diff options
author | Erik Löffler <100943759+erik-loeffler@users.noreply.github.com> | 2022-08-26 13:46:45 +0200 |
---|---|---|
committer | Erik Löffler <100943759+erik-loeffler@users.noreply.github.com> | 2022-08-26 13:46:45 +0200 |
commit | ad4935f4a4cf53e4456b7bef5fbf4462e8a03f2c (patch) | |
tree | 8b64c9ab93b042602c05bf0c3068b6a1d1b1a616 | |
parent | Grammar and formatting mistakes corrected in (diff) | |
download | SeminarSpezielleFunktionen-ad4935f4a4cf53e4456b7bef5fbf4462e8a03f2c.tar.gz SeminarSpezielleFunktionen-ad4935f4a4cf53e4456b7bef5fbf4462e8a03f2c.zip |
Adjusted sections/subsections in fourier example.
-rw-r--r-- | buch/papers/sturmliouville/waermeleitung_beispiel.tex | 17 |
1 files changed, 10 insertions, 7 deletions
diff --git a/buch/papers/sturmliouville/waermeleitung_beispiel.tex b/buch/papers/sturmliouville/waermeleitung_beispiel.tex index 30ba8f6..c01a164 100644 --- a/buch/papers/sturmliouville/waermeleitung_beispiel.tex +++ b/buch/papers/sturmliouville/waermeleitung_beispiel.tex @@ -5,7 +5,7 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Wärmeleitung in homogenem Stab} +\section{Beispiel: Wärmeleitung in homogenem Stab} In diesem Abschnitt wird das Problem der Wärmeleitung in einem homogenen Stab betrachtet, angeschaut wie das Sturm-Liouville-Problem bei der Beschreibung @@ -34,7 +34,8 @@ werden. % % Randbedingungen für Stab mit konstanten Endtemperaturen % -\subsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur} +\subsection{Randbedingungen} +\subsubsection{Randbedingungen für Stab mit Enden auf konstanter Temperatur} Die Enden des Stabes auf konstanter Temperatur zu halten bedeutet, dass die Lösungsfunktion $u(t,x)$ bei $x = 0$ und $x = l$ nur die vorgegebene @@ -54,7 +55,7 @@ als Randbedingungen. % Randbedingungen für Stab mit isolierten Enden % -\subsection{Randbedingungen für Stab mit isolierten Enden} +\subsubsection{Randbedingungen für Stab mit isolierten Enden} Bei isolierten Enden des Stabes können grundsätzlich beliebige Temperaturen für $x = 0$ und $x = l$ auftreten. @@ -82,7 +83,7 @@ als Randbedingungen. % Lösung der Differenzialgleichung mittels Separation % -\subsection{Lösung der Differenzialgleichung} +\subsection{Separation der Differenzialgleichung} Da die Lösungsfunktion $u$ von zwei Variablen abhängig ist, wird die Gleichung~\eqref{sturmliouville:eq:example-fourier-heat-equation} zunächst @@ -716,10 +717,12 @@ führt und mit dem Resultat~\eqref{sturmliouville:eq:example-fourier-mu-solution \] ergibt. -Dieses Resultat kann nun mit allen vorhergehenden Resultaten zusammengesetzt +\subsection{Lösung des Wärmeleitungsproblems} + +Nun können alle vorhergehenden Resultate zusammengesetzt werden um die vollständige Lösung für das Stab-Problem zu erhalten. -\subsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} +\subsubsection{Lösung für einen Stab mit Enden auf konstanter Temperatur} \[ \begin{aligned} u(t,x) @@ -733,7 +736,7 @@ werden um die vollständige Lösung für das Stab-Problem zu erhalten. \end{aligned} \] -\subsection{Lösung für einen Stab mit isolierten Enden} +\subsubsection{Lösung für einen Stab mit isolierten Enden} \[ \begin{aligned} u(t,x) |