aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/lemniskate.tex
diff options
context:
space:
mode:
authorAndreas Müller <andreas.mueller@ost.ch>2021-10-12 07:44:15 +0200
committerAndreas Müller <andreas.mueller@ost.ch>2021-10-12 07:44:15 +0200
commit09e2c20b0a41a36161547b2628366db1e048eaf8 (patch)
tree19ce49dcdcf7ebe7835432ecc81b66ac1a97f7ec /buch/chapters/110-elliptisch/lemniskate.tex
parentmore chapter skeletons (diff)
downloadSeminarSpezielleFunktionen-09e2c20b0a41a36161547b2628366db1e048eaf8.tar.gz
SeminarSpezielleFunktionen-09e2c20b0a41a36161547b2628366db1e048eaf8.zip
add some info on elliptic functions
Diffstat (limited to 'buch/chapters/110-elliptisch/lemniskate.tex')
-rw-r--r--buch/chapters/110-elliptisch/lemniskate.tex171
1 files changed, 171 insertions, 0 deletions
diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex
new file mode 100644
index 0000000..d4ad019
--- /dev/null
+++ b/buch/chapters/110-elliptisch/lemniskate.tex
@@ -0,0 +1,171 @@
+%
+% lemniskate.tex
+%
+% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
+%
+\section{Lemniskatischer Sinus
+\label{buch:elliptisch:section:lemniskate}}
+\rhead{Lemniskatischer Sinus}
+Historisch war der {\em lemniskatische Sinus} die erste ellptische
+Funktion, die Gauss bereits als 19-jähriger untersucht, aber nicht
+veröffentlich hat.
+In diesem Abschnitt soll die Verbindung zu den Jacobischen
+elliptischen Funktionen hergestellt werden.
+
+\subsection{Lemniskate
+\label{buch:gemotrie:subsection:lemniskate}}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/images/lemniskate.pdf}
+\caption{Bogenlänge und Radius der Lemniskate von Bernoulli.
+\label{buch:elliptisch:fig:lemniskate}}
+\end{figure}
+Die Lemniskate von Bernoulli ist die Kurve vierten Grades mit der Gleichung
+\begin{equation}
+(x^2+y^2)^2 = 2a^2(x^2-y^2).
+\label{buch:elliptisch:eqn:lemniskate}
+\end{equation}
+Sie ist in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
+dargestellt.
+Die beiden Scheitel der Lemniskate befinden sich bei $x=\pm a/\sqrt{2}$.
+
+In Polarkoordinaten $x=r\cos\varphi$ und $y=r\sin\varphi$
+gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskate}
+\begin{equation}
+r^4
+=
+2a^2r^2(\cos^2\varphi-\sin^2\varphi)
+=
+2a^2r^2\cos2\varphi
+\qquad\Rightarrow\qquad
+r^2 = 2a^2\cos 2\varphi
+\label{buch:elliptisch:eqn:lemniskatepolar}
+\end{equation}
+als Darstellung der Lemniskate in Polardarstellung.
+Sie gilt für Winkel $\varphi\in[-\frac{\pi}4,\frac{\pi}4]$ für das
+rechte Blatt und $\varphi\in[\frac{3\pi}4,\frac{5\pi}4]$ für das linke
+Blatt der Lemniskate.
+
+Für die Definition des lemniskatischen Sinus wird eine Skalierung
+verwendet, die den rechten Scheitel im Punkt $(1,0)$.
+Dies ist der Fall für $a=1/\sqrt{2}$, die Gleichung der Lemniskate
+wird dann zu
+\[
+(x^2+y^2)^2 = 2(x^2-y^2).
+\]
+
+\subsubsection{Bogelänge}
+Die Funktionen
+\begin{equation}
+x(r) = \frac{r}{\sqrt{2}}\sqrt{1+r^2},
+\quad
+y(r) = \frac{r}{\sqrt{2}}\sqrt{1-r^2}
+\label{buch:geometrie:eqn:lemniskateparam}
+\end{equation}
+erfüllen
+\begin{align*}
+x(r)^2-y(r)^2
+&=
+\frac{r^2(1+r^2)}{2}-\frac{r^2(1-r^2)}{2}
+\\
+&
+=
+r^4
+=
+(x(r)^2 + y(r)^2)^2,
+\end{align*}
+sie stellen also eine Parametrisierung der Lemniskate dar.
