aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/kreismembran/teil2.tex
diff options
context:
space:
mode:
authorAndrea Mozzini Vellen <amozzinivellen@gmail.com>2022-08-08 19:00:45 +0200
committerAndrea Mozzini Vellen <amozzinivellen@gmail.com>2022-08-08 19:00:45 +0200
commita37eaf082bc34c696c40efe33cf868c41dd765a0 (patch)
tree3c39201bbf311f7fb7583acfbfaf17449ef2061f /buch/papers/kreismembran/teil2.tex
parentTypo fix in elliptischen Uebungen (diff)
downloadSeminarSpezielleFunktionen-a37eaf082bc34c696c40efe33cf868c41dd765a0.tar.gz
SeminarSpezielleFunktionen-a37eaf082bc34c696c40efe33cf868c41dd765a0.zip
last commit
Diffstat (limited to 'buch/papers/kreismembran/teil2.tex')
-rw-r--r--buch/papers/kreismembran/teil2.tex16
1 files changed, 8 insertions, 8 deletions
diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex
index 4fb139c..133ee31 100644
--- a/buch/papers/kreismembran/teil2.tex
+++ b/buch/papers/kreismembran/teil2.tex
@@ -34,7 +34,7 @@ Unter Verwendung der Integraldarstellung
J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} \; d\alpha
\label{equation:bessel_n_ordnung}
\end{equation*}
- der Besselfunktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} wird \eqref{equation:F_ohne_bessel} zu:
+ der Bessel-Funktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} wird \eqref{equation:F_ohne_bessel} zu:
\begin{align}
F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) \; dr \nonumber \\
&=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa),
@@ -69,10 +69,10 @@ verwendet werden, um die Hankel-Transformation \eqref{equation:hankel} und ihre
Insbesondere die Hankel-Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden.
\subsection{Operatoreigenschaften der Hankel-Transformation \label{sub:op_properties_hankel}}
-In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert.
+In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Die Beweise für ihre Gültigkeit werden jedoch nicht analysiert, dies ist in Buch \textit{Integral Tansforms and Their Applications} \cite{lokenath_debnath_integral_2015} zu finden.
\begin{satz}{Skalierung:}
- Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann:
+ Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann gilt:
\begin{equation*}
\mathscr{H}_n\{f(ar)\}=\frac{1}{a^{2}}\tilde{f}_n \left(\frac{\kappa}{a}\right), \quad a>0.
@@ -80,7 +80,7 @@ In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation
\end{satz}
\begin{satz}{Parsevalsche Relation:}
-Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann:
+Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann gilt:
\begin{equation*}
\int_{0}^{\infty}rf(r)g(r) \; dr = \int_{0}^{\infty}\kappa\tilde{f}(\kappa)\tilde{g}(\kappa) \; d\kappa.
@@ -88,20 +88,20 @@ Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H
\end{satz}
\begin{satz}{Hankel-Transformationen von Ableitungen:}
-Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann:
+Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann gilt:
\begin{align*}
&\mathscr{H}_n\{f'(r)\}=\frac{\kappa}{2n}\left[(n-1)\tilde{f}_{n+1}(\kappa)-(n+1)\tilde{f}_{n-1}(\kappa)\right], \quad n\geq1, \\
&\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa),
\end{align*}
-vorausgesetzt dass $[rf(r)]$ verschwindet wenn $r\to0$ und $r\to\infty$.
+vorausgesetzt, dass $rf(r)$ verschwindet wenn $r\to0$ und $r\to\infty$.
\end{satz}
\begin{satz}
-Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann:
+Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann gilt:
\begin{equation*}
\mathscr{H}_n \left\{ \left( \nabla^2 - \frac{n^2}{r^2} f(r)\right)\right\}= \mathscr{H}_n\left\{\frac{1}{r}\frac{d}{dr}\left(r\frac{df}{dr}\right) - \frac{n^2}{r^2}f(r)\right\}=-\kappa^2\tilde{f}_{n}(\kappa),
\end{equation*}
-bereitgestellt dass $rf'(r)$ und $rf(r)$ verschwinden für $r\to0$ und $r\to\infty$.
+bereitgestellt, dass $rf'(r)$ und $rf(r)$ verschwinden für $r\to0$ und $r\to\infty$.
\end{satz}