diff options
author | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-05-30 00:06:46 +0200 |
---|---|---|
committer | Nicolas Tobler <nicolas.tobler@ost.ch> | 2022-05-30 00:06:46 +0200 |
commit | 65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9 (patch) | |
tree | 30791dc17973690a6d761589de357c452ba9fa29 /buch/chapters/110-elliptisch/uebungsaufgaben/1.tex | |
parent | Added content, presentation (diff) | |
parent | beispiel korrektur (diff) | |
download | SeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.tar.gz SeminarSpezielleFunktionen-65a3fc106c36dfd1750f8caf8b3d1b5fb0fe71f9.zip |
Merge branch 'master' of https://github.com/AndreasFMueller/SeminarSpezielleFunktionen
Diffstat (limited to 'buch/chapters/110-elliptisch/uebungsaufgaben/1.tex')
-rw-r--r-- | buch/chapters/110-elliptisch/uebungsaufgaben/1.tex | 323 |
1 files changed, 323 insertions, 0 deletions
diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex new file mode 100644 index 0000000..694f18a --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex @@ -0,0 +1,323 @@ +In einem anharmonische Oszillator oszilliert eine Masse $m$ unter dem +Einfluss einer Kraft, die nach dem Gesetz +\[ +F(x) = -\kappa x + \delta x^3 +\] +von der Auslenkung aus der Ruhelage abhängt. +Nehmen Sie im Folgenden an, dass $\delta >0$ ist, +dass also die rücktreibende Kraft $F(x)$ kleiner ist als bei einem +harmonischen Oszillator. +Ziel der folgenden Teilaufgaben ist, die Lösung $x(t)$ schrittweise +dadurch zu bestimmen, dass die Bewegungsgleichung in die Differentialgleichung +der Jacobischen elliptischen Funktion $\operatorname{sn}(u,k)$ umgeformt +wird. +\begin{teilaufgaben} +\item +Berechnen Sie die Auslenkung $x_0$, bei der die rücktreibende Kraft +verschwindet. +Eine beschränkte Schwingung kann diese Amplitude nicht überschreiten. +\item +Berechnen Sie die potentielle Energie in Abhängigkeit von der +Auslenkung. +\item +\label{buch:1101:basic-dgl} +Formulieren Sie den Energieerhaltungssatz für die Gesamtenergie $E$ +dieses Oszillators. +Leiten Sie daraus eine nichtlineare Differentialgleichung erster Ordnung +for den anharmonischen Oszillator ab, die sie in der Form +$\frac12m\dot{x}^2 = f(x)$ schreiben. +\item +Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die +Geschwindigkeit $\dot{x}(t)$ verschwindet. +Leiten Sie die Amplitude aus der Differentialgleichung von +%\ref{buch:1101:basic-dgl} +Teilaufgabe c) +ab. +Sie erhalten zwei Werte $x_{\pm}$, wobei der kleinere $x_-$ +die Amplitude einer beschränkten Schwingung beschreibt, +während die $x_+$ die minimale Ausgangsamplitude einer gegen +$\infty$ divergenten Lösung ist. +\item +Rechnen Sie nach, dass +\[ +\frac{x_+^2+x_-^2}{2} += +x_0^2 +\qquad\text{und}\qquad +x_-^2x_+^2 += +\frac{4E}{\delta}. +\] +\item +Faktorisieren Sie die Funktion $f(x)$ in der Differentialgleichung +von Teilaufgabe c) mit Hilfe der in Teilaufgabe d) bestimmten +Nullstellen $x_{\pm}^2$. +\item +Dividieren Sie