aboutsummaryrefslogtreecommitdiffstats
path: root/buch/papers/lambertw/teil1.tex
diff options
context:
space:
mode:
authorKuster Yanik <yanik.kuster@ost.ch>2022-08-04 17:31:48 +0200
committerKuster Yanik <yanik.kuster@ost.ch>2022-08-04 17:31:48 +0200
commit05b1350074c1c62340c7c32f240cb46078c152e7 (patch)
treed1c631de1b578b6abd2ab4ee03795d794e04a0b8 /buch/papers/lambertw/teil1.tex
parentMerge branch 'master' of https://github.com/daHugen/SeminarSpezielleFunktionen (diff)
downloadSeminarSpezielleFunktionen-05b1350074c1c62340c7c32f240cb46078c152e7.tar.gz
SeminarSpezielleFunktionen-05b1350074c1c62340c7c32f240cb46078c152e7.zip
changed textsize in Strategie.pdf. Did minor changes in Teil0 and Teil1
Diffstat (limited to 'buch/papers/lambertw/teil1.tex')
-rw-r--r--buch/papers/lambertw/teil1.tex36
1 files changed, 19 insertions, 17 deletions
diff --git a/buch/papers/lambertw/teil1.tex b/buch/papers/lambertw/teil1.tex
index 2da07db..0fd0108 100644
--- a/buch/papers/lambertw/teil1.tex
+++ b/buch/papers/lambertw/teil1.tex
@@ -17,9 +17,10 @@ Nun gilt es zu definieren, wann das Ziel erreicht wird.
Da sowohl Ziel und Verfolger als Punkte modelliert wurden, gilt das Ziel als erreicht, wenn die Koordinaten des Verfolgers mit denen des Ziels bei einem diskreten Zeitpunkt $t_1$ übereinstimmen.
Somit gilt es
%
-\begin{equation*}
+\begin{equation}
z(t_1)=v(t_1)
-\end{equation*}
+ \label{bedingung_treffer}
+\end{equation}
%
zu lösen.
Die Parametrisierung von $z(t)$ ist im Beispiel definiert als
@@ -29,12 +30,12 @@ Die Parametrisierung von $z(t)$ ist im Beispiel definiert als
\left( \begin{array}{c} 0 \\ t \end{array} \right)\text{.}
\end{equation}
%
-Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird die obige Bedingung jeweils für die unterschiedlichen Startbedingungen separat analysiert.
+Die Parametrisierung von $v(t)$ ist von den Startbedingungen abhängig. Deshalb wird \eqref{bedingung_treffer} jeweils für die unterschiedlichen Startbedingungen separat analysiert.
%
-\subsection{Anfangsbedingung im \RN{1}-Quadranten}
+\subsection{Anfangsbedingung im ersten Quadranten}
%
-Wenn der Verfolger im \RN{1}-Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche
-\begin{align*}
+Wenn der Verfolger im ersten Quadranten startet, dann kann $v(t)$ mit den Gleichungen aus \eqref{lambertw:eqFunkXNachT}, welche
+\begin{align}
x\left(t\right)
&=
x_0\cdot\sqrt{\frac{1}{\chi}W\left(\chi\cdot \exp\left( \chi-\frac{4t}{r_0-y_0}\right) \right)} \\
@@ -50,7 +51,8 @@ Wenn der Verfolger im \RN{1}-Quadranten startet, dann kann $v(t)$ mit den Gleich
r_0
=
\sqrt{x_0^2+y_0^2}
-\end{align*}
+ \text{.}
+\end{align}
%
Der Folger ist durch
\begin{equation}
@@ -61,9 +63,9 @@ Der Folger ist durch
\end{equation}
%
parametrisiert, wobei $y(t)$ viel komplexer ist als $x(t)$.
-Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden müssen. Es entstehen daher folgende Bedingungen
+Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Bedingung der $x$- und $y$-Koordinaten einzeln überprüft werden müssen. Es entstehen daher die Bedingungen
%
-\begin{align*}
+\begin{align}
0
&=
x(t)
@@ -75,7 +77,7 @@ Daher wird das Problem in zwei einzelne Teilprobleme zerlegt, wodurch die Beding
y(t)
=
\frac{1}{4}\left(\left(y_0+r_0\right)\left(\frac{x(t)}{x_0}\right)^2+\left(r_0-y_0\right)\operatorname{ln}\left(\left(\frac{x(t)}{x_0}\right)^2\right)-r_0+3y_0\right)\text{,}
-\end{align*}
+\end{align}
%
welche Beide gleichzeitig erfüllt sein müssen, damit das Ziel erreicht wurde.
