aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kreismembran
diff options
context:
space:
mode:
authortim30b <tim.toenz@ost.ch>2022-08-15 00:50:56 +0200
committertim30b <tim.toenz@ost.ch>2022-08-15 00:50:56 +0200
commita1a811ef08f16f61382f4f7eecc45fd71bd1e1d6 (patch)
tree0e3a4437c0317890da00dc4e8591c42e84271ef7 /buch/papers/kreismembran
parentKorrekturen von Müller umgesetzt (diff)
downloadSeminarSpezielleFunktionen-a1a811ef08f16f61382f4f7eecc45fd71bd1e1d6.tar.gz
SeminarSpezielleFunktionen-a1a811ef08f16f61382f4f7eecc45fd71bd1e1d6.zip
gegengelesene Fehler angepasst
Diffstat (limited to 'buch/papers/kreismembran')
-rw-r--r--buch/papers/kreismembran/teil0.tex10
-rw-r--r--buch/papers/kreismembran/teil1.tex2
-rw-r--r--buch/papers/kreismembran/teil2.tex8
-rw-r--r--buch/papers/kreismembran/teil3.tex6
-rw-r--r--buch/papers/kreismembran/teil4.tex16
5 files changed, 21 insertions, 21 deletions
diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex
index a0a4152..c6dac06 100644
--- a/buch/papers/kreismembran/teil0.tex
+++ b/buch/papers/kreismembran/teil0.tex
@@ -10,7 +10,7 @@ Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigen
Beschreibt man das dynamische Verhalten, muss zwischen einer dünnen Platte und einer Membrane unterschieden werden \cite{kreismembran:membrane_vs_thin_plate}.
Eine dünne Platte zum Beispiel aus Metall, wirkt selbst entgegen ihrer Deformation sobald sie gekrümmt wird.
Eine Membran auf der anderen Seite besteht aus einem Material, welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier.
-Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert, aus der Ruhelage gebracht zu werden.
+Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt, welche das Material daran hindert, aus der Ruhelage gebracht zu werden.
Ein geläufiges Beispiel einer Kreismembran ist eine runde Trommel.
Sie besteht herkömmlicherweise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird.
@@ -36,8 +36,8 @@ Das untersuchte Modell erfüllt folgende Eigenschaften:
\end{enumerate}
-\subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet.
-Es lohnt sich das Verhalten einer Saite zu beschreiben, da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension.
+\subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten, wird vorerst eine schwingende Saite betrachtet.
+Es lohnt sich, das Verhalten einer Saite zu beschreiben, da eine Saite dasselbe Verhalten wie eine Membran aufweist, mit dem Unterschied einer fehlenden Dimension.
Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor.
\begin{figure}
@@ -49,7 +49,7 @@ Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man s
\end{figure}
In Abbildung \ref{kreismembran:im:Saite} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert.
-Wie für die Membran ist die Annahme iii) gültig, keine Bewegung entlang der $ x $-Achse.
+Wie für die Membran ist die Annahme iii) gültig, es entsteht keine Bewegung entlang der $ x $-Achse.
Um dies zu erfüllen, muss der Punkt $ P_1 $ gleich stark entgegen der $ x $-Achse gezogen werden wie der Punkt $ P_2 $ in Richtung der $ x $-Achse gezogen wird.
Ist $ T_1 $ die Kraft, welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte
\begin{equation}\label{kreismembran:eq:no_translation}
@@ -85,7 +85,7 @@ Durch die Division mit $ dx $ entsteht
Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt.
Wenn $ dx $ als unendlich kleines Stück betrachtet wird, ergibt sich als Grenzwert die zweite Ableitung von $ u(x,t) $ nach $ x $.
Der Term $ \frac{\rho}{T} $ wird durch $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss.
-Somit resultiert die in der Literatur gebräuchliche Form
+Damit resultiert die in der Literatur gebräuchliche Form
\begin{equation}
\label{kreismembran:Ausgang_DGL}
\frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u.
diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex
index a872ed1..f6ba7d1 100644
--- a/buch/papers/kreismembran/teil1.tex
+++ b/buch/papers/kreismembran/teil1.tex
@@ -83,7 +83,7 @@ Die Gleichung für $F$ hat die Gestalt (Verweis auf \label{buch:differentialglei
r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0
\label{eq:2nd_degree_PDE}
\end{align}
-Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Bessel-Funktionen
+Wie bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Bessel-Funktionen
\begin{equation*}
J_{\nu}(x) = r^\nu \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu}m! \Gamma (\nu + m+1)}
\end{equation*}
diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex
index 133ee31..ec27bd3 100644
--- a/buch/papers/kreismembran/teil2.tex
+++ b/buch/papers/kreismembran/teil2.tex
@@ -7,7 +7,7 @@
Hermann Hankel (1839--1873) war ein deutscher Mathematiker, der für seinen Beitrag zur mathematischen Analysis und insbesondere für die nach ihm benannte Transformation bekannt ist.
Diese Transformation tritt bei der Untersuchung von Funktionen auf, die nur von der Entfernung des Ursprungs abhängen.
-Er studierte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art.
+Er untersuchte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der dritten Art.
Die Hankel-Transformation, die die Bessel-Funktion enthält, taucht natürlich bei achsensymmetrischen Problemen auf, die in zylindrischen Polarkoordinaten formuliert sind.
In diesem Abschnitt werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert.
@@ -17,12 +17,12 @@ Wir führen die Definition der Hankel-Transformation \cite{lokenath_debnath_inte
\mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx \; dy,\label{equation:fourier_transform}\\
\mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r})}F(k,l) \; dx \; dy \label{equation:inv_fourier_transform}
\end{align}
-wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problem am besten geeignet, mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach:
+definiert ist, wobei $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problem am besten geeignet. Mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach:
\begin{align}
F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r \; dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) \; d\phi.
\label{equation:F_ohne_variable_wechsel}
\end{align}
-Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, weil die \textit{Fourier-Theorie} besagt, dass sich jede Funktion durch Überlagerung solcher Terme darstellen lässt. Es wird auch eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren:
+Dann wird angenommen, dass $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, weil die \textit{Fourier-Theorie} besagt, dass sich jede Funktion durch Überlagerung solcher Terme darstellen lässt. Es wird auch eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren:
\begin{align}
F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) \; dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} \; d\alpha,
\label{equation:F_ohne_bessel}
@@ -69,7 +69,7 @@ verwendet werden, um die Hankel-Transformation \eqref{equation:hankel} und ihre
Insbesondere die Hankel-Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden.
\subsection{Operatoreigenschaften der Hankel-Transformation \label{sub:op_properties_hankel}}
-In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Die Beweise für ihre Gültigkeit werden jedoch nicht analysiert, dies ist in Buch \textit{Integral Tansforms and Their Applications} \cite{lokenath_debnath_integral_2015} zu finden.
+In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Die Beweise für ihre Gültigkeit werden jedoch nicht analysiert, diese sind im Buch \textit{Integral Tansforms and Their Applications} \cite{lokenath_debnath_integral_2015} zu finden.
\begin{satz}{Skalierung:}
Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann gilt:
diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex
index 468ee24..a9dcd95 100644
--- a/buch/papers/kreismembran/teil3.tex
+++ b/buch/papers/kreismembran/teil3.tex
@@ -17,7 +17,7 @@ Führt man also das Konzept einer unendlichen und achsensymmetrischen Membran ei
+
\frac{1}{r}
\frac{\partial u}{\partial r} \right), \quad 0<r<\infty, \quad t>0 \label{eq:PDE_inf_membane} \\
- u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 0<r<\infty
+ u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 0<r<\infty.
\label{eq:PDE_inf_membane_RB}
\end{align}
@@ -42,7 +42,7 @@ Die allgemeine Lösung für diese Gleichung lautet, wie in Abschnitt \eqref{eq:c
\begin{equation*}
\tilde{u}(\kappa,t)=\tilde{f}(\kappa)\cos(c\kappa t) + \frac{1}{c\kappa}\tilde{g}(\kappa)\sin(c\kappa t).
\end{equation*}
-Wendet man an nun die inverse Hankel-Transformation an, so erhält man die formale Lösung
+Wendet man nun die inverse Hankel-Transformation an, so erhält man die formale Lösung
\begin{align}
u(r,t)=\int_{0}^{\infty}\kappa\tilde{f}(\kappa)\cos(c\kappa t) J_0(\kappa r) \; d\kappa +\frac{1}{c}\int_{0}^{\infty}\tilde{g}(\kappa)\sin(c\kappa t)J_0(\kappa r) \; d\kappa.
@@ -50,7 +50,7 @@ Wendet man an nun die inverse Hankel-Transformation an, so erhält man die forma
\end{align}
\subsubsection{Erfüllung der Anfangsbedingungen\label{subsub:erfüllung_AB}}
-Es wird in Folgenden davon ausgegangen, dass sich die Membran verformt und zum Zeitpunkt $t=0$ freigegeben wird
+Es wird im Folgenden davon ausgegangen, dass sich die Membran verformt und zum Zeitpunkt $t=0$ freigegeben wird
\begin{equation*}
u(r,0)=f(r)=Aa(r^2 + a^2)^{-\frac{1}{2}}, \quad u_t(r,0)=g(r)=0
diff --git a/buch/papers/kreismembran/teil4.tex b/buch/papers/kreismembran/teil4.tex
index 95cb516..01a6029 100644
--- a/buch/papers/kreismembran/teil4.tex
+++ b/buch/papers/kreismembran/teil4.tex
@@ -12,7 +12,7 @@ Jedes Element $ U_{ij} $ steh für die Auslenkung der Membran $ u(x,y,t) $ an d
Zwischen benachbarten Elementen in der Matrix $ U $ liegt immer der Abstand $ dh $, eine Inkrementierung von $ i $ oder $ j $ entspricht somit einem Schritt in Richtung $ x $ oder $ y $ von Länge $ dh $ auf der Membran.
