562*\dy})
+ -- ({-4.6600*\dx},{-0.5611*\dy})
+ -- ({-4.6700*\dx},{-0.5648*\dy})
+ -- ({-4.6800*\dx},{-0.5670*\dy})
+ -- ({-4.6900*\dx},{-0.5678*\dy})
+ -- ({-4.7000*\dx},{-0.5671*\dy})
+ -- ({-4.7100*\dx},{-0.5650*\dy})
+ -- ({-4.7200*\dx},{-0.5615*\dy})
+ -- ({-4.7300*\dx},{-0.5566*\dy})
+ -- ({-4.7400*\dx},{-0.5504*\dy})
+ -- ({-4.7500*\dx},{-0.5432*\dy})
+ -- ({-4.7600*\dx},{-0.5350*\dy})
+ -- ({-4.7700*\dx},{-0.5261*\dy})
+ -- ({-4.7800*\dx},{-0.5166*\dy})
+ -- ({-4.7900*\dx},{-0.5067*\dy})
+ -- ({-4.8000*\dx},{-0.4968*\dy})
+ -- ({-4.8100*\dx},{-0.4869*\dy})
+ -- ({-4.8200*\dx},{-0.4773*\dy})
+ -- ({-4.8300*\dx},{-0.4682*\dy})
+ -- ({-4.8400*\dx},{-0.4600*\dy})
+ -- ({-4.8500*\dx},{-0.4526*\dy})
+ -- ({-4.8600*\dx},{-0.4464*\dy})
+ -- ({-4.8700*\dx},{-0.4414*\dy})
+ -- ({-4.8800*\dx},{-0.4378*\dy})
+ -- ({-4.8900*\dx},{-0.4357*\dy})
+ -- ({-4.9000*\dx},{-0.4351*\dy})
+ -- ({-4.9100*\dx},{-0.4360*\dy})
+ -- ({-4.9200*\dx},{-0.4384*\dy})
+ -- ({-4.9300*\dx},{-0.4423*\dy})
+ -- ({-4.9400*\dx},{-0.4476*\dy})
+ -- ({-4.9500*\dx},{-0.4541*\dy})
+ -- ({-4.9600*\dx},{-0.4618*\dy})
+ -- ({-4.9700*\dx},{-0.4703*\dy})
+ -- ({-4.9800*\dx},{-0.4795*\dy})
+ -- ({-4.9900*\dx},{-0.4892*\dy})
+}
+
diff --git a/vorlesungen/slides/fresnel/eulerspirale.m b/vorlesungen/slides/fresnel/eulerspirale.m
new file mode 100644
index 0000000..84e3696
--- /dev/null
+++ b/vorlesungen/slides/fresnel/eulerspirale.m
@@ -0,0 +1,61 @@
+#
+# eulerspirale.m
+#
+# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschlue
+#
+global n;
+n = 1000;
+global tmax;
+tmax = 10;
+global N;
+N = round(n*5/tmax);
+
+function retval = f(x, t)
+ x = pi * t^2 / 2;
+ retval = [ cos(x); sin(x) ];
+endfunction
+
+x0 = [ 0; 0 ];
+t = tmax * (0:n) / n;
+
+c = lsode(@f, x0, t);
+
+fn = fopen("eulerpath.tex", "w");
+
+fprintf(fn, "\\def\\fresnela{ (0,0)");
+for i = (2:n)
+ fprintf(fn, "\n\t-- (%.4f,%.4f)", c(i,1), c(i,2));
+end
+fprintf(fn, "\n}\n\n");
+
+fprintf(fn, "\\def\\fresnelb{ (0,0)");
+for i = (2:n)
+ fprintf(fn, "\n\t-- (%.4f,%.4f)", -c(i,1), -c(i,2));
+end
+fprintf(fn, "\n}\n\n");
+
+fprintf(fn, "\\def\\Cplotright{ (0,0)");
+for i = (2:N)
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", t(i), c(i,1));
+end
+fprintf(fn, "\n}\n\n");
+
+fprintf(fn, "\\def\\Cplotleft{ (0,0)");
+for i = (2:N)
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", -t(i), -c(i,1));
+end
+fprintf(fn, "\n}\n\n");
+
+fprintf(fn, "\\def\\Splotright{ (0,0)");
+for i = (2:N)
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", t(i), c(i,2));
+end
+fprintf(fn, "\n}\n\n");
+
+fprintf(fn, "\\def\\Splotleft{ (0,0)");
+for i = (2:N)
+ fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", -t(i), -c(i,2));
+end
+fprintf(fn, "\n}\n\n");
+
+fclose(fn);
diff --git a/vorlesungen/slides/fresnel/integrale.tex b/vorlesungen/slides/fresnel/integrale.tex
new file mode 100644
index 0000000..906aec1
--- /dev/null
+++ b/vorlesungen/slides/fresnel/integrale.tex
@@ -0,0 +1,119 @@
+%
+% integrale.tex -- Definition der Fresnel Integrale
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\input{../slides/fresnel/eulerpath.tex}
+\definecolor{darkgreen}{rgb}{0,0.6,0}
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Fresnel-Integrale}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Definition}
+Fresnel-Integrale:
+\begin{align*}
+\color{red}S(t)
+&=
+\int_0^t \sin\biggl(\frac{\pi\tau^2}2\biggr)\,d\tau
+\\
+\color{blue}C(t)
+&=
+\int_0^t \cos\biggl(\frac{\pi\tau^2}2\biggr)\,d\tau
+\end{align*}
+\uncover<3->{%
+Können nicht in geschlossener Form ausgewertet werden.
+}
+\end{block}
+\uncover<4->{%
+\begin{block}{Euler-Spirale}
+\[
+\gamma_a(t)
+=
+\begin{pmatrix}
+C_a(t)\\S_a(t)
+\end{pmatrix}
+=
+\begin{pmatrix}
+\displaystyle
+\int_0^t \cos (a\tau^2)\,d\tau\\[8pt]
+\displaystyle
+\int_0^t \sin (a\tau^2)\,d\tau
+\end{pmatrix}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\ifthenelse{\boolean{presentation}}{
+\only<2-4>{%
+\begin{center}
+\begin{tikzpicture}[>=latex,thick,scale=1]
+\def\dx{0.6}
+\def\dy{1.5}
+
+\begin{scope}
+ \draw[color=gray!50] (0,{0.5*\dy}) -- (3,{0.5*\dy});
+ \draw[color=gray!50] (0,{-0.5*\dy}) -- (-3,{-0.5*\dy});
+ \draw[->] (-3,0) -- (3.3,0) coordinate[label={$t$}];
+ \draw[->] (0,-1.5) -- (0,1.5) coordinate[label={left:$S(t)$}];
+ \draw (-0.1,{0.5*\dy}) -- (0.1,{0.5*\dy});
+ \node at (-0.1,{0.5*\dy}) [left] {$\frac12$};
+ \draw (-0.1,{-0.5*\dy}) -- (0.1,{-0.5*\dy});
+ \node at (0.1,{-0.5*\dy}) [right] {$-\frac12$};
+ \draw[color=red,line width=1.4pt] \Splotright;
+ \draw[color=red,line width=1.4pt] \Splotleft;
+\end{scope}
+
+\begin{scope}[yshift=-3.4cm]
+ \draw[color=gray!50] (0,{0.5*\dy}) -- (3,{0.5*\dy});
+ \draw[color=gray!50] (0,{-0.5*\dy}) -- (-3,{-0.5*\dy});
+ \draw[->] (-3,0) -- (3.3,0) coordinate[label={$t$}];
+ \draw[->] (0,-1.5) -- (0,1.5) coordinate[label={left:$C(t)$}];
+ \draw (-0.1,{0.5*\dy}) -- (0.1,{0.5*\dy});
+ \node at (-0.1,{0.5*\dy}) [left] {$\frac12$};
+ \draw (-0.1,{-0.5*\dy}) -- (0.1,{-0.5*\dy});
+ \node at (0.1,{-0.5*\dy}) [right] {$-\frac12$};
+ \draw[color=blue,line width=1.4pt] \Cplotright;
+ \draw[color=blue,line width=1.4pt] \Cplotleft;
+\end{scope}
+
+\end{tikzpicture}
+\end{center}
+}}{}
+\uncover<5->{%
+\begin{center}
+\begin{tikzpicture}[>=latex,thick,scale=3.5]