+
+Mit Hilfe der Parametrsierung~\eqref{buch:geometrie:eqn:lemniskateparam}
+kann man die Länge $s$ des in Abbildung~\ref{buch:elliptisch:fig:lemniskate}
+dargestellten Bogens der Lemniskate berechnen.
+Dazu benötigt man die Ableitungen nach $r$, die man mit der Produkt- und
+Kettenregel berechnen kann:
+\begin{align*}
+\dot{x}(r)
+&=
+\frac{\sqrt{1+r^2}}{\sqrt{2}}
++
+\frac{r^2}{\sqrt{2}\sqrt{1+r^2}}
+&&\Rightarrow&
+\dot{x}(r)^2
+&=
+\frac{1+r^2}{2} +r^2 + \frac{r^4}{2(1+r^2)}
+\\
+\dot{y}(r)
+&=
+\frac{\sqrt{1-r^2}}{\sqrt{2}}
+-
+\frac{r^2}{\sqrt{2}\sqrt{1-r^2}}
+&&\Rightarrow&
+\dot{y}(r)^2
+&=
+\frac{1-r^2}{2} -r^2 + \frac{r^4}{2(1-r^2)}
+\end{align*}
+Die Summe der Quadrate ist
+\begin{align*}
+\dot{x}(r)^2 + \dot{y}(r)^2
+&=
+1 + r^4\frac{1-r^2+1+r^2}{2(1+r^2)(1-r^2)}
+=
+1+r^4\frac{2}{2(1-r^4)}
+=
+\frac{1-r^4+r^4}{1-r^4}
+=
+\frac1{1-r^4}.
+\end{align*}
+Durch Einsetzen in das Integral für die Bogenlänge bekommt man
+\begin{equation}
+s(r)
+=
+\int_0^r
+\frac{1}{\sqrt{1-t^4}}\,dt.
+\label{buch:elliptisch:eqn:lemniskatebogenlaenge}
+\end{equation}
+
+\subsubsection{Darstellung als elliptisches Integral}
+Das unvollständige elliptische Integral erster Art mit Parameter
+$m=-1$ ist
+\[
+F(r,-1)
+=
+\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-(-1)t^2)}}
+=
+\int_0^x \frac{dt}{\sqrt{1-t^4}}
+=
+s(r).
+\]
+Der lemniskatische Sinus ist also eine Umkehrfunktion des
+ellptischen Integrals erster Art für einen speziellen Wert des
+Parameters $m$
+
+\subsubsection{Der lemniskatische Sinus und Kosinus}
+Berechnet die Gegenkathete zu einer gegebenen Bogenlänge des Kreises.
+Daher ist es naheliegend, die Umkehrfunktion von $s(r)$ in
+\eqref{buch:elliptisch:eqn:lemniskatebogenlaenge}
+den {\em lemniskatischen Sinus} zu nennen mit der Bezeichnung
+$r=\operatorname{sl} s$.
+
+Der Kosinus ist der Sinus des komplementären Winkels.
+Auch für die lemniskatische Bogenlänge $s(r)$ lässt sich eine
+komplementäre Bogenlänge definieren, nämlich die Bogenlänge zwischen
+dem Punkt $(x(r), y(r))$ und $(1,0)$.
+Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet
+und hat den numerischen Wert
+\[
+\varphi
+=
+2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt
+=
+2.6220575542.
+\]
+Lemniskatenbogens zwischen dem Nullpunkt und $(1,0)$ hat die Länge
+$\varpi/2$.
+
+Der {\em lemniskatische Kosinus} von $s$ ist derjenige Radiuswert $r$,
+für den der Lemniskatenbogen zwischen $(x(r), y(r))$ und $(1,0)$
+die Länge $s$ hat.
+
+
+XXX Algebraische Beziehungen \\
+XXX Ableitungen \\