Die zeitliche Dimension wird in Form des Array $ U[] $ aus $ z \times U $ Matrizen dargestellt, wobei $ z $ der Anzahl Zeitschritten entspricht.
Das Element auf Zeile $ i $, Spalte $ j $ der $ w $-ten Matrix von $ U[] $ also $ U[w]_{ij} $ entspricht somit der Auslenkung $ u(i,j,w) $.
-Da die DGL von Zweiter Ordnung ist, reicht eine Zustandsvariabel pro Membran-Element nicht aus.
+Da die DGL von zweiter Ordnung ist, reicht eine Zustandsvariabel pro Membran-Element nicht aus.
Es wird neben der Auslenkung auch die Geschwindigkeit jedes Membran-Elementes benötigt um den Zustand eindeutig zu beschreiben.
Dazu existiert neben $ U[] $ ein analoger Array $ V[] $ welcher die Geschwindigkeiten aller Membran-Elementen repräsentiert.
$ V[w]_{ij} $ entspricht also $ \dot{u}(i,j,w) $.
@@ -77,13 +77,13 @@ Die Faltung mit einer Gauss-Glocke ist in Programmen wie Matlab eine Standartfun
\subsubsection{Rand}
Bislang ist die definierte Matrix rechteckig.
-Um eine kreisförmige Membran zu simulieren muss der Rand angepasst werden.
+Um eine kreisförmige Membran zu simulieren, muss der Rand angepasst werden.
Da in den meisten Programme keine Möglichkeit besteht, mit runden Matrizen zu rechnen, wird der Rand in der Berechnung des Folgezustandes implementiert.
-Der Rand bedeutet, das Membran-Elemente auf dem Rand sich nicht Bewegen können.
-Die Position sowie die Geschwindigkeit aller Elemente, welche nicht auf der definierten Membran sind, müssen zu beliebiger Zeit $0$ sein.
+Der Rand bedeutet, dass Membran-Elemente auf dem Rand sich nicht Bewegen können.
+Die Position, sowie die Geschwindigkeit aller Elemente, welche nicht auf der definierten Membran sind, müssen zu beliebiger Zeit $0$ sein.
Hierzu wird eine Maske $M$ erstellt.
Diese Maske besteht aus einer binären Matrix von identischer Dimension wie $ U $ und $ V $.
-Ist in der Matrix $M$ eine $1$ abgebildet so ist an jener stelle ein Element der Membran, ist es eine $0$ so befindet sich dieses Element auf dem Rand oder ausserhalb der Membran.
+Ist in der Matrix $M$ eine $1$ abgebildet, so ist an jener Stelle ein Element der Membran, ist es eine $0$ so befindet sich dieses Element auf dem Rand oder ausserhalb der Membran.
In dieser Anwendung ist $M$ eine Matrix mit einem Kreis voller $1$ umgeben von $0$ bis an den Rand der Matrix.
Die Maske wird angewendet, indem das Resultat des nächsten Zustandes noch mit der Maske elementweise multipliziert wird.
Der Folgezustand kann also mit den Gleichungen
@@ -99,7 +99,7 @@ Mit den gegebenen Gleichungen \ref{kreismembran:eq:folge_U} und \ref{kreismembra
In der Abbildung \ref{kreismembran:im:simres_rund} sind Simulationsresultate zu sehen.
Die erste Figur zeigt die Ausgangslage gefolgt von den Auslenkungen nach jeweils $ 50 $ weiteren Iterationsschritten.
Es ist zu erkennen, wie sich die Störung vom Zentrum an den Rand ausbreitet.
-Erreicht die Störung den Rand wird sie reflektiert und nähert sich dem Zentrum.
+Erreicht die Störung den Rand, wird sie reflektiert und nähert sich dem Zentrum.
\begin{figure}
\begin{center}
@@ -117,8 +117,8 @@ Erreicht die Störung den Rand wird sie reflektiert und nähert sich dem Zentrum
\end{figure}
\subsection{Simulation: Unendliche Membran}
-Um eine unendlich grosse Membran zu simulieren könnte der unpraktische weg gewählt werden die Matrix unendlich gross zu definieren, dies wird jedoch spätestens bei der numerischen Berechnung seine Probleme mit sich bringen.
-Etwas geeigneter ist es die Matrix so gross wie möglich zu definieren wie es die Kapazitäten erlauben.
+Um eine unendlich grosse Membran zu simulieren, könnte der unpraktische Weg gewählt werden, die Matrix unendlich gross zu definieren, dies wird jedoch spätestens bei der numerischen Berechnung seine Probleme mit sich bringen.
+Etwas geeigneter ist es, die Matrix so gross wie möglich zu definieren, wie es die Kapazitäten erlauben.
Wenn anschliessend nur das Verhalten im Zentrum, bei der Störung beobachtet wird, verhaltet sich die Membran wie eine unendliche.
Dies aber nur bis die Störung am Rand reflektiert wird und wieder das innere zu beobachtende Zentrum beeinflusst.
Soll erst gar keine Reflexion entstehen, muss ein Absorber modelliert werden welcher die Störung möglichst ohne Reflexion aufnimmt.