+
+\draw[color=gray!50] (-0.5,-0.5) rectangle (0.5,0.5);
+
+\draw[->] (-0.8,0) -- (0.9,0) coordinate[label={$\color{blue}C(t)$}];
+\draw[->] (0,-0.8) -- (0,0.9) coordinate[label={right:$\color{red}S(t)$}];
+
+\draw[color=darkgreen,line width=1.0pt] \fresnela;
+\draw[color=darkgreen,line width=1.0pt] \fresnelb;
+
+\fill[color=orange] (0.5,0.5) circle[radius=0.02];
+\fill[color=orange] (-0.5,-0.5) circle[radius=0.02];
+
+\draw (0.5,-0.02) -- (0.5,0.02);
+\node at (0.5,-0.02) [below right] {$\frac12$};
+
+\draw (-0.5,-0.02) -- (-0.5,0.02);
+\node at (-0.5,0.02) [above left] {$-\frac12$};
+
+\draw (-0.01,0.5) -- (0.02,0.5);
+\node at (-0.02,0.5) [above left] {$\frac12$};
+
+\draw (-0.02,-0.5) -- (0.02,-0.5);
+\node at (0.02,-0.5) [below right] {$-\frac12$};
+
+\end{tikzpicture}
+\end{center}
+}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/fresnel/klothoide.tex b/vorlesungen/slides/fresnel/klothoide.tex
new file mode 100644
index 0000000..bf43644
--- /dev/null
+++ b/vorlesungen/slides/fresnel/klothoide.tex
@@ -0,0 +1,68 @@
+%
+% klothoide.tex -- Klothoide
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Klothoide}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Krümmung der Euler-Spirale}
+\begin{align*}
+\frac{d}{dt}\gamma_1(t)
+&=
+\dot{\gamma}_1(t)
+=
+\begin{pmatrix}
+\cos t^2\\
+\sin t^2
+\end{pmatrix}
+\intertext{\uncover<2->{Bogenlänge:}}
+\uncover<2->{
+|\dot{\gamma}_1(t)|
+&=
+\sqrt{\cos^2 t^2 + \sin^2 t^2}
+=
+1
+}
+\intertext{\uncover<3->{Polarwinkel:}}
+\uncover<3->{
+\varphi&=t^2
+\intertext{\uncover<4->{Krümmung:}}
+\uncover<4->{
+\frac{d\varphi}{dt}
+&=
+2t
+}
+}
+\end{align*}
+\uncover<5->{%
+$\Rightarrow$ Krümmung ist proportional zur Bogenlänge
+}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{%
+\begin{block}{Definition}
+Eine Kurve, deren Krümmung proportional zur Bogenlänge ist, heisst
+{\em Klothoide}
+\end{block}}
+\uncover<7->{%
+\begin{block}{Anwendung}
+\begin{itemize}
+\item<8->
+Strassenbau: Um mit konstanter Geschwindigkeit auf einer
+Klothoide zu fahren, muss man das Lenkrad mit konstanter Geschwindigkeit
+drehen
+\item<9->
+Apfel + Sparschäler
+\end{itemize}
+\end{block}}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/fresnel/kruemmung.tex b/vorlesungen/slides/fresnel/kruemmung.tex
new file mode 100644
index 0000000..06f6b9b
--- /dev/null
+++ b/vorlesungen/slides/fresnel/kruemmung.tex
@@ -0,0 +1,91 @@
+%
+% kruemmung.tex -- Kruemmung
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Krümmung einer Kurve}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Krümmungsradius}
+Bogen und Radius:
+\[