die Differentialgleichung durch $x_-^2$, schreiben +Sie $X=x/x_-$ und bringen Sie die Differentialgleichung in die +Form +\begin{equation} +A \dot{X}^2 += +(1-X^2) +(1-k^2X^2), +\label{buch:1101:eqn:dgl3} +\end{equation} +wobei $k^2=x_-^2/x_+^2$ und $A$ geeignet gewählt werden müssen. +\item +\label{buch:1101:teilaufgabe:dgl3} +Verwenden Sie $t(\tau) = \alpha\tau$ +und +$Y(\tau)=X(t(\tau))=X(\alpha\tau)$ um eine Differentialgleichung für +die Funktion $Y(\tau)$ zu gewinnen, die die Form der Differentialgleichung +von $\operatorname{sn}(u,k)$ hat (Abschnitt +\ref{buch:elliptisch:subsection:differentialgleichungen}), +für die also $A=0$ in \eqref{buch:1101:eqn:dgl3} ist. +\item +Verwenden Sie die Lösung $\operatorname{sn}(u,k)$ der in +Teilaufgabe h) +%\ref{buch:1101:teilaufgabe:dgl3} +erhaltenen Differentialgleichung, +um die Lösung $x(t)$ der ursprünglichen Gleichung aufzuschreiben. +\end{teilaufgaben} + +\begin{loesung} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf} +\caption{Rechte Seite der Differentialgleichung +\eqref{buch:1101:eqn:dglf}. +Eine beschränkte Lösung bewegt sich im Bereich $x<x_-$ +während im Bereich $x>x_+$ die Kraft abstossend ist und zu einer +divergenten Lösung führt. +\label{buch:1101:fig:potential} +} +\end{figure} +\begin{teilaufgaben} +\item +Wegen +\[ +F(x) += +-\kappa x\biggl(1-\frac{\delta}{\kappa}x^2\biggr) += +-Ix +\biggl(1-\sqrt{\frac{\delta}{\kappa}}x\biggr) +\biggl(1+\sqrt{\frac{\delta}{\kappa}}x\biggr) +\] +folgt, dass die rücktreibende Kraft bei der Auslenkung $\pm x_0$ mit +\[ +x_0^2 += +\frac{\kappa}{\delta} +\qquad\text{oder}\qquad +x_0 = \sqrt{\frac{\kappa}{\delta}} +\] +verschwindet. +\item +Die potentielle Energie ist die Arbeit, die gegen die rücktreibende Kraft +geleistet wird, um die Auslenkung $x$ zu erreichen. +Sie entsteht durch Integrieren der Kraft über +das Auslenkungsinterval, also +\[ +E_{\text{pot}} += +- +\int_0^x F(\xi) \,d\xi += +\int_0^x \kappa\xi-\delta\xi^3\,d\xi += +\biggl[ +\kappa\frac{\xi^2}{2} +- +\delta +\frac{\xi^4}{4} +\biggr]_0^x += +\kappa\frac{x^2}{2} +- +\delta\frac{x^4}{4}. +\] +\item +Die kinetische Energie ist gegeben durch +\[ +E_{\text{kin}} += +\frac12m\dot{x}^2. +\] +Die Gesamtenergie ist damit +\[ +E += +\frac12m\dot{x}^2 ++ +\kappa +\frac{x^2}{2} +- +\delta +\frac{x^4}{4}. +\] +Die verlangte Umformung ergibt +\begin{align} +\frac12m\dot{x}^2 +&= +E +- +\kappa\frac{x^2}{2} ++ +\delta\frac{x^4}{4} +\label{buch:1101:eqn:dglf} +\end{align} +als Differentialgleichung für $x$. +Die Ableitung $\dot{x}$ hat positives Vorzeichen wenn die Kraft +abstossend ist und negatives Vorzeichen dort, wo die Kraft anziehend ist. +% +\item +Die Amplitude der Schwingung ist derjenige $x$-Wert, für den +die Geschwindigkeit verschwindet, also eine Lösung der Gleichung +\[ +0 += +\frac{2E}{m} -\frac{\kappa}{m}x^2 + \frac{\delta}{2m}x^4. +\] +Der gemeinsame Nenner $m$ spielt offenbar keine Rolle. +Die Gleichung hat die zwei Lösungen +\[ +x_{\pm}^2 += +\frac{\kappa \pm \sqrt{\kappa^2-4E\delta}}{\delta} += +\frac{\kappa}{\delta} +\pm +\sqrt{ +\biggl(\frac{\kappa}{\delta}\biggr)^2 +- +\frac{4E}{\delta} +}. +\] +Die Situation ist in Abbildung~\ref{buch:1101:fig:potential} +Für $x>x_+$ ist die Kraft abstossend, die Lösung divergiert. +Die Lösung mit dem negativen Zeichen $x_-$ bleibt dagegen beschränkt, +dies ist die Lösung, die wir suchen. + +\item +Die beiden Formeln ergeben sich aus den Regeln von Vieta für die +Lösungen einer quadratischen Gleichungg der Form $x^4+px^2+q$. +Die Nullstellen haben den Mittelwert $-p/2$ und das Produkt $q$. + +\item +Die rechte Seite der Differentialgleichung lässt sich mit Hilfe +der beiden Nullstellen $x_{\pm}^2$ faktorisieren und bekommt die Form +\[ +\frac12m\dot{x}^2 += +\frac{\delta}{4}(x_+^2-x^2)(x_-^2-x^2). +\] + +\item +Indem die ganze Gleichung durch $x_-^2$ dividiert wird, entsteht +\[ +\frac12m +\biggl(\frac{\dot{x}}{x_-}\biggr)^2 += +\frac{\delta}{4} +(x_+^2-x^2) +\biggl(1-\frac{x^2}{x_-^2}\biggr). +\] +Schreiben wir $X=x/x_-$ wird daraus +\[ +\frac1{2}m\dot{X}^2 += +\frac{\delta}{4} +\biggl(x_+^2-x_-^2 X^2\biggr) +(1-X^2). +\] +Durch Ausklammern von $x_+^2$ im ersten Faktor wir daraus +\[ +\frac1{2}m\dot{X}^2 += +\frac{\delta}{4} +x_+^2 +\biggl(1-\frac{x_-^2}{x_+^2} X^2\biggr) +(1-X^2). +\] +Mit der Schreibweise $k^2 = x_-^2/x_+^2$ wird die Differentialgleichung +zu +\begin{equation} +\frac{2m}{\delta x_+^2} \dot{X}^2 += +(1-X^2)(1-k^2X^2), +\label{buch:1101:eqn:dgl2} +\end{equation} +was der Differentialgleichung für die Jacobische elliptische Funktion +$\operatorname{sn}(u,k)$ bereits sehr ähnlich sieht. +\item +Bis auf den Faktor vor $\dot{X}^2$ ist +\eqref{buch:1101:eqn:dgl2} +die Differentialgleichung +von +$\operatorname{sn}(u,k)$. +Um den Faktor zum Verschwinden zu bringen, schreiben wir +$t(\tau) = \alpha\tau$. +Die Ableitung von $Y(\tau)=X(t(\tau))$ nach $\tau$ ist +\[ +\frac{dY}{d\tau} += +\dot{X}(t(\tau))\frac{dt}{d\tau} += +\alpha +\dot{X}(t(\tau)) +\quad\Rightarrow\quad +\frac{1}{\alpha}\frac{dY}{d\tau} += +\dot{X}(t(\tau)) +\quad\Rightarrow\quad +\frac{1}{\alpha^2}\biggl(\frac{dY}{d\tau}\biggr)^2 += +\dot{X}(t(\tau))^2. +\] +Die Differentialgleichung für $Y(\tau)$ ist +\[ +\frac{2m}{\delta x_+^2\alpha^2} +\biggl( +\frac{dY}{d\tau} +\biggr)^2 += +(1-Y^2)(1-k^2Y^2). +\] +Der Koeffizient vor der Ableitung wird $1$, wenn man +\[ +\alpha^2 += +\frac{2m}{\delta x_+^2} +\] +wählt. +Diese Differentialgleichug hat die Lösung +\[ +Y(\tau) = \operatorname{sn}(\tau,k). +\] +\item +Indem man die gefunden Grössen einsetzt kann man jetzt die Lösung +der Differentialgleichung in geschlossener Form als +\begin{align*} +x(t) +&= +x_- X(t) += +x_- \operatorname{sn}\biggl( +t\sqrt{\frac{\delta x_+^2}{2m} } +,k +\biggr). +\end{align*} +Das Produkt $\delta x_+^2$ kann auch als +\[ +\delta x_+^2 += +\kappa+\sqrt{\kappa -4\delta E} +\] +geschrieben werden. +\qedhere +\end{teilaufgaben} +\end{loesung} + + |