aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/040-rekursion/beta.tex
diff options
context:
space:
mode:
authorSamuel Niederer <43746162+samnied@users.noreply.github.com>2022-07-24 12:17:00 +0200
committerGitHub <noreply@github.com>2022-07-24 12:17:00 +0200
commitefe7c35759afb5cbae3c1683873c5159be0be09f (patch)
tree84f2e8510132352f9943bddc577ccf32cd46f2dc /buch/chapters/040-rekursion/beta.tex
parentadd current work (diff)
parentMerge pull request #26 from p1mueller/master (diff)
downloadSeminarSpezielleFunktionen-efe7c35759afb5cbae3c1683873c5159be0be09f.tar.gz
SeminarSpezielleFunktionen-efe7c35759afb5cbae3c1683873c5159be0be09f.zip
Merge branch 'AndreasFMueller:master' into master
Diffstat (limited to 'buch/chapters/040-rekursion/beta.tex')
-rw-r--r--buch/chapters/040-rekursion/beta.tex121
1 files changed, 36 insertions, 85 deletions
diff --git a/buch/chapters/040-rekursion/beta.tex b/buch/chapters/040-rekursion/beta.tex
index ea847bc..20e3f0e 100644
--- a/buch/chapters/040-rekursion/beta.tex
+++ b/buch/chapters/040-rekursion/beta.tex
@@ -3,11 +3,19 @@
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
-\subsection{Die Beta-Funktion
-\label{buch:rekursion:gamma:subsection:beta}}
+\section{Die Beta-Funktion
+\label{buch:rekursion:gamma:section:beta}}
Die Eulersche Integralformel für die Gamma-Funktion in
-Definition~\ref{buch:rekursion:def:gamma} wurde bisher nicht
-gerechtfertigt.
+Definition~\ref{buch:rekursion:def:gamma} wurde in
+Abschnitt~\ref{buch:subsection:integral-eindeutig}
+mit dem Satz~\ref{buch:satz:bohr-mollerup}
+von Bohr-Mollerup gerechtfertigt.
+Man kann Sie aber auch als Grenzfall der Beta-Funktion verstehen,
+die in diesem Abschnitt dargestellt wird.
+
+
+\subsection{Beta-Integral
+\label{buch:rekursion:gamma:subsection:integralbeweis}}
In diesem Abschnitt wird das Beta-Integral eingeführt, eine Funktion
von zwei Variablen, welches eine Integral-Definition mit einer
reichaltigen Menge von Rekursionsbeziehungen hat, die sich direkt auf
@@ -24,6 +32,7 @@ B(x,y)
\int_0^1 t^{x-1} (1-t)^{y-1}\,dt
\]
für $\operatorname{Re}x>0$, $\operatorname{Re}y>0$.
+\index{Beta-Integral}%
\end{definition}
Aus der Definition kann man sofort ablesen, dass $B(x,y)=B(y,x)$.
@@ -225,6 +234,7 @@ Durch Einsetzen der Integralformel im Ausdruck
Satz.
\begin{satz}
+\index{Satz!Beta-Funktion und Gamma-Funktion}%
Die Beta-Funktion kann aus der Gamma-Funktion nach
\begin{equation}
B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
@@ -233,6 +243,16 @@ B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
berechnet werden.
\end{satz}
+%
+% Info über die Beta-Verteilung
+%
+\input{chapters/040-rekursion/betaverteilung.tex}
+
+\subsection{Weitere Eigenschaften der Gamma-Funktion}
+Die nahe Verwandtschaft der Gamma- mit der Beta-Funktion ermöglicht
+nun, weitere Eigenschaften der Gamma-Funktion mit Hilfe der Beta-Funktion
+herzuleiten.
+
\subsubsection{Nochmals der Wert von $\Gamma(\frac12)$?}
Der Wert von $\Gamma(\frac12)=\sqrt{\pi}$ wurde bereits in
\eqref{buch:rekursion:gamma:wert12}
@@ -304,6 +324,9 @@ $(-\frac12)!$ als Wert
\]
der Gamma-Funktion interpretiert.
+%
+% Alternative Parametrisierung
+%
\subsubsection{Alternative Parametrisierungen}
Die Substitution $t=\sin^2 s$ hat im vorangegangenen Abschnitt
ermöglicht, $\Gamma(\frac12)$ zu ermitteln.
@@ -366,8 +389,10 @@ wobei wir
\]
verwendet haben.
Diese Darstellung des Beta-Integrals wird später
-% XXX Ort ergänzen
+in Satz~\ref{buch:funktionentheorie:satz:spiegelungsformel}
dazu verwendet, die Spiegelungsformel für die Gamma-Funktion
+\index{Gamma-Funktion!Spiegelungsformel}%
+\index{Spiegelungsformel der Gamma-Funktion}%
herzuleiten.
