aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kreismembran/teil1.tex
diff options
context:
space:
mode:
authorAndrea Mozzini Vellen <amozzinivellen@gmail.com>2022-08-02 14:51:41 +0200
committerAndrea Mozzini Vellen <amozzinivellen@gmail.com>2022-08-02 14:51:41 +0200
commit3ccdc3ec4dcc7d33b16fc1469b0c95c0e8def66d (patch)
tree560baf1c37fb4c968b2d99408396b3fee0e09c61 /buch/papers/kreismembran/teil1.tex
parentnumerik continues (diff)
downloadSeminarSpezielleFunktionen-3ccdc3ec4dcc7d33b16fc1469b0c95c0e8def66d.tar.gz
SeminarSpezielleFunktionen-3ccdc3ec4dcc7d33b16fc1469b0c95c0e8def66d.zip
änderungen 02.08.2022 andrea
Diffstat (limited to 'buch/papers/kreismembran/teil1.tex')
-rw-r--r--buch/papers/kreismembran/teil1.tex54
1 files changed, 27 insertions, 27 deletions
diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex
index 39ca598..377ba48 100644
--- a/buch/papers/kreismembran/teil1.tex
+++ b/buch/papers/kreismembran/teil1.tex
@@ -30,37 +30,33 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d
ergibt.
Es wird eine runde elastische Membran berücksichtigt, die das Gebiet $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist.
-Es wird daher davon ausgegangen, dass die Membran aus einem homogenen Material von vernachlässigbarer Dicke gefertigt ist.
-Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran.
+Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran.
Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$:
\begin{align*}
u: \overline{\rm \Omega} \times \mathbb{R}_{\geq 0} &\longrightarrow \mathbb{R}\\
(r,\varphi,t) &\longmapsto u(r,\varphi,t)
\end{align*}
-Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} \cite{prof_dr_horst_knorrer_kreisformige_2013}
-\begin{equation*}
- u\big|_{\Gamma} = 0 \quad \text{für} \quad 0 \leq \varphi \leq 2\pi,\quad t \geq 0
-\end{equation*}
-gilt.
+Um die Vergleichbarkeit der beiden nachfolgend vorgestellten Lösungsverfahren in Abschnitt \ref{kreismembran:vergleich} zu vereinfachen, werden keine Randbedingungen vorgegeben.
-Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt:
+Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt zur zeit $t = \text{0}$:
\begin{align*}
u(r,\varphi, 0) &= f(r,\varphi)\\
u_t(r,\varphi, 0) &= g(r,\varphi).
\end{align*}
\subsection{Lösung\label{sub:lösung1}}
+Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hilfe der varibalen Trennungsmethode gelöst.
\subsubsection{Ansatz der Separation der Variablen\label{subsub:ansatz_separation}}
-Daher muss an dieser Stelle von einer Separation der Variablen ausgegangen werden:
+Bezug muss an dieser Stelle von einer Separation der Variablen ausgegangen werden:
\begin{equation*}
u(r,\varphi, t) = F(r)G(\varphi)T(t)
\end{equation*}
-Dank der Randbedingungen kann also gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich:
+Dank der Randbedingungen kann gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich:
\begin{equation*}
- \frac{1}{c^2}\frac{T''(t)}{T(t)}=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}.
+ \frac{1}{c^2}\frac{T''(t)}{T(t)}=-\kappa^2=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}.
\end{equation*}
-Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $k=-k^2$. Daraus ergeben sich die folgenden zwei Gleichungen:
+Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^2$. Daraus ergeben sich die folgenden zwei Gleichungen:
\begin{align*}
T''(t) + c^2\kappa^2T(t) &= 0\\
r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}.
@@ -72,14 +68,14 @@ In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rec
\end{align*}
\subsubsection{Lösung für $G(\varphi)$\label{subsub:lösung_G}}
-Da für die Zweite Gelichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt die gemeinsame Konstante als $-\nu^2$, was die Formeln später vereinfacht. Also:
+Da für die zweite Gleichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt man die gemeinsame Konstante als $\nu=-\omega^2$, was die Formeln später vereinfacht. Also:
\begin{equation*}
G(\varphi) = C_n \cos(\varphi) + D_n \sin(\varphi)
\label{eq:cos_sin_überlagerung}
\end{equation*}
\subsubsection{Lösung für $F(r)$\label{subsub:lösung_F}}
-Die Gleichung für $F$ hat die Gestalt
+Die Gleichung für $F$ hat die Gestalt (verweis auf \ref{buch:differentialgleichungen:bessel-operator})
\begin{align}
r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0
\label{eq:2nd_degree_PDE}
@@ -90,19 +86,9 @@ Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt,
\end{equation*}
Lösungen der Besselschen Differenzialgleichung
\begin{equation*}
- x^2 y'' + xy' + (x^2 - \nu^2)y = 0
-\end{equation*}
-Die Funktionen $F(r) = J_n(\kappa r)$ lösen also die Differentialgleichung \eqref{eq:2nd_degree_PDE}. Die
-Randbedingung $F(R)=0$ impliziert, dass $\kappa R$ eine Nullstelle der Besselfunktion
-$J_n$ sein muss. Man kann zeigen, dass die Besselfunktionen $J_n, n \geq 0$, alle unendlich
-viele Nullstellen
-\begin{equation*}
- \alpha_{1n} < \alpha_{2n} < ...
-\end{equation*}
-haben, und dass $\underset{\substack{m\to\infty}}{\text{lim}} \alpha_{mn}=\infty$. Somit ergibt sich, dass $\kappa = \frac{\alpha_{mn}}{R}$ für ein $m\geq 1$, und dass
-\begin{equation*}
- F(r) = J_n (\kappa_{mn}r) \quad \text{mit} \quad \kappa_{mn}=\frac{\alpha_{mn}}{R}
+ x^2 y'' + xy' + (\kappa^2 - \nu^2)y = 0
\end{equation*}
+Die Funktionen $F(r) = J_n(\kappa r)$ lösen die Differentialgleichung \eqref{eq:2nd_degree_PDE}.
\subsubsection{Lösung für $T(t)$\label{subsub:lösung_T}}
Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$.
@@ -115,7 +101,21 @@ Durch Überlagerung aller Ergebnisse erhält man die Lösung
\end{align}
Dabei sind $m$ und $n$ ganze Zahlen, wobei $m$ für die Anzahl der Knotenkreise und $n$
-für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten.
+für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie; siehe Abbildung \ref{buch:pde:kreis:fig:pauke}. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=\textwidth]{chapters/090-pde/bessel/pauke.pdf}
+ %\includegraphics{chapters/090-pde/bessel/pauke.pdf}
+ \caption{Vorzeichen der Lösungsfunktionen und Knotenlinien
+ für verschiedene Werte von $\mu$ und $k$.
+ Die Bereiche, in denen die Lösungsfunktion positiv sind, ist
+ rot dargestellt, die negativen Bereiche blau.
+ In jeder Darstellung gibt es genau $k+\mu$ Knotenlinien.
+ Die Radien der kreisförmigen Knotenlinien müssen aus den Nullstellen
+ der Besselfunktionen berechnet werden.
+ \label{buch:pde:kreis:fig:pauke}}
+\end{figure}
An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist.