aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/010-potenzen/rational.tex
diff options
context:
space:
mode:
authorJODBaer <55744603+JODBaer@users.noreply.github.com>2022-07-18 13:54:57 +0200
committerGitHub <noreply@github.com>2022-07-18 13:54:57 +0200
commiteb8cc4b5029fd6fedfd5aaa133fd966a48b643db (patch)
tree313c7fce3526f271f07180839a5d8dfcf2d1b3a3 /buch/chapters/010-potenzen/rational.tex
parentMerge branch 'AndreasFMueller:master' into master (diff)
parentMerge pull request #21 from enezerdem/master (diff)
downloadSeminarSpezielleFunktionen-eb8cc4b5029fd6fedfd5aaa133fd966a48b643db.tar.gz
SeminarSpezielleFunktionen-eb8cc4b5029fd6fedfd5aaa133fd966a48b643db.zip
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to 'buch/chapters/010-potenzen/rational.tex')
-rw-r--r--buch/chapters/010-potenzen/rational.tex61
1 files changed, 61 insertions, 0 deletions
diff --git a/buch/chapters/010-potenzen/rational.tex b/buch/chapters/010-potenzen/rational.tex
new file mode 100644
index 0000000..f1957ac
--- /dev/null
+++ b/buch/chapters/010-potenzen/rational.tex
@@ -0,0 +1,61 @@
+%
+% rational.tex
+%
+% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Rationale Funktionen
+\label{buch:polynome:section:rationale-funktionen}}
+\rhead{Rationale Funktionen}
+Polynome sind sehr einfach auszuwerten und können auf einem
+Interval jede stetige Funktion beliebig gut approximieren.
+Auf einem unbeschränkten Definitionsbereich wachsen Polynome aber
+immer unbeschränkt an.
+Der führende Term $a_nx^n$ dominiert das Verhalten eines Polynoms
+für $x\to\infty$ wegen
+\[
+\lim_{x\to\infty} a_nx^n
+=
+\operatorname{sgn} a_n \cdot\infty
+\qquad\text{und}\qquad
+\lim_{x\to-\infty} a_nx^n
+=
+(-1)^n \operatorname{sgn} a_n\cdot \infty.
+\]
+Insbesondere kann man nicht erwarten, dass sich eine beschränkte
+Funktion wie $\sin x$ durch Polynome auf dem ganzen Definitionsbereich
+gut approximieren lässt.
+Der Unterschied $p(x)-\sin x$ wird für jedes beliebige Polynome $p(x)$
+für $x\to\pm\infty$ unbeschränkt anwachsen.
+
+Eine weitere Einschränkung ist, dass die Menge der Polynome bezüglich
+der arithmetischen Operationen nicht abgeschlossen ist.
+Man kann zwar Polynome addieren und multiplizieren, aber der Quotient
+ist nicht notwendigerweise ein Polynom.
+Abhilfe schafft nur, wenn man Quotienten von Polynomen zulässt.
+
+\begin{definition}
+Eine Funktion $f(x)$ heisst {\em rationale Funktion}, wenn sie Quotient
+\index{rationale Funktion}%
+zweier Polynome ist, wenn es also Polynome $p(x), q(x)\in K[x]$ gibt mit
+\[
+f(x) = \frac{p(x)}{q(x)}.
+\]
+Die Menge der rationalen Funktione mit Koeffizienten in $K$ wird mit
+$K(x)$ bezeichnet.
+\end{definition}
+
+Polynome sind rationale Funktionen, deren Nennergrad $1$ ist.
+Rationale Funktionen können ebenfalls zur Approximation von Funktionen
+verwendet werden.
+Da sie beschränkt sein können, haben sie das Potential,
+beschränkte Funktionen besser zu approximieren, als dies mit
+Polynomen allein möglich wäre.
+Die Theorie der Padé-Approximation, wie sie zum Beispiel im Buch
+\index{Pade-Approximation@Padé-Approximation}%
+\cite{buch:pade} dargestellt ist, ist zum Beispiel auch in der
+Regelungstechnik von Interesse, da sich rationale Funktionen mit
+linearen Komponenten schaltungstechnisch realisieren lassen.
+Weitere Anwendungen werden in Kapitel~\ref{chapter:transfer}
+gezeigt.
+
+