Zuerst wird die Bedingung der $x$-Koordinate betrachtet.
@@ -101,7 +103,7 @@ Diese Gleichung entspricht genau den Nullstellen der Lambert W-Funktion. Da die
%
Da $\chi\neq0$ und die Exponentialfunktion nie null sein kann, ist diese Bedingung unmöglich zu erfüllen.
Beim Grenzwert für $t\rightarrow\infty$ geht die Exponentialfunktion gegen null.
-Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste damit ein Einholen möglich wäre.
+Dies nützt nicht viel, da unendlich viel Zeit vergehen müsste, damit ein Einholen möglich wäre.
Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden.
%
%
@@ -136,7 +138,7 @@ Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden.
%Somit kann nach den gestellten Bedingungen das Ziel nie erreicht werden.
%
\subsection{Anfangsbedingung $y_0<0$}
-Da die Geschwindigkeit des Verfolgers und des Ziels übereinstimmen, kann der Verfolgers niemals das Ziel einholen.
+Da die Geschwindigkeit des Verfolgers und des Ziels übereinstimmen, kann der Verfolger niemals das Ziel einholen.
Dies kann veranschaulicht werden anhand
%
\begin{equation}
@@ -184,7 +186,7 @@ was aufgelöst zu
führt.
Somit wird das Ziel immer erreicht bei $t_1$, wenn der Verfolger auf der positiven $y$-Achse startet.
\subsection{Fazit}
-Durch die Symmetrie der Fluchtkurve an der $y$-Achse führen die Anfangsbedingungen in den Quadranten \RN{1} und \RN{2} zu den gleichen Ergebnissen. Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt.
+Durch die Symmetrie der Fluchtkurve an der $y$-Achse führen die Anfangsbedingungen im ersten und zweiten Quadranten zu den gleichen Ergebnissen. Nun ist klar, dass lediglich Anfangspunkte auf der positiven $y$-Achse oder direkt auf dem Ziel dazu führen, dass der Verfolger das Ziel bei $t_1$ einholt.
Bei allen anderen Anfangspunkten wird der Verfolger das Ziel nie erreichen.
Dieses Resultat ist aber eher akademischer Natur, weil der Verfolger und das Ziel als Punkt betrachtet wurden.
Wobei aber in Realität nicht von Punkten sondern von Objekten mit einer räumlichen Ausdehnung gesprochen werden kann.
@@ -193,18 +195,18 @@ Falls dies stattfinden sollte, wird dies als Treffer interpretiert.
Mathematisch kann dies mit
%
\begin{equation}
- |v-z|<a_{min} \text{,}\quad a_{min}\in\mathbb{R}^+
+ |v-z|<a_{\text{min}} \text{,}\quad a_{\text{min}}\in\mathbb{R}^+
\end{equation}
%
-beschrieben werden, wobei $a_{min}$ dem Trefferradius entspricht.
+beschrieben werden, wobei $a_{\text{min}}$ dem Trefferradius entspricht.
Durch quadrieren verschwindet die Wurzel des Betrages, womit
%
\begin{equation}
- |v-z|^2<a_{min}^2 \text{,}\quad a_{min}\in \mathbb{R}^+
+ |v-z|^2<a_{\text{min}}^2 \text{,}\quad a_{\text{min}}\in \mathbb{R}^+
\end{equation}
%
die neue Bedingung ist.
-Da sowohl der Betrag als auch $a_{min}$ grösser null sind, bleibt die Aussage unverändert.
+Da sowohl der Betrag als auch $a_{\text{min}}$ grösser null sind, bleibt die Aussage unverändert.
%
\subsection{verleitende/trügerisch/verführerisch Intuition}
In der Grafik \ref{lambertw:grafic:intuition} ist eine Mögliche Verfolgungskurve dargestellt, wobei für die Startbedingung der erste-Quadrant verwendet wurde.