diff options
author | samuel niederer <samuel.niederer@ost.ch> | 2022-07-24 17:12:49 +0200 |
---|---|---|
committer | samuel niederer <samuel.niederer@ost.ch> | 2022-07-24 17:12:49 +0200 |
commit | 1d78360ee72a8d0d6cd4b440a2244624c284887f (patch) | |
tree | 53b928fe25658f794e79b5d2d6d382610c83325c /buch/papers | |
parent | Merge branch 'AndreasFMueller:master' into master (diff) | |
download | SeminarSpezielleFunktionen-1d78360ee72a8d0d6cd4b440a2244624c284887f.tar.gz SeminarSpezielleFunktionen-1d78360ee72a8d0d6cd4b440a2244624c284887f.zip |
update paper
Diffstat (limited to 'buch/papers')
-rw-r--r-- | buch/papers/kra/Makefile.inc | 11 | ||||
-rw-r--r-- | buch/papers/kra/anwendung.tex (renamed from buch/papers/kra/hamilton.tex) | 70 | ||||
-rw-r--r-- | buch/papers/kra/einleitung.tex | 14 | ||||
-rw-r--r-- | buch/papers/kra/loesung.tex | 47 | ||||
-rw-r--r-- | buch/papers/kra/main.tex | 10 | ||||
-rw-r--r-- | buch/papers/kra/riccati.tex | 93 |
6 files changed, 131 insertions, 114 deletions
diff --git a/buch/papers/kra/Makefile.inc b/buch/papers/kra/Makefile.inc index f453e6e..a521e4b 100644 --- a/buch/papers/kra/Makefile.inc +++ b/buch/papers/kra/Makefile.inc @@ -4,11 +4,10 @@ # (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # dependencies-kra = \ - papers/kra/packages.tex \ + papers/kra/packages.tex \ papers/kra/main.tex \ - papers/kra/references.bib \ - papers/kra/teil0.tex \ - papers/kra/teil1.tex \ - papers/kra/teil2.tex \ - papers/kra/teil3.tex + papers/kra/references.bib \ + papers/kra/einleitung.tex \ + papers/kra/loesung.tex \ + papers/kra/anwendung.tex \ diff --git a/buch/papers/kra/hamilton.tex b/buch/papers/kra/anwendung.tex index 14a5e8c..4d4d351 100644 --- a/buch/papers/kra/hamilton.tex +++ b/buch/papers/kra/anwendung.tex @@ -1,19 +1,47 @@ +\section{Anwendungen \label{kra:section:anwendung}} +\rhead{Anwendungen} \newcommand{\dt}[0]{\frac{d}{dt}} -\section{Teil abc\label{kra:section:teilabc}} -\rhead{Teil abc} +Die Matrix-Riccati Differentialgleichung findet unter anderem Anwendung in der Regelungstechnik beim RQ- und RQG-Regler oder aber auch beim Kalmanfilter. +Im folgenden Abschnitt möchten wir uns an einem Beispiel anschauen wie wir mit Hilfe der Matrix-Riccati Differentialgleichung (\ref{kra:matrixriccati}) ein Feder-Masse-System untersuchen können. + +\subsection{Feder-Masse-System} +Die Einfachste Form eines Feder-Masse-Systems ist dargestellt in Abbildung \ref{kra:fig:simple_mass_spring}. +Es besteht aus einer Masse $m$ welche reibungsfrei gelagert ist und einer Feder mit der Federkonstante $k$. +Die im System wirkenden Kräfte teilen sich auf in die auf dem hookeschen Gesetz basierenden Rückstellkraft $F_R = k \Delta_x$ und der auf dem Aktionsprinzip basierenden Kraft $F_a = am = \ddot{x} m$. +Das Kräftegleichgewicht fordert $F_R = F_a$ woraus folgt, dass + +\begin{equation*} + k \Delta_x = \ddot{x} m \Leftrightarrow \ddot{x} = \frac{k \Delta_x}{m} +\end{equation*} +Die funktion die diese Differentialgleichung löst ist die harmonische Schwingung +\begin{equation} + x(t) = A \cos(\omega_0 t + \Phi), \quad \omega_0 = \sqrt{\frac{k}{m}} +\end{equation} + + +\begin{figure} + \input{papers/kra/images/simple_mass_spring.tex} + \caption{Einfaches Feder-Masse-System.} + \label{kra:fig:simple_mass_spring} +\end{figure} + +\begin{figure} + \input{papers/kra/images/multi_mass_spring.tex} + \caption{Feder-Masse-System mit zwei Massen und drei Federn.} + \label{kra:fig:multi_mass_spring} +\end{figure} + \subsection{Hamilton-Funktion} Die Bewegung der Masse $m$ kann mit Hilfe der hamiltonschen Mechanik im Phasenraum untersucht werden. Die hamiltonschen Gleichungen verwenden dafür die veralgemeinerten Ortskoordinaten -$q = (q_{1}, q_{2}, ..., q_{n})$ und die verallgemeinerten Impulskoordinaten $p = (p_{1}, p_{2}, ..., p_{n})$, -wobei der Impuls definiert ist als $p_k = m_k \cdot v_k$. +$q = (q_{1}, q_{2}, ..., q_{n})$ und die verallgemeinerten Impulskoordinaten $p = (p_{1}, p_{2}, ..., p_{n})$, wobei der Impuls definiert ist als $p_k = m_k \cdot v_k$. Liegen keine zeitabhängigen Zwangsbedingungen vor, so entspricht die Hamitlon-Funktion der Gesamtenergie des Systems \cite{kra:hamilton}. -Im Falle des einfachen Federmassesystems, Abbildung \ref{kra:fig:simple_spring_mass}, -setzt sich die Hamilton-Funktion aus kinetischer und potentieller Energie zusammen. +Im Falle des einfachen Feder-Masse-Systems, Abbildung \ref{kra:fig:simple_mass_spring}, setzt sich die Hamilton-Funktion aus kinetischer und potentieller Energie zusammen. \begin{equation} - \label{hamilton} + \label{kra:harmonischer_oszillator} \begin{split} \mathcal{H}(q, p) &= T(p) + V(q) = E \\ &= \underbrace{\frac{p^2}{2m}}_{E_{kin}} + \underbrace{\frac{k q^2}{2}}_{E_{pot}} @@ -54,7 +82,7 @@ in Matrixschreibweise erhalten wir also \end{pmatrix} \] -Für das erweiterte Federmassesystem, Abbildung \ref{kra:fig:multi_spring_mass}, können wir analog vorgehen. +Für das erweiterte Federmassesystem, Abbildung \ref{kra:fig:multi_mass_spring}, können wir analog vorgehen. Die kinetische Energie setzt sich nun aus den kinetischen Energien der einzelnen Massen $m_1$ und $m_2$ zusammen. Die Potentielle Energie erhalten wir aus der Summe der kinetischen Energien der einzelnen Federn mit den Federkonstanten $k_1$, $k_c$ und $k_2$. @@ -129,6 +157,7 @@ In Matrixschreibweise erhalten wir Q \\ P \\ \end{pmatrix} + = \underbrace{ \begin{pmatrix} 0 & M \\ @@ -141,7 +170,25 @@ In Matrixschreibweise erhalten wir \end{pmatrix} \end{equation} - +\subsection{Phasenraum} +Der Phasenraum erlaubt die eindeutige Beschreibung aller möglichen Bewegungszustände eines mechanischen System durch einen Punkt. +Die Phasenraumdarstellung eignet sich somit sehr gut für die systematische Untersuchung der Feder-Masse-Systeme. + +\subsubsection{Harmonischer Oszillator} +Die Hamiltonfunktion des harmonischen Oszillators \ref{kra:harmonischer_oszillator} führt auf eine Lösung der Form +\begin{equation*} + q(t) = A \cos(\omega_0 T + \Phi), \quad p(t) = -m \omega_0 A \sin(\omega_0 t + \Phi) +\end{equation*} +die Phasenraumtrajektorien bilden also Ellipsen mit Zentrum $q=0, p=0$ und Halbachsen $A$ und $m \omega A$. +Abbildung \ref{kra:fig:phasenraum} zeigt Phasenraumtrajektorien mit den Energien $E_{x \in \{A, B, C, D\}}$ und verschiedenen Werten von $\omega$. + +\begin{figure} + \input{papers/kra/images/phase_space.tex} + \caption{Phasenraumdarstellung des einfachen Feder-Masse-Systems.} + \label{kra:fig:phasenraum} +\end{figure} + +\subsubsection{Erweitertes Feder-Masse-System} Wir intressieren uns nun dafür wie der Phasenwinkel $U = PQ^{-1}$ von der Zeit abhängt, wir suchen also die Grösse $\Theta = \dt U$. @@ -181,5 +228,8 @@ Mit einsetzten folgt \end{split} \end{equation} -was uns auf die zeitkontinuierliche Matrix-Riccati-Gleichung führt. +was uns auf die Matrix-Riccati Gleichung \ref{kra:matrixriccati} führt. + +\subsection{Fazit} +% @TODO diff --git a/buch/papers/kra/einleitung.tex b/buch/papers/kra/einleitung.tex new file mode 100644 index 0000000..1a347a8 --- /dev/null +++ b/buch/papers/kra/einleitung.tex @@ -0,0 +1,14 @@ +\section{Einleitung} \label{kra:section:einleitung} +\rhead{Einleitung} +Die riccatische Differentialgleichung ist eine nichtlineare gewöhnliche Differentialgleichunge erster Ordnung der form +\begin{equation} + \label{kra:riccati} + y'(x) = f(x)y^2(x) + g(x)y(x) + h(x) +\end{equation} +Sie ist bennant nach dem italienischen Grafen Jacopo Francesco Riccati (1676–1754) der sich mit der Klassifizierung von Differentialgleichungen befasste und Methoden zur Verringerung der Ordnung von Gleichungen entwickelte. +Als Riccati Gleichung werden auch Matrixgleichugen der Form +\begin{equation} + \label{kra:matrixriccati} + \dot{U}(t) = DU(t) - UA(t) - U(t)BU(t) % +Q ? +\end{equation} +bezeichnet, welche aufgrund ihres quadratischen Terms eine gewisse ähnlichkeit aufweisen.
\ No newline at end of file diff --git a/buch/papers/kra/loesung.tex b/buch/papers/kra/loesung.tex new file mode 100644 index 0000000..ece0f15 --- /dev/null +++ b/buch/papers/kra/loesung.tex @@ -0,0 +1,47 @@ +\section{Lösungsmethoden} \label{kra:section:loesung} +\rhead{Lösungsmethoden} +% @TODO Lösung normal riccati +Lösung der Riccatischen Differentialgleichung \ref{kra:riccati}. + + +% Lösung matrix riccati +Die Lösung der Matrix-Riccati Gleichung \ref{kra:matrixriccati} erhalten wir nach \cite{kra:kalmanisae} folgendermassen +\begin{equation} + \label{kra:matrixriccati-solution} + \begin{pmatrix} + X(t) \\ + Y(t) + \end{pmatrix} + = + \Phi(t_0, t) + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} + = + \begin{pmatrix} + \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\ + \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} +\end{equation} + +\begin{equation} + U(t) = + \begin{pmatrix} + \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t) + \end{pmatrix} + ^{-1} +\end{equation} + +wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist. + +\begin{equation} + \Phi(t_0, t) = e^{H(t - t_0)} +\end{equation} diff --git a/buch/papers/kra/main.tex b/buch/papers/kra/main.tex index 456b6ee..a84ebaf 100644 --- a/buch/papers/kra/main.tex +++ b/buch/papers/kra/main.tex @@ -3,12 +3,12 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Kalman, Riccati und Abel\label{chapter:kra}} -\lhead{Kalman, Riccati und Abel} +\chapter{Riccati Differentialgleichung\label{chapter:kra}} +\lhead{Riccati Differentialgleichung} \begin{refsection} \chapterauthor{Samuel Niederer} - \input{papers/kra/hamilton.tex} - \newpage - \input{papers/kra/riccati.tex} + \input{papers/kra/einleitung.tex} + \input{papers/kra/loesung.tex} + \input{papers/kra/anwendung.tex} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/kra/riccati.tex b/buch/papers/kra/riccati.tex deleted file mode 100644 index df2921d..0000000 --- a/buch/papers/kra/riccati.tex +++ /dev/null @@ -1,93 +0,0 @@ -\section{Riccati - \label{kra:section:riccati}} -\rhead{Riccati} - -\begin{equation} - y'(x) = f(x)y^2(x) + g(x)y(x) + h(x) -\end{equation} -% einfache (normale riccati gleichung und ihre loesung) -% (kann man diese bei einfachem federmasse system benutzten?) -% matrix riccati gleichung - - -Die zeitkontinuierliche Riccati-Matrix-Gleichung hat die Form -\begin{equation} - \label{kra:riccati:riccatiequation} - \dot{U(t)} = DU(t) - UA(t) - U(t)BU(t) -\end{equation} - -Betrachten wir das Differentialgleichungssystem \ref{kra:riccati:derivation} - -\begin{equation} - \label{kra:riccati:derivation} - \dt - \begin{pmatrix} - X \\ - Y - \end{pmatrix} - = - \underbrace{ - \begin{pmatrix} - A & B \\ - C & D - \end{pmatrix} - }_{H} - \begin{pmatrix} - X \\ - Y - \end{pmatrix} -\end{equation} - -interessieren wir uns für die zeitliche Änderung der Grösse $U = YX^{-1}$, so erhalten wir durch einsetzten - -\begin{align*} - \dt U & = \dot{Y} X^{-1} + Y \dt X^{-1} \\ - & = (CX + DY) X^{-1} - Y (X^{-1} \dot{X} X^{-1}) \\ - & = C\underbrace{XX^{-1}}_\text{I} + D\underbrace{YX^{-1}}_\text{U} - Y(X^{-1} (AX + BY) X^{-1}) \\ - & = C + DU - \underbrace{YX^{-1}}_\text{U}(A\underbrace{XX^{-1}}_\text{I} + B\underbrace{YX^{-1}}_\text{U}) \\ - & = C + DU - UA - UBU -\end{align*} - -was uns auf die Riccati-Matrix-Gleichung \ref{kra:riccati:riccatiequation} führt. -Die Lösung dieser Gleichung erhalten wir nach \cite{kra:kalmanisae} folgendermassen -\begin{equation} - \begin{pmatrix} - X(t) \\ - Y(t) - \end{pmatrix} - = - \Phi(t_0, t) - \begin{pmatrix} - I(t) \\ - U_0(t) - \end{pmatrix} - = - \begin{pmatrix} - \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\ - \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t) - \end{pmatrix} - \begin{pmatrix} - I(t) \\ - U_0(t) - \end{pmatrix} -\end{equation} - -\begin{equation} - U(t) = - \begin{pmatrix} - \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t) - \end{pmatrix} - \begin{pmatrix} - \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t) - \end{pmatrix} - ^{-1} -\end{equation} - -wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist. - -\begin{equation} - \Phi(t_0, t) = e^{H(t - t_0)} -\end{equation} - - - |