aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kra/anwendung.tex
diff options
context:
space:
mode:
authorsamuel niederer <samuel.niederer@ost.ch>2022-07-24 17:12:49 +0200
committersamuel niederer <samuel.niederer@ost.ch>2022-07-24 17:12:49 +0200
commit1d78360ee72a8d0d6cd4b440a2244624c284887f (patch)
tree53b928fe25658f794e79b5d2d6d382610c83325c /buch/papers/kra/anwendung.tex
parentMerge branch 'AndreasFMueller:master' into master (diff)
downloadSeminarSpezielleFunktionen-1d78360ee72a8d0d6cd4b440a2244624c284887f.tar.gz
SeminarSpezielleFunktionen-1d78360ee72a8d0d6cd4b440a2244624c284887f.zip
update paper
Diffstat (limited to 'buch/papers/kra/anwendung.tex')
-rw-r--r--buch/papers/kra/anwendung.tex235
1 files changed, 235 insertions, 0 deletions
diff --git a/buch/papers/kra/anwendung.tex b/buch/papers/kra/anwendung.tex
new file mode 100644
index 0000000..4d4d351
--- /dev/null
+++ b/buch/papers/kra/anwendung.tex
@@ -0,0 +1,235 @@
+\section{Anwendungen \label{kra:section:anwendung}}
+\rhead{Anwendungen}
+\newcommand{\dt}[0]{\frac{d}{dt}}
+
+Die Matrix-Riccati Differentialgleichung findet unter anderem Anwendung in der Regelungstechnik beim RQ- und RQG-Regler oder aber auch beim Kalmanfilter.
+Im folgenden Abschnitt möchten wir uns an einem Beispiel anschauen wie wir mit Hilfe der Matrix-Riccati Differentialgleichung (\ref{kra:matrixriccati}) ein Feder-Masse-System untersuchen können.
+
+\subsection{Feder-Masse-System}
+Die Einfachste Form eines Feder-Masse-Systems ist dargestellt in Abbildung \ref{kra:fig:simple_mass_spring}.
+Es besteht aus einer Masse $m$ welche reibungsfrei gelagert ist und einer Feder mit der Federkonstante $k$.
+Die im System wirkenden Kräfte teilen sich auf in die auf dem hookeschen Gesetz basierenden Rückstellkraft $F_R = k \Delta_x$ und der auf dem Aktionsprinzip basierenden Kraft $F_a = am = \ddot{x} m$.
+Das Kräftegleichgewicht fordert $F_R = F_a$ woraus folgt, dass
+
+\begin{equation*}
+ k \Delta_x = \ddot{x} m \Leftrightarrow \ddot{x} = \frac{k \Delta_x}{m}
+\end{equation*}
+Die funktion die diese Differentialgleichung löst ist die harmonische Schwingung
+\begin{equation}
+ x(t) = A \cos(\omega_0 t + \Phi), \quad \omega_0 = \sqrt{\frac{k}{m}}
+\end{equation}
+
+
+\begin{figure}
+ \input{papers/kra/images/simple_mass_spring.tex}
+ \caption{Einfaches Feder-Masse-System.}
+ \label{kra:fig:simple_mass_spring}
+\end{figure}
+
+\begin{figure}
+ \input{papers/kra/images/multi_mass_spring.tex}
+ \caption{Feder-Masse-System mit zwei Massen und drei Federn.}
+ \label{kra:fig:multi_mass_spring}
+\end{figure}
+
+
+\subsection{Hamilton-Funktion}
+Die Bewegung der Masse $m$ kann mit Hilfe der hamiltonschen Mechanik im Phasenraum untersucht werden.
+Die hamiltonschen Gleichungen verwenden dafür die veralgemeinerten Ortskoordinaten
+$q = (q_{1}, q_{2}, ..., q_{n})$ und die verallgemeinerten Impulskoordinaten $p = (p_{1}, p_{2}, ..., p_{n})$, wobei der Impuls definiert ist als $p_k = m_k \cdot v_k$.
+Liegen keine zeitabhängigen Zwangsbedingungen vor, so entspricht die Hamitlon-Funktion der Gesamtenergie des Systems \cite{kra:hamilton}.
+Im Falle des einfachen Feder-Masse-Systems, Abbildung \ref{kra:fig:simple_mass_spring}, setzt sich die Hamilton-Funktion aus kinetischer und potentieller Energie zusammen.
+
+\begin{equation}
+ \label{kra:harmonischer_oszillator}
+ \begin{split}
+ \mathcal{H}(q, p) &= T(p) + V(q) = E \\
+ &= \underbrace{\frac{p^2}{2m}}_{E_{kin}} + \underbrace{\frac{k q^2}{2}}_{E_{pot}}
+ \end{split}
+\end{equation}
+
+Die Hamiltonschen Bewegungsgleichungen liefern \cite{kra:kanonischegleichungen}
+\begin{equation}
+ \label{kra:hamilton:bewegungsgleichung}
+ \dot{q_{k}} = \frac{\partial \mathcal{H}}{\partial p_k}
+ \qquad
+ \dot{p_{k}} = -\frac{\partial \mathcal{H}}{\partial q_k}
+\end{equation}
+
+daraus folgt
+
+\[
+ \dot{q} = \frac{p}{m}
+ \qquad
+ \dot{p} = -kq
+\]
+
+in Matrixschreibweise erhalten wir also
+
+\[
+ \begin{pmatrix}
+ \dot{q} \\
+ \dot{p}
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 0 & \frac{1}{m} \\
+ -k & 0
+ \end{pmatrix}
+ \begin{pmatrix}
+ q \\
+ p
+ \end{pmatrix}
+\]
+
+Für das erweiterte Federmassesystem, Abbildung \ref{kra:fig:multi_mass_spring}, können wir analog vorgehen.
+Die kinetische Energie setzt sich nun aus den kinetischen Energien der einzelnen Massen $m_1$ und $m_2$ zusammen.
+Die Potentielle Energie erhalten wir aus der Summe der kinetischen Energien der einzelnen Federn mit den Federkonstanten $k_1$, $k_c$ und $k_2$.
+
+\begin{align*}
+ \begin{split}
+ T &= T_1 + T_2 \\
+ &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2}
+ \end{split}
+ \\
+ \begin{split}
+ V &= V_1 + V_c + V_2 \\
+ &= \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2}
+ \end{split}
+\end{align*}
+
+Die Hamilton-Funktion ist also
+
+\begin{align*}
+ \begin{split}
+ \mathcal{H} &= T + V \\
+ &= \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \frac{k_1 q_1^2}{2} + \frac{k_c (q_2 - q_1)^2}{2} + \frac{k_2 q_2^2}{2}
+ \end{split}
+\end{align*}
+
+Die Bewegungsgleichungen \ref{kra:hamilton:bewegungsgleichung} liefern
+\begin{align*}
+ \frac{\partial \mathcal{H}}{\partial p_k} & = \dot{q_k}
+ \Rightarrow
+ \left\{
+ \begin{alignedat}{2}
+ \dot{q_1} &= \frac{2p_1}{2m_1} &&= \frac{p_1}{m_1}\\
+ \dot{q_2} &= \frac{2p_2}{2m_2} &&= \frac{p_2}{m_2}
+ \end{alignedat}
+ \right.
+ \\
+ -\frac{\partial \mathcal{H}}{\partial q_k} & = \dot{p_k}
+ \Rightarrow
+ \left\{
+ \begin{alignedat}{2}
+ \dot{p_1} &= -(\frac{2k_1q_1}{2} - \frac{2k_c(q_2-q_1)}{2}) &&= -q_1(k_1+k_c) + q_2k_c \\
+ \dot{p_1} &= -(\frac{2k_c(q_2-q_1)}{2} - \frac{2k_2q_2}{2}) &&= q_1k_c - (k_c + k_2)
+ \end{alignedat}
+ \right.
+\end{align*}
+
+In Matrixschreibweise erhalten wir
+
+\begin{equation}
+ \label{kra:hamilton:multispringmass}
+ \begin{pmatrix}
+ \dot{q_1} \\
+ \dot{q_2} \\
+ \dot{p_1} \\
+ \dot{p_2} \\
+ \end{pmatrix}
+ =
+ \begin{pmatrix}
+ 0 & 0 & \frac{1}{2m_1} & 0 \\
+ 0 & 0 & 0 & \frac{1}{2m_2} \\
+ -(k_1 + k_c) & k_c & 0 & 0 \\
+ k_c & -(k_c + k_2) & 0 & 0 \\
+ \end{pmatrix}
+ \begin{pmatrix}
+ q_1 \\
+ q_2 \\
+ p_1 \\
+ p_2 \\
+ \end{pmatrix}
+ \Leftrightarrow
+ \dt
+ \begin{pmatrix}
+ Q \\
+ P \\
+ \end{pmatrix}
+ =
+ \underbrace{
+ \begin{pmatrix}
+ 0 & M \\
+ K & 0
+ \end{pmatrix}
+ }_{G}
+ \begin{pmatrix}
+ Q \\
+ P \\
+ \end{pmatrix}
+\end{equation}
+
+\subsection{Phasenraum}
+Der Phasenraum erlaubt die eindeutige Beschreibung aller möglichen Bewegungszustände eines mechanischen System durch einen Punkt.
+Die Phasenraumdarstellung eignet sich somit sehr gut für die systematische Untersuchung der Feder-Masse-Systeme.
+
+\subsubsection{Harmonischer Oszillator}
+Die Hamiltonfunktion des harmonischen Oszillators \ref{kra:harmonischer_oszillator} führt auf eine Lösung der Form
+\begin{equation*}
+ q(t) = A \cos(\omega_0 T + \Phi), \quad p(t) = -m \omega_0 A \sin(\omega_0 t + \Phi)
+\end{equation*}
+die Phasenraumtrajektorien bilden also Ellipsen mit Zentrum $q=0, p=0$ und Halbachsen $A$ und $m \omega A$.
+Abbildung \ref{kra:fig:phasenraum} zeigt Phasenraumtrajektorien mit den Energien $E_{x \in \{A, B, C, D\}}$ und verschiedenen Werten von $\omega$.
+
+\begin{figure}
+ \input{papers/kra/images/phase_space.tex}
+ \caption{Phasenraumdarstellung des einfachen Feder-Masse-Systems.}
+ \label{kra:fig:phasenraum}
+\end{figure}
+
+\subsubsection{Erweitertes Feder-Masse-System}
+Wir intressieren uns nun dafür wie der Phasenwinkel $U = PQ^{-1}$ von der Zeit abhängt,
+wir suchen also die Grösse $\Theta = \dt U$.
+
+Ersetzten wir in der Gleichung \ref{kra:hamilton:multispringmass} die Matrix $G$ mit $\tilde{G}$ so erhalten wir
+\begin{equation}
+ \dt
+ \begin{pmatrix}
+ Q \\
+ P
+ \end{pmatrix}
+ =
+ \underbrace{
+ \begin{pmatrix}
+ A & B \\
+ C & D
+ \end{pmatrix}
+ }_{\tilde{G}}
+ \begin{pmatrix}
+ Q \\
+ P
+ \end{pmatrix}
+\end{equation}
+
+Mit einsetzten folgt
+
+\begin{align*}
+ \dot{Q} = AQ + BP \\
+ \dot{P} = CQ + DP
+\end{align*}
+\begin{equation}
+ \begin{split}
+ \dt U &= \dot{P} Q^{-1} + P \dt Q^{-1} \\
+ &= (CQ + DP) Q^{-1} - P (Q^{-1} \dot{Q} Q^{-1}) \\
+ &= C\underbrace{QQ^{-1}}_\text{I} + D\underbrace{PQ^{-1}}_\text{U} - P(Q^{-1} (AQ + BP) Q^{-1}) \\
+ &= C + DU - \underbrace{PQ^{-1}}_\text{U}(A\underbrace{QQ^{-1}}_\text{I} + B\underbrace{PQ^{-1}}_\text{U}) \\
+ &= C + DU - UA - UBU
+ \end{split}
+\end{equation}
+
+was uns auf die Matrix-Riccati Gleichung \ref{kra:matrixriccati} führt.
+
+
+\subsection{Fazit}
+% @TODO