aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kreismembran/teil2.tex
diff options
context:
space:
mode:
authortim30b <tim.toenz@ost.ch>2022-08-15 00:50:56 +0200
committertim30b <tim.toenz@ost.ch>2022-08-15 00:50:56 +0200
commita1a811ef08f16f61382f4f7eecc45fd71bd1e1d6 (patch)
tree0e3a4437c0317890da00dc4e8591c42e84271ef7 /buch/papers/kreismembran/teil2.tex
parentKorrekturen von Müller umgesetzt (diff)
downloadSeminarSpezielleFunktionen-a1a811ef08f16f61382f4f7eecc45fd71bd1e1d6.tar.gz
SeminarSpezielleFunktionen-a1a811ef08f16f61382f4f7eecc45fd71bd1e1d6.zip
gegengelesene Fehler angepasst
Diffstat (limited to 'buch/papers/kreismembran/teil2.tex')
-rw-r--r--buch/papers/kreismembran/teil2.tex8
1 files changed, 4 insertions, 4 deletions
diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex
index 133ee31..ec27bd3 100644
--- a/buch/papers/kreismembran/teil2.tex
+++ b/buch/papers/kreismembran/teil2.tex
@@ -7,7 +7,7 @@
Hermann Hankel (1839--1873) war ein deutscher Mathematiker, der für seinen Beitrag zur mathematischen Analysis und insbesondere für die nach ihm benannte Transformation bekannt ist.
Diese Transformation tritt bei der Untersuchung von Funktionen auf, die nur von der Entfernung des Ursprungs abhängen.
-Er studierte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art.
+Er untersuchte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art.
Die Hankel-Transformation, die die Bessel-Funktion enthält, taucht natürlich bei achsensymmetrischen Problemen auf, die in zylindrischen Polarkoordinaten formuliert sind.
In diesem Abschnitt werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert.
@@ -17,12 +17,12 @@ Wir führen die Definition der Hankel-Transformation \cite{lokenath_debnath_inte
\mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx \; dy,\label{equation:fourier_transform}\\
\mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r})}F(k,l) \; dx \; dy \label{equation:inv_fourier_transform}
\end{align}
-wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problem am besten geeignet, mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach:
+definiert ist, wobei $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problem am besten geeignet. Mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach:
\begin{align}
F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r \; dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) \; d\phi.
\label{equation:F_ohne_variable_wechsel}
\end{align}
-Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, weil die \textit{Fourier-Theorie} besagt, dass sich jede Funktion durch Überlagerung solcher Terme darstellen lässt. Es wird auch eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren:
+Dann wird angenommen, dass $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, weil die \textit{Fourier-Theorie} besagt, dass sich jede Funktion durch Überlagerung solcher Terme darstellen lässt. Es wird auch eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren:
\begin{align}
F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) \; dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} \; d\alpha,
\label{equation:F_ohne_bessel}
@@ -69,7 +69,7 @@ verwendet werden, um die Hankel-Transformation \eqref{equation:hankel} und ihre
Insbesondere die Hankel-Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden.
\subsection{Operatoreigenschaften der Hankel-Transformation \label{sub:op_properties_hankel}}
-In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Die Beweise für ihre Gültigkeit werden jedoch nicht analysiert, dies ist in Buch \textit{Integral Tansforms and Their Applications} \cite{lokenath_debnath_integral_2015} zu finden.
+In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Die Beweise für ihre Gültigkeit werden jedoch nicht analysiert, diese sind im Buch \textit{Integral Tansforms and Their Applications} \cite{lokenath_debnath_integral_2015} zu finden.
\begin{satz}{Skalierung:}
Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann gilt: