aboutsummaryrefslogtreecommitdiffstats
path: root/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
diff options
context:
space:
mode:
authorNicolas Tobler <nicolas.tobler@ost.ch>2022-05-30 00:06:46 +0200
committerNicolas Tobler <nicolas.tobler@ost.ch>2022-05-30 00:06:46 +0200
commit65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9 (patch)
tree30791dc17973690a6d761589de357c452ba9fa29 /buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
parentAdded content, presentation (diff)
parentbeispiel korrektur (diff)
downloadSeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.tar.gz
SeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.zip
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to 'buch/chapters/110-elliptisch/uebungsaufgaben/1.tex')
-rw-r--r--buch/chapters/110-elliptisch/uebungsaufgaben/1.tex323
1 files changed, 323 insertions, 0 deletions
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
new file mode 100644
index 0000000..694f18a
--- /dev/null
+++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex
@@ -0,0 +1,323 @@
+In einem anharmonische Oszillator oszilliert eine Masse $m$ unter dem
+Einfluss einer Kraft, die nach dem Gesetz
+\[
+F(x) = -\kappa x + \delta x^3
+\]
+von der Auslenkung aus der Ruhelage abhängt.
+Nehmen Sie im Folgenden an, dass $\delta >0$ ist,
+dass also die rücktreibende Kraft $F(x)$ kleiner ist als bei einem
+harmonischen Oszillator.
+Ziel der folgenden Teilaufgaben ist, die Lösung $x(t)$ schrittweise
+dadurch zu bestimmen, dass die Bewegungsgleichung in die Differentialgleichung
+der Jacobischen elliptischen Funktion $\operatorname{sn}(u,k)$ umgeformt
+wird.
+\begin{teilaufgaben}
+\item
+Berechnen Sie die Auslenkung $x_0$, bei der die rücktreibende Kraft
+verschwindet.
+Eine beschränkte Schwingung kann diese Amplitude nicht überschreiten.
+\item
+Berechnen Sie die potentielle Energie in Abhängigkeit von der
+Auslenkung.
+\item
+\label{buch:1101:basic-dgl}
+Formulieren Sie den Energieerhaltungssatz für die Gesamtenergie $E$
+dieses Oszillators.
+Leiten Sie daraus eine nichtlineare Differentialgleichung erster Ordnung
+for den anharmonischen Oszillator ab, die sie in der Form
+$\frac12m\dot{x}^2 = f(x)$ schreiben.
+\item
+Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die
+Geschwindigkeit $\dot{x}(t)$ verschwindet.
+Leiten Sie die Amplitude aus der Differentialgleichung von
+%\ref{buch:1101:basic-dgl}
+Teilaufgabe c)
+ab.
+Sie erhalten zwei Werte $x_{\pm}$, wobei der kleinere $x_-$
+die Amplitude einer beschränkten Schwingung beschreibt,
+während die $x_+$ die minimale Ausgangsamplitude einer gegen
+$\infty$ divergenten Lösung ist.
+\item
+Rechnen Sie nach, dass
+\[
+\frac{x_+^2+x_-^2}{2}
+=
+x_0^2
+\qquad\text{und}\qquad
+x_-^2x_+^2
+=
+\frac{4E}{\delta}.
+\]
+\item
+Faktorisieren Sie die Funktion $f(x)$ in der Differentialgleichung
+von Teilaufgabe c) mit Hilfe der in Teilaufgabe d) bestimmten
+Nullstellen $x_{\pm}^2$.
+\item
+Dividieren Sie die Differentialgleichung durch $x_-^2$, schreiben
+Sie $X=x/x_-$ und bringen Sie die Differentialgleichung in die
+Form
+\begin{equation}
+A \dot{X}^2
+=
+(1-X^2)
+(1-k^2X^2),
+\label{buch:1101:eqn:dgl3}
+\end{equation}
+wobei $k^2=x_-^2/x_+^2$ und $A$ geeignet gewählt werden müssen.
+\item
+\label{buch:1101:teilaufgabe:dgl3}
+Verwenden Sie $t(\tau) = \alpha\tau$
+und
+$Y(\tau)=X(t(\tau))=X(\alpha\tau)$ um eine Differentialgleichung für
+die Funktion $Y(\tau)$ zu gewinnen, die die Form der Differentialgleichung
+von $\operatorname{sn}(u,k)$ hat (Abschnitt
+\ref{buch:elliptisch:subsection:differentialgleichungen}),
+für die also $A=0$ in \eqref{buch:1101:eqn:dgl3} ist.
+\item
+Verwenden Sie die Lösung $\operatorname{sn}(u,k)$ der in
+Teilaufgabe h)
+%\ref{buch:1101:teilaufgabe:dgl3}
+erhaltenen Differentialgleichung,
+um die Lösung $x(t)$ der ursprünglichen Gleichung aufzuschreiben.
+\end{teilaufgaben}
+
+\begin{loesung}
+\begin{figure}
+\centering
+\includegraphics{chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf}
+\caption{Rechte Seite der Differentialgleichung
+\eqref{buch:1101:eqn:dglf}.
+Eine beschränkte Lösung bewegt sich im Bereich $x<x_-$
+während im Bereich $x>x_+$ die Kraft abstossend ist und zu einer
+divergenten Lösung führt.
+\label{buch:1101:fig:potential}
+}
+\end{figure}
+\begin{teilaufgaben}
+\item
+Wegen
+\[
+F(x)
+=
+-\kappa x\biggl(1-\frac{\delta}{\kappa}x^2\biggr)
+=
+-Ix
+\biggl(1-\sqrt{\frac{\delta}{\kappa}}x\biggr)
+\biggl(1+\sqrt{\frac{\delta}{\kappa}}x\biggr)
+\]
+folgt, dass die rücktreibende Kraft bei der Auslenkung $\pm x_0$ mit
+\[
+x_0^2
+=
+\frac{\kappa}{\delta}
+\qquad\text{oder}\qquad
+x_0 = \sqrt{\frac{\kappa}{\delta}}
+\]
+verschwindet.
+\item
+Die potentielle Energie ist die Arbeit, die gegen die rücktreibende Kraft
+geleistet wird, um die Auslenkung $x$ zu erreichen.
+Sie entsteht durch Integrieren der Kraft über
+das Auslenkungsinterval, also
+\[
+E_{\text{pot}}
+=
+-
+\int_0^x F(\xi) \,d\xi
+=
+\int_0^x \kappa\xi-\delta\xi^3\,d\xi
+=
+\biggl[
+\kappa\frac{\xi^2}{2}
+-
+\delta
+\frac{\xi^4}{4}
+\biggr]_0^x
+=
+\kappa\frac{x^2}{2}
+-
+\delta\frac{x^4}{4}.
+\]
+\item
+Die kinetische Energie ist gegeben durch
+\[
+E_{\text{kin}}
+=
+\frac12m\dot{x}^2.
+\]
+Die Gesamtenergie ist damit
+\[
+E
+=
+\frac12m\dot{x}^2
++
+\kappa
+\frac{x^2}{2}
+-
+\delta
+\frac{x^4}{4}.
+\]
+Die verlangte Umformung ergibt
+\begin{align}
+\frac12m\dot{x}^2
+&=
+E
+-
+\kappa\frac{x^2}{2}
++
+\delta\frac{x^4}{4}
+\label{buch:1101:eqn:dglf}
+\end{align}
+als Differentialgleichung für $x$.
+Die Ableitung $\dot{x}$ hat positives Vorzeichen wenn die Kraft
+abstossend ist und negatives Vorzeichen dort, wo die Kraft anziehend ist.
+%
+\item
+Die Amplitude der Schwingung ist derjenige $x$-Wert, für den
+die Geschwindigkeit verschwindet, also eine Lösung der Gleichung
+\[
+0
+=
+\frac{2E}{m} -\frac{\kappa}{m}x^2 + \frac{\delta}{2m}x^4.
+\]
+Der gemeinsame Nenner $m$ spielt offenbar keine Rolle.
+Die Gleichung hat die zwei Lösungen
+\[
+x_{\pm}^2
+=
+\frac{\kappa \pm \sqrt{\kappa^2-4E\delta}}{\delta}
+=
+\frac{\kappa}{\delta}
+\pm
+\sqrt{
+\biggl(\frac{\kappa}{\delta}\biggr)^2
+-
+\frac{4E}{\delta}
+}.
+\]
+Die Situation ist in Abbildung~\ref{buch:1101:fig:potential}
+Für $x>x_+$ ist die Kraft abstossend, die Lösung divergiert.
