diff options
author | Andreas Müller <andreas.mueller@ost.ch> | 2022-03-15 17:35:00 +0100 |
---|---|---|
committer | Andreas Müller <andreas.mueller@ost.ch> | 2022-03-15 17:35:00 +0100 |
commit | 3381bfe1e6ebcd66249cd4c6f49bdd820643a5be (patch) | |
tree | 33aff22b82b8f53e4adaea5bb3ba1c8fca9d39f3 | |
parent | move command configuration to common/Makefile.inc (diff) | |
download | SeminarSpezielleFunktionen-3381bfe1e6ebcd66249cd4c6f49bdd820643a5be.tar.gz SeminarSpezielleFunktionen-3381bfe1e6ebcd66249cd4c6f49bdd820643a5be.zip |
add some stuff about separation
-rw-r--r-- | buch/chapters/090-pde/kreis.tex | 2 | ||||
-rw-r--r-- | buch/chapters/090-pde/kugel.tex | 146 | ||||
-rw-r--r-- | buch/papers/000template/main.tex | 5 | ||||
-rw-r--r-- | buch/papers/000template/teil0.tex | 3 | ||||
-rw-r--r-- | buch/papers/000template/teil1.tex | 3 | ||||
-rw-r--r-- | buch/papers/000template/teil2.tex | 3 | ||||
-rw-r--r-- | buch/papers/000template/teil3.tex | 3 |
7 files changed, 163 insertions, 2 deletions
diff --git a/buch/chapters/090-pde/kreis.tex b/buch/chapters/090-pde/kreis.tex index b4ce8d7..c60fd44 100644 --- a/buch/chapters/090-pde/kreis.tex +++ b/buch/chapters/090-pde/kreis.tex @@ -32,7 +32,7 @@ Der Laplace-Operator hat in Polarkoordinaten die Form \frac1r \frac{\partial}{\partial r} + -\frac{1}{r 2} +\frac{1}{r^2} \frac{\partial^2}{\partial\varphi^2}. \label{buch:pde:kreis:laplace} \end{equation} diff --git a/buch/chapters/090-pde/kugel.tex b/buch/chapters/090-pde/kugel.tex index 0e3524f..c081029 100644 --- a/buch/chapters/090-pde/kugel.tex +++ b/buch/chapters/090-pde/kugel.tex @@ -5,4 +5,150 @@ % \section{Kugelfunktionen \label{buch:pde:section:kugel}} +Kugelsymmetrische Probleme können oft vorteilhaft in Kugelkoordinaten +beschrieben werden. +Die Separationsmethode kann auf partielle Differentialgleichungen +mit dem Laplace-Operator angewendet werden. +Die daraus resultierenden gewöhnlichen Differentialgleichungen führen +einerseits auf die Laguerre-Differentialgleichung für den radialen +Anteil sowie auf Kugelfunktionen für die Koordinaten der +geographischen Länge und Breite. + +\subsection{Kugelkoordinaten} +Wir verwenden Kugelkoordinaten $(r,\vartheta,\varphi)$, wobei $r$ +der Radius ist, $\vartheta$ die geographische Breite gemessen vom +Nordpol der Kugel und $\varphi$ die geographische Breite. +Der Definitionsbereich für Kugelkoordinaten ist +\[ +\Omega += +\{(r,\vartheta,\varphi) +\;|\; +r\ge 0\wedge +0\le \vartheta\le \pi\wedge +0\le \varphi< 2\pi +\}. +\] +Die Entfernung eines Punktes von der $z$-Achse ist $r\sin\vartheta$. +Daraus lassen sich die karteischen Koordinaten eines Punktes mit Hilfe +von +\[ +\begin{pmatrix}x\\y\\z\end{pmatrix} += +\begin{pmatrix} +r\cos\vartheta\\ +r\sin\vartheta\cos\varphi\\ +r\sin\vartheta\sin\varphi +\end{pmatrix}. +\] +Man beachte, dass die Punkte auf der $z$-Achse keine eindeutigen +Kugelkoordinaten haben. +Sie sind charakterisiert durch $r\sin\vartheta=0$, was $\cos\vartheta=\pm1$ +impliziert. +Entsprechend führen alle Werte von $\varphi$ auf den gleichen Punkt +$(0,0,\pm r)$. + +\subsection{Der Laplace-Operator in Kugelkoordinaten} +Der Laplace-Operator in Kugelkoordinaten lautet +\begin{align} +\Delta +&= +\frac{1}{r^2} \frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} ++ +\frac{1}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta} +\sin\vartheta\frac{\partial}{\partial\vartheta} ++ +\frac{1}{r^2\sin^2\vartheta}\frac{\partial^2}{\partial\varphi^2}. +\label{buch:pde:kugel:laplace1} +\intertext{Dies kann auch geschrieben werden als} +&= +\frac{\partial^2}{\partial r^2} ++ +\frac{2}{r}\frac{\partial}{\partial r} ++ +\frac{1}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta} +\sin\vartheta\frac{\partial}{\partial\vartheta} ++ +\frac{1}{r^2\sin^2\vartheta}\frac{\partial^2}{\partial\varphi^2} +\label{buch:pde:kugel:laplace2} +\intertext{oder} +&= +\frac{1}{r} +\frac{\partial^2}{\partial r^2} r ++ +\frac{1}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta} +\sin\vartheta\frac{\partial}{\partial\vartheta} ++ +\frac{1}{r^2\sin^2\vartheta}\frac{\partial^2}{\partial\varphi^2}. +\label{buch:pde:kugel:laplace3} +\end{align} +Dabei ist zu berücksichtigen, dass mit der Notation gemeint ist, +dass ein Ableitungsoperator auf alles wirkt, was rechts im gleichen +Term steht. +Der Operator +\[ +\frac{1}{r} +\frac{\partial^2}{\partial r^2}r +\quad\text{wirkt daher als}\quad +\frac{1}{r} +\frac{\partial^2}{\partial r^2}rf += +\frac{1}{r} +\frac{\partial}{\partial r}\biggl(f + r\frac{\partial f}{\partial r}\biggr) += +\frac{1}{r} +\frac{\partial f}{\partial r} ++ +\frac{1}{r} +\frac{\partial f}{\partial r} ++ +\frac{\partial^2f}{\partial r^2}. += +\frac{2}{r}\frac{\partial f}{\partial r} ++ +\frac{\partial^2f}{\partial r^2}, +\] +was die Äquivalenz der beiden Formen +\eqref{buch:pde:kugel:laplace2} +und +\eqref{buch:pde:kugel:laplace3} +rechtfertigt. +Auch die Äquivalenz mit +\eqref{buch:pde:kugel:laplace1} +kann auf ähnliche Weise verstanden werden. + +Die Herleitung dieser Formel ist ziemlich aufwendig und soll hier +nicht dargestellt werden. +Es sei aber darauf hingewiesen, dass sich für $\vartheta=\frac{\pi}2$ +wegen $\sin\vartheta=\sin\frac{\pi}2=1$ +der eingeschränkte Operator +\[ +\Delta += +\frac{1}{r^2}\frac{\partial }{\partial r} r^2\frac{\partial}{\partial r} ++ +\frac{1}{r^2}\frac{\partial^2}{\partial\varphi^2} +\] +ergibt. +Wendet man wie oben die Produktregel auf den ersten Term an, entsteht die +Form +\[ +\frac{\partial^2}{\partial r^2} ++ +\frac{2}{r} +\frac{\partial}{\partial r} ++ +\frac{1}{r^2}\frac{\partial^2}{\partial\varphi^2} +\] +die {\em nicht} übereinstimmt mit dem Laplace-Operator in +Polarkoordinaten~\eqref{buch:pde:kreis:laplace}. +Der Unterschied rührt daher, dass der Laplace-Operator die Krümmung +der Koordinatenlinien berücksichtigt, in diesem Fall der Meridiane. + + +\subsection{Separation} + + + + diff --git a/buch/papers/000template/main.tex b/buch/papers/000template/main.tex index 87a5685..91b6d6e 100644 --- a/buch/papers/000template/main.tex +++ b/buch/papers/000template/main.tex @@ -1,7 +1,10 @@ % % main.tex -- Paper zum Thema <000template> % -% (c) 2020 Hochschule Rapperswil +% (c) 2020 Autor, OST Ostschweizer Fachhochschule +% +% !TEX root = ../../buch.tex +% !TEX encoding = UTF-8 % \chapter{Thema\label{chapter:000template}} \lhead{Thema} diff --git a/buch/papers/000template/teil0.tex b/buch/papers/000template/teil0.tex index 7b9f088..65d7ae1 100644 --- a/buch/papers/000template/teil0.tex +++ b/buch/papers/000template/teil0.tex @@ -3,6 +3,9 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % +% !TEX root = ../../buch.tex +% !TEX encoding = UTF-8 +% \section{Teil 0\label{000template:section:teil0}} \rhead{Teil 0} Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam diff --git a/buch/papers/000template/teil1.tex b/buch/papers/000template/teil1.tex index 00d3058..0f8dfae 100644 --- a/buch/papers/000template/teil1.tex +++ b/buch/papers/000template/teil1.tex @@ -3,6 +3,9 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % +% !TEX root = ../../buch.tex +% !TEX encoding = UTF-8 +% \section{Teil 1 \label{000template:section:teil1}} \rhead{Problemstellung} diff --git a/buch/papers/000template/teil2.tex b/buch/papers/000template/teil2.tex index 471adae..496557f 100644 --- a/buch/papers/000template/teil2.tex +++ b/buch/papers/000template/teil2.tex @@ -3,6 +3,9 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % +% !TEX root = ../../buch.tex +% !TEX encoding = UTF-8 +% \section{Teil 2 \label{000template:section:teil2}} \rhead{Teil 2} diff --git a/buch/papers/000template/teil3.tex b/buch/papers/000template/teil3.tex index 4697813..ef2aa75 100644 --- a/buch/papers/000template/teil3.tex +++ b/buch/papers/000template/teil3.tex @@ -3,6 +3,9 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % +% !TEX root = ../../buch.tex +% !TEX encoding = UTF-8 +% \section{Teil 3 \label{000template:section:teil3}} \rhead{Teil 3} |