+s=r\cdot\Delta\varphi
+\uncover<2->{
+\quad
+\Rightarrow
+\quad
+r
+=
+\frac{s}{\Delta\varphi}
+}
+\]
+\end{block}
+\vspace*{-12pt}
+\uncover<3->{
+\begin{block}{Krümmung}
+Je grösser der Krümmungsradius, desto kleiner die Krümmung:
+\[
+\kappa = \frac{1}{r}
+\]
+\end{block}}
+\vspace*{-12pt}
+\uncover<5->{%
+\begin{block}{Definition}
+Änderungsgeschwindigkeit des Polarwinkels der Tangente
+\[
+\kappa
+=
+\frac{1}{r}
+\uncover<6->{=
+\frac{\Delta\varphi}{s}}
+\uncover<7->{=
+\frac{d\varphi}{dt}}
+\]
+\end{block}}
+\end{column}
+\begin{column}{0.48\textwidth}
+\begin{center}
+\begin{tikzpicture}[>=latex,thick]
+
+\begin{scope}
+\clip (-1,-1) rectangle (4,4);
+
+\def\r{3}
+\def\winkel{30}
+
+\fill[color=blue!20] (0,0) -- (0:\r) arc (0:\winkel:\r) -- cycle;
+\node[color=blue] at ({0.5*\winkel}:{0.5*\r}) {$\Delta\varphi$};
+
+\draw[line width=0.3pt] (0,0) circle[radius=\r];
+
+\draw[->] (0,0) -- (0:\r);
+\draw[->] (0,0) -- (\winkel:\r);
+
+\uncover<4->{
+\draw[->] (0:\r) -- ($(0:\r)+(90:0.7*\r)$);
+\draw[->] (\winkel:\r) -- ($(\winkel:\r)+({90+\winkel}:0.7*\r)$);
+}
+
+\draw[color=red,line width=1.4pt] (0:\r) arc (0:\winkel:\r);
+\node[color=red] at ({0.5*\winkel}:\r) [left] {$s$};
+\fill[color=red] (0:\r) circle[radius=0.05];
+\fill[color=red] (\winkel:\r) circle[radius=0.05];
+
+\node at (\winkel:{0.5*\r}) [above] {$r$};
+\node at (0:{0.5*\r}) [below] {$r$};
+\end{scope}
+
+\end{tikzpicture}
+\end{center}
+\uncover<4->{%
+Für $\varphi$ kann man auch den Polarwinkel des Tangentialvektors nehmen
+}
+\end{column}
+\end{columns}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/fresnel/numerik.tex b/vorlesungen/slides/fresnel/numerik.tex
new file mode 100644
index 0000000..0bd4d5a
--- /dev/null
+++ b/vorlesungen/slides/fresnel/numerik.tex
@@ -0,0 +1,124 @@
+%
+% numerik.tex -- numerische Berechnung der Fresnel Integrale
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\bgroup
+\begin{frame}[t]
+\setlength{\abovedisplayskip}{5pt}
+\setlength{\belowdisplayskip}{5pt}
+\frametitle{Numerik}
+\vspace{-20pt}
+\begin{columns}[t,onlytextwidth]
+\begin{column}{0.48\textwidth}
+\begin{block}{Taylor-Reihe}
+\begin{align*}
+\sin t^{\uncover<2->{\color<2>{red}2}}
+&=
+\sum_{k=0}^\infty
+(-1)^k \frac{t^{
+\ifthenelse{\boolean{presentation}}{\only<1>{2k+1}}{}
+\only<2->{\color<2>{red}4k+2}
+}
+}{
+(2k+1)!
+}
+\\
+%\int \sin t^2\,dt
+\uncover<4->{
+S_1(t)
+&=
+\sum_{k=0}^\infty
+(-1)^k \frac{t^{4k+3}}{(2k+1)!(4n+3)}
+}
+\\
+\cos t^{\uncover<3->{\color<3>{red}2}}
+&=
+\sum_{k=0}^\infty
+(-1)^k \frac{t^{
+\ifthenelse{\boolean{presentation}}{\only<-2>{2k}}{}
+\only<3->{\color<3>{red}4k}}
+}{
+(2k)!