+Die Lösung mit dem negativen Zeichen $x_-$ bleibt dagegen beschränkt,
+dies ist die Lösung, die wir suchen.
+
+\item
+Die beiden Formeln ergeben sich aus den Regeln von Vieta für die
+Lösungen einer quadratischen Gleichungg der Form $x^4+px^2+q$.
+Die Nullstellen haben den Mittelwert $-p/2$ und das Produkt $q$.
+
+\item
+Die rechte Seite der Differentialgleichung lässt sich mit Hilfe
+der beiden Nullstellen $x_{\pm}^2$ faktorisieren und bekommt die Form
+\[
+\frac12m\dot{x}^2
+=
+\frac{\delta}{4}(x_+^2-x^2)(x_-^2-x^2).
+\]
+
+\item
+Indem die ganze Gleichung durch $x_-^2$ dividiert wird, entsteht
+\[
+\frac12m
+\biggl(\frac{\dot{x}}{x_-}\biggr)^2
+=
+\frac{\delta}{4}
+(x_+^2-x^2)
+\biggl(1-\frac{x^2}{x_-^2}\biggr).
+\]
+Schreiben wir $X=x/x_-$ wird daraus
+\[
+\frac1{2}m\dot{X}^2
+=
+\frac{\delta}{4}
+\biggl(x_+^2-x_-^2 X^2\biggr)
+(1-X^2).
+\]
+Durch Ausklammern von $x_+^2$ im ersten Faktor wir daraus
+\[
+\frac1{2}m\dot{X}^2
+=
+\frac{\delta}{4}
+x_+^2
+\biggl(1-\frac{x_-^2}{x_+^2} X^2\biggr)
+(1-X^2).
+\]
+Mit der Schreibweise $k^2 = x_-^2/x_+^2$ wird die Differentialgleichung
+zu
+\begin{equation}
+\frac{2m}{\delta x_+^2} \dot{X}^2
+=
+(1-X^2)(1-k^2X^2),
+\label{buch:1101:eqn:dgl2}
+\end{equation}
+was der Differentialgleichung für die Jacobische elliptische Funktion
+$\operatorname{sn}(u,k)$ bereits sehr ähnlich sieht.
+\item
+Bis auf den Faktor vor $\dot{X}^2$ ist
+\eqref{buch:1101:eqn:dgl2}
+die Differentialgleichung
+von
+$\operatorname{sn}(u,k)$.
+Um den Faktor zum Verschwinden zu bringen, schreiben wir
+$t(\tau) = \alpha\tau$.
+Die Ableitung von $Y(\tau)=X(t(\tau))$ nach $\tau$ ist
+\[
+\frac{dY}{d\tau}
+=
+\dot{X}(t(\tau))\frac{dt}{d\tau}
+=
+\alpha
+\dot{X}(t(\tau))
+\quad\Rightarrow\quad
+\frac{1}{\alpha}\frac{dY}{d\tau}
+=
+\dot{X}(t(\tau))
+\quad\Rightarrow\quad
+\frac{1}{\alpha^2}\biggl(\frac{dY}{d\tau}\biggr)^2
+=
+\dot{X}(t(\tau))^2.
+\]
+Die Differentialgleichung für $Y(\tau)$ ist
+\[
+\frac{2m}{\delta x_+^2\alpha^2}
+\biggl(
+\frac{dY}{d\tau}
+\biggr)^2
+=
+(1-Y^2)(1-k^2Y^2).
+\]
+Der Koeffizient vor der Ableitung wird $1$, wenn man
+\[
+\alpha^2
+=
+\frac{2m}{\delta x_+^2}
+\]
+wählt.
+Diese Differentialgleichug hat die Lösung
+\[
+Y(\tau) = \operatorname{sn}(\tau,k).
+\]
+\item
+Indem man die gefunden Grössen einsetzt kann man jetzt die Lösung
+der Differentialgleichung in geschlossener Form als
+\begin{align*}
+x(t)
+&=
+x_- X(t)
+=
+x_- \operatorname{sn}\biggl(
+t\sqrt{\frac{\delta x_+^2}{2m} }
+,k
+\biggr).
+\end{align*}
+Das Produkt $\delta x_+^2$ kann auch als
+\[
+\delta x_+^2
+=
+\kappa+\sqrt{\kappa -4\delta E}
+\]
+geschrieben werden.
+\qedhere
+\end{teilaufgaben}
+\end{loesung}
+
+