Eine weitere mögliche Parametrisierung verwendet $t = (1+s)/2$
@@ -391,17 +416,23 @@ B(x,y)
\label{buch:rekursion:gamma:beta:symm}
\end{equation}
+%
+%
+%
\subsubsection{Die Verdoppelungsformel von Legendre}
Die trigonometrische Substitution kann dazu verwendet werden, die
Legendresche Verdoppelungsformel für die Gamma-Funktion herzuleiten.
\begin{satz}[Legendre]
+\index{Satz!Verdoppelungsformel@Verdoppelungsformel für $\Gamma(x)$}%
\[
\Gamma(x)\Gamma(x+{\textstyle\frac12})
=
2^{1-2x}\sqrt{\pi}
\Gamma(2x)
\]
+\index{Verdoppelungsformel}%
+\index{Gamma-Funktion!Verdoppelungsformel von Legendre}%
\end{satz}
\begin{proof}[Beweis]
@@ -484,83 +515,3 @@ Setzt man $x=\frac12$ in die Verdoppelungsformel ein, erhält man
in Übereinstimmung mit dem aus \eqref{buch:rekursion:gamma:gamma12}
bereits bekannten Wert.
-\subsubsection{Beta-Funktion und Binomialkoeffizienten}
-Die Binomialkoeffizienten können mit Hilfe der Fakultät als
-\begin{align*}
-\binom{n}{k}
-&=
-\frac{n!}{(n-k)!\,k!}
-\intertext{geschrieben werden.
-Drückt man die Fakultäten durch die Gamma-Funktion aus, erhält man}
-&=
-\frac{\Gamma(n+1)}{\Gamma(n-k+1)\Gamma(k+1)}.
-\intertext{Schreibt man $x=k-1$ und $y=n-k+1$, wird daraus
-wegen $x+y=k+1+n-k+1=n+2=(n+1)+1$}
-&=
-\frac{\Gamma(x+y-1)}{\Gamma(x)\Gamma(y)}.
-\intertext{Die Rekursionsformel für die Gamma-Funktion erlaubt,
-den Zähler umzuwandeln in $\Gamma(x+y-1)=\Gamma(x+y)/(x+y-1)$, so dass
-der Binomialkoeffizient schliesslich}
-&=
-\frac{\Gamma(x+y)}{(x+y-1)\Gamma(x)\Gamma(y)}
-=
-\frac{1}{(n-1)B(n-k+1,k+1)}
-\label{buch:rekursion:gamma:binombeta}
-\end{align*}
-geschrieben werden kann.
-Die Rekursionsbeziehung
-\[
-\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}
-\]
-der Binomialkoeffizienten erzeugt das vertraute Pascal-Dreieck,
-die Formel \eqref{buch:rekursion:gamma:binombeta} für die
-Binomialkoeffizienten macht daraus
-\[
-\frac{n-1}{B(n-k,k-1)}
-=
-\frac{n-2}{B(n-k,k-2)}
-+
-\frac{n-2}{B(n-k-1,k-1)},
-\]
-die für ganzzahlige Argumente gilt.
-Wir wollen nachrechnen, dass dies für beliebige Argumente gilt.
-\begin{align*}
-\frac{(n-1)\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-1)}
-&=
-\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k)\Gamma(k-2)}
-+
-\frac{(n-2)\Gamma(n-2)}{\Gamma(n-k-1)\Gamma(k-1)}
-\\
-\frac{\Gamma(n)}{\Gamma(n-k)\Gamma(k-1)}
-&=
-\frac{\Gamma(n-1)}{\Gamma(n-k)\Gamma(k-2)}
-+
-\frac{\Gamma(n-1)}{\Gamma(n-k-1)\Gamma(k-1)}
-\intertext{Durch Zusammenfassen der Faktoren im Zähler mit Hilfe
-der Rekursionsformel für die Gamma-Funktion und Multiplizieren
-mit dem gemeinsamen Nenner
-$\Gamma(n-k)\Gamma(k-1)=(n-k-1)\Gamma(n-k-1)(k-2)\Gamma(k-2)$ wird daraus}
-\Gamma(n)
-&=
-(k-2)
-\Gamma(n-1)
-+
-(n-k-1)
-\Gamma(n-1)
-\intertext{Indem wir die Rekursionsformel für die Gamma-Funktion auf
-die rechte Seite anwenden können wir erreichen, dass in allen Termen
-ein Faktor
-$\Gamma(n-1)$ auftritt:}
-(n-1)\Gamma(n-1)
-&=
-(k-2)\Gamma(n-1)
-+
-(n+k-1)\Gamma(n-1)
-\\
-n-1
-&=
-k-2
-+
-n-k-1
-\end{align*}
-