+}
+\\
+%\int \sin t^2\,dt
+\uncover<5->{
+C_1(t)
+&=
+\sum_{k=0}^\infty
+(-1)^k \frac{t^{4k+1}}{(2k)!(4k+1)}
+}
+\end{align*}
+\end{block}
+\end{column}
+\begin{column}{0.48\textwidth}
+\uncover<6->{
+\begin{block}{Differentialgleichung}
+\[
+\dot{\gamma}_1(t)
+=
+\begin{pmatrix}
+\cos t^2\\ \sin t^2
+\end{pmatrix}
+\uncover<7->{
+\;
+\to
+\;
+\gamma_1(t)
+=
+\begin{pmatrix}
+C_1(t)\\S_1(t)
+\end{pmatrix}
+}
+\]
+\end{block}}
+\uncover<8->{%
+\begin{block}{Hypergeometrische Reihen}
+\begin{align*}
+\uncover<9->{%
+S(t)
+&=
+\frac{\pi z^3}{6}
+\cdot
+\mathstrut_1F_2\biggl(
+\begin{matrix}\frac34\\\frac32,\frac74\end{matrix}
+;
+-\frac{\pi^2z^4}{16}
+\biggr)
+}
+\\
+\uncover<10->{
+C(t)
+&=
+z
+\cdot
+\mathstrut_1F_2\biggl(
+\begin{matrix}\frac14\\\frac12,\frac54\end{matrix}
+;
+-\frac{\pi^2z^4}{16}
+\biggr)}
+\end{align*}
+\end{block}}
+\end{column}
+\end{columns}
+\uncover<11->{%
+\begin{block}{Komplexe Fehlerfunktion}
+\[
+\left.
+\begin{matrix}
+S(z)\\
+C(z)
+\end{matrix}
+\right\}
+=
+\frac{1\pm i}{4}
+\left(
+\operatorname{erf}\biggl({\frac{1+i}2}\sqrt{\pi}z\biggr)
+\mp i
+\operatorname{erf}\biggl({\frac{1-i}2}\sqrt{\pi}z\biggr)
+\right)
+\]
+\end{block}}
+\end{frame}
+\egroup
diff --git a/vorlesungen/slides/fresnel/test.tex b/vorlesungen/slides/fresnel/test.tex
deleted file mode 100644
index 6c2f25b..0000000
--- a/vorlesungen/slides/fresnel/test.tex
+++ /dev/null
@@ -1,19 +0,0 @@
-%
-% template.tex -- slide template
-%
-% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
-%
-\bgroup
-\begin{frame}[t]
-\setlength{\abovedisplayskip}{5pt}
-\setlength{\belowdisplayskip}{5pt}
-\frametitle{Template für Klothoide}
-\vspace{-20pt}
-\begin{columns}[t,onlytextwidth]
-\begin{column}{0.48\textwidth}
-\end{column}
-\begin{column}{0.48\textwidth}
-\end{column}
-\end{columns}
-\end{frame}
-\egroup
diff --git a/vorlesungsnotizen/B/8 - Integration in geschlossener Form.pdf b/vorlesungsnotizen/B/8 - Integration in geschlossener Form.pdf
new file mode 100644
index 0000000..9f06bdc
--- /dev/null
+++ b/vorlesungsnotizen/B/8 - Integration in geschlossener Form.pdf
Binary files differ
diff --git a/vorlesungsnotizen/MSE/5 - Elliptische Funktionen.pdf b/vorlesungsnotizen/MSE/5 - Elliptische Funktionen.pdf
new file mode 100644
index 0000000..8537524
--- /dev/null
+++ b/vorlesungsnotizen/MSE/5 - Elliptische Funktionen.pdf
